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NLS	� Nuclear Localization Signal
PCAF	� P300/CBP-associated factor
PI3K	� Phospho-Inositol 3 Kinase
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PS2	� Presenilin-2
RB	� Retinoblastoma
ROS	� Reactive Oxidative Species
RP	� Ribosomal proteins
Smad	� Small mothers against decapentaplegic
SNP	� Single Nucleotide Polymorphism
Src	� Proto-oncogene tyrosine-protein kinase
SV40	� Simian Virus 40
TGF-β	� Transforming growth factor-beta
TP53	� Tumor Protein p53
TβRI	� TGF-β Receptor Type I
TβRII	� TGF-β Receptor Type II

Abbreviations
AR	� Androgen Receptor
ARE	� Androgen Responsive Elements
CDK	� Cyclin-dependent Kinase
DP1	� Dimerization partner 1
E2F	� Elongation factor 2
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EMT	� Epidermal to Mesenchymal Transition
ER	� Estrogen Receptor
ERE	� Estrogen Responsive Elements
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Abstract
Murine double minute 2 (MDM2) is a well-recognized molecule for its oncogenic potential. Since its identification, 
various cancer-promoting roles of MDM2 such as growth stimulation, sustained angiogenesis, metabolic reprogramming, 
apoptosis evasion, metastasis, and immunosuppression have been established. Alterations in the expression levels of 
MDM2 occur in multiple types of cancers resulting in uncontrolled proliferation. The cellular processes are modulated by 
MDM2 through transcription, post-translational modifications, protein degradation, binding to cofactors, and subcellular 
localization. In this review, we discuss the precise role of deregulated MDM2 levels in modulating cellular functions to 
promote cancer growth. Moreover, we also briefly discuss the role of MDM2 in inducing resistance against anti-cancerous 
therapies thus limiting the benefits of cancerous treatment.
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VEGF	� Vascular Epithelial Growth Factors
VHL	� Von Hippel-Lindau
WRN	� Werner Syndrome RecQ like helicase

.

Introduction

The murine double minute 2 (MDM2) gene (also referred to 
as human double minute 2 (HDM2)) is well recognized for 
its growth-promoting role in various cancers [1]. The patho-
genic role of MDM2 in initiation, progression, metastasis, 
and chemotherapy resistance of cancer is majorly attributed 
to gene mutation and deregulated expression [2]. Genomic 
amplification and altered MDM2 levels are associated with 
unfavorable prognosis, poor response to chemotherapy and 
target therapy, and adverse clinicopathological parameters 
in many cancers [3–5].

The MDM2 reprograms many biological processes that 
support malignant transformations e.g., cell growth, angio-
genesis, metabolism, apoptosis evasion, and metastasis [6]. 
The deregulated MDM2 gene expression is ascribed to a 
variety of molecular and regulatory mechanisms. These pro-
cesses include increased promoter strength caused by trans-
version of T to G at position 309 (SNP309) [7], increased 
transcription and translation of the gene[8], escalation in 
MDM2 gene copy number[9] or dysfunctional MDM2 reg-
ulators e.g., tumor protein p53 (TP53). The occurrence of 
splice variants of MDM2 also contributes to the increased 
aggressiveness of various cancers [10]. Owing to its diverse 
functioning and huge significance in anti-apoptosis, various 
anti-cancer therapies targeting MDM2 have been developed 
[11]. This review aims to summarize the diversified cancer-
promoting roles of MDM2.

MDM2 empowers cancers cells to escape 
TP53-mediated cell death

MDM2 helps cancerous cells to evade death through a 
variety of mechanisms. Anti-apoptotic role of MDM2 is 
historically established after the discovery of the physi-
cal association of MDM2 with a tumor suppressor protein, 
TP53 [12]. The association of MDM2 and TP53 led to the 
formulation of the hypothesis that MDM2 acts as a negative 
regulator of TP53 [9]. Shortly after, the research provided 
pieces of evidence in support of the hypothesis reinforcing 
the antagonistic role of MDM2 for TP53 [12].

TP53 gene was first identified in 1979 as a partner of 
large T-antigen (inducers of tumors) of Simian Virus 40 

(SV40) [13]. Several lines of historical and recent evidence 
suggest contradictory roles of TP53 in regulating cell fate 
[14–16]. The diverse functioning of TP53 as a tumor sup-
pressor includes the regulation of expression of genes ensu-
ing cell cycle arrest, senescence, and apoptosis in response 
to stress [17–19]. Paradoxically in many studies, high levels 
of TP53 protected cells from stress-induced death and led to 
chemo-resistant however knocking down TP53 levels was 
found counteractive [15]. The deregulated TP53 expression 
along with a high frequency of TP53 mutations is associated 
with poor prognosis and enhanced chemoresistance in most, 
if not all, cancers[14]. TP53 activates MDM2 which in turn 
regulates the levels of TP53 in cells [20]. MDM2 variants 
deficient in the TP53 binding domain, are unable to inhibit 
TP53 leading to uncontrolled cellular proliferation [21]. 
Hence, the autoregulatory mechanism of TP53 through 
MDM2 maintains tight control of TP53 levels in cells and 
protects cells from the detrimental effects of high levels of 
TP53 on their growth and development [17] (Fig. 1).

In addition, MDM2 ensures the regulation of TP53 in 
cells through a variety of other mechanisms. These include 
driving TP53 out of the nucleus [22], preventing the interac-
tion of TP53 with co-activators [23], and recruiting repres-
sors to impede the transcription of TP53 [24]. Furthermore, 
MDM2 ubiquitinates TP53 for its degradation by the pro-
teasomal machinery of cells thus ensuring cell survival [25]. 
MDM2-mediated ubiquitination occurs exclusively in the 
nucleus[26] while proteasomal mortification can occur in 
the nucleus or cytosol as 26 S proteasomes exist in abun-
dance at both sites [27]. In addition to ubiquitinating TP53, 
MDM2 inhibits its transcription by adding ubiquitin-like 
molecule Nedd8 (neural precursor cell expressed develop-
mentally downregulated 8), a process known as neddylation 
[28]. A recent study demonstrated that phosphorylation of 
MDM2 on Y281 and Y302 switches its activity from ubiq-
uitination to neddylation E3 ligase [29]. Ribosomal proteins 
(RPS27 and RPS27-like) are stabilized by MDM2-mediated 
neddylation, which improves the survival of tumorous cells 
[30].

MDM2 promotes cell growth

The cell growth-promoting activity of the MDM2 pro-
tein is regulated through reprogramming pathways and 
networks including TP53 [31], retinoblastoma (Rb) [32], 
transforming growth factor-beta (TGF-β) [33], steroid and 
androgen receptor (AR) [34] at various molecular levels 
[35, 36] (Fig.  2). Unrestrained cell proliferation is facili-
tated by MDM2 in TP53-dependent [2] as well as TP53-
independent manner [37]. Through negative regulation of 
TP53 expression, MDM2 helps cells to evade death signals, 
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thus promoting the growth of tumorous tissue [2]. In a 
TP53-independent manner, MDM2 promotes cellular aging 
through negative regulation of genes involved in maintain-
ing genomic stability e.g., Werner syndrome RecQ-like 
helicase (WRN). Initially, cellular aging was thought to 
delay the progression of cancer [38]. In contrast, recent find-
ings support the notion that the secretory nature of senescent 
cells promotes the stimulation of tumor aggressiveness [39].

The impact of MDM2 on cell cycle progression through 
its interaction with retinoblastoma (Rb) family members 
is also well studied [40]. Rb family members, known as 
pocket proteins p105, p107, and p130 (Rb-like proteins), 
are involved in governing proliferation, differentiation, and 
apoptosis [41]. The pRb proteins inhibit the induction of the 
S-phase of the cell cycle by negatively regulating elonga-
tion factor 2 (E2F), an essential mediator of protein syn-
thesis. Following ubiquitination, MDM2 degrades pRb thus 
releasing E2F from the inhibition of pRb [42]. The associa-
tion of MDM2 with p107 in TP53 deficient cells has been 

shown to subdue G1 cell cycle arrest thus instigating cell 
cycle progression [43].

MDM2 also triggers cell proliferation by promoting the 
activation of a complex formed by E2F and DP1 (dimer-
ization partner 1) [44]. E2F enhances the activation of Akt 
through the PI3K/Akt pathway [45]. It is also assumed that 
upregulated MDM2 expression is responsible for shifting 
the balance toward cell survival by uplifting Akt through 
E2F and lowering TP53 activity in cells [46]. Moreover, 
MDM2 attenuates the binding of E2F1 to DNA by misfold-
ing E2F1 in the deterrence of E2F1-mediated induction of 
apoptosis [47].

MDM2 also stimulates cell growth by redirecting the 
network of another multifunctional cytokine, transform-
ing growth factor-beta (TGF-β) [48]. Like E2F, TGF-β also 
acts as a cell growth promoter or inhibitor. As a growth 
promoter in cancerous cells, TGF-β fosters metastasis and 
invasiveness through stimulating MDM2 overexpression, 
which in turn knocks off TP53 balance [49]. On the other 
hand, as a tumor suppressor, it discourages the growth of 

Fig. 1  Multifaceted role of MDM2 in tumorigenesis. MDM2 regulates 
multiple processes of a cell including apoptosis, growth, angiogenesis, 
metabolism and metastasis. It also modulates the response of cancer-
ous cells toward immunosuppressiveness. Multiple inhibitors have 
been synthesized to target MDM2-regulated pathways and induce 
apoptosis in cancerous cells.
Abbreviation: MDM2, Murine Double Minute 2; MDMX, Murine 
Double Minute X; TP53, Tumor Protein p53; ER, Estrogen Recep-
tor; AR, Androgen Receptor; GR, Glucocorticoid Receptors; Rb, 
Retinoblastoma; G1-S, G1 to S phase transition; TGF-β, Transforming 
growth Factor-beta; MCT1, Monocarboxylate Transporter 1; GLUT1, 

Glucose Transporter 1; GLUT3, Glucose Transporter 3; GLUT4, Glu-
cose Transporter 4; MT-ND6, Mitochondrially encoded NADH Dehy-
drogenase 6; VEGF, Vascular Epithelial Growth Factors; VEGFA, 
Vascular Epithelial Growth Factor A; HIF1α, Hypoxia-Inducible 
Factor-alpha; IL-6, Interleukin 6; TF, Transcription factor; E-cad, 
E-cadherin; N-cad, N-cadherin; ROS, Reactive Oxidative Species; 
MMP-2, Matrix Metalloproteinase 2; MMP-9, Matrix Metallopro-
teinase 9; DAMP, Damage-Associated Molecular Pattern; PD-1/PDL, 
Programmed death-1/ programmed death ligand; Smad, Small mothers 
against decapentaplegic
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MDM2 with steroid regulation. MDM2 in association with 
TP53 and ERα is shown to regulate ERα turnover in both 
estrogen-dependent and estrogen-independent manner [58, 
59]. The transcriptional activity of ERα enhances multifold 
under the influence of high levels of MDM2 in the absence 
of the TP53 inside the cells [60]. The authors also showed 
that in a subset of breast cancer mutants, MDM2 activates 
the E2F1 pathway via phosphorylation of Rb.

The transcriptional activation of ER can be achieved 
by the interaction of ligand-bound ER or ligand free-ER 
to estrogen-responsive element (ERE) of estrogen-respon-
sive target genes promoter (e.g., Presenilin-2 (pS2))[61]. 
In absence of the ligand, MDM2 followed by the protea-
somal component Rpt6 are sequentially recruited to ERE 
of estrogen-responsive target genes. The complex promotes 
the swift degradation of the poly-ubiquitinated receptor 
with a fast turnover of 20 min, thus avoiding the accumula-
tion of ER[58, 59]. Whereas ligand bound-ER binds to ERE 
of pS2 with greater affinity than ligand-free receptor, which 
recruits histone modifiers e.g., histone methylation trans-
ferase (HMT) and histone acetylation transferase (HAT) 
along with coactivators including SRC-1 (steroid recep-
tor coactivator-1) and polymerase II (Pol II) to initiate the 

epithelial[50] and lymphoid cells by suppressing c-Myc 
and cyclin-dependent kinases (CDKs) while upregulat-
ing the expression of CDK inhibitors [51]. Epithelial cells 
with a sustained increase in MDM2 expression overpower 
the tumor inhibitory role of TGF-β[52] and allow transition 
from epithelial to mesenchymal cells through re-regulating 
Snail, vimentin, E-cadherin, and N-cadherin [53]. In breast 
cancer cells, elevated MDM2 levels were correlated with 
resistance against TGF-β1 treatment [33]. In case of a tran-
sient increase in MDM2 expression, no resistance to TGF- β 
anti-growth function was observed [54]. Thus, the inability 
of MDM2 to provoke resistance to TGF-β was related to 
the duration of exposure. Prolonged activation of MDM2 
in cells leads to the progression of cells from G1 to S phase 
circumventing TGF-β cell cycle arrest signals [54].

Regulation of steroid signaling including estrogen recep-
tor (ERα and ERβ), androgen receptor (AR), and glucocor-
ticoid receptor (GR) is paramount to the maintenance of cell 
physiological activities including cell growth and develop-
ment process. The observations of aberrant regulation of 
GR in neuroblastoma [55], ER in breast cancer [56], and 
AR in prostate cancer [57] along with the elevated level of 
MDM2 in advanced stages evinced the strong correlation of 

Fig. 2  MDM2 regulation of cell growth. MDM2 regulates cell growth 
by blocking the inhibition of pRb on E2F allowing the progression 
to S phase. MDM2 interaction with p107 and DP1 and E2F complex 
allows cell proliferation. Through steroid signaling, MDM2 regulates 
the cell cycle by inhibiting AR, GR and ligand-free ER. MDM2 also 
brings about a shift in the role of TGF-β from growth inhibition to 
growth promotion.
Abbreviations: MDM2, Murine Double Minute 2; DP1, Dimerization 
Partner 1; E2F, Elongation Factor 2; HDAC, Histone Deacetyltransfer-

ase; ER, Estrogen Receptor; AR, Androgen Receptor; GR, Glucocorti-
coid Receptors; Pol ll, polymerase ll; HAT, Histone Acetyltransferase; 
HMT, Histone Methyltransferase; SRC, Steroid Receptor Coactiva-
tor-1; TGF-β, Transforming Growth Factor-beta; pS2, Presenilin-2; 
ERE, Estrogen-Responsive Element
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MDM2 role in angiogenesis

The rapid growth and proliferation increase the nutrient 
requirement, hence cancerous tissues undergo the process 
of neovascularization to assure the continuous supply of 
nutrients. Among various angiogenic stimulators, vascu-
lar epithelial growth factor (VEGF) is a principal element 
stimulating angiogenesis in normal and pathological con-
ditions [74]. The strict regulation and timely expression of 
VEGF are essential for the development of a normal vas-
cular system and homeostasis [75]. In solid tumors, VEGF 
stimulates angiogenesis to promote cancer growth of tis-
sues. A strong correlation between the high expression of 
VEGF and MDM2 has been found, implying the key role 
of MDM2 in VEGF-induced angiogenesis [76]. In a study 
on neuroblastoma cell line LA1-55  N, VEGF expression 
in MDM2 deficient cells lessened considerably resulting in 
increased sensitivity to the chemotherapy [77]. The RING 
finger domain of MDM2 is involved in the stabilization 
of VEGF expression at the post-transcriptional level [76]. 
Under hypoxic conditions, MDM2 translocates from the 
nucleus to the cytoplasm and binds to the VEGF transcript 
to stabilize its expression [77]. By binding with hypoxia-
inducible factor 1-α (HIF 1-α), which is induced in low oxy-
gen tension, MDM2 upregulates the transcription of VEGF 
thus promoting neo-angiogenesis [78] (Fig. 1).

Studies have revealed that exposure to genotypic stress 
leads to dephosphorylation of MDM2 at S166 and S186, 
which is close to the nuclear localization signal (NLS) and 
nuclear export signal (NES), withdrawing MDM2 from 
the nucleus and forcing it to migrate to the cytoplasm [79]. 
Dephosphorylation of MDM2 at S166 is also evident in 
hypoxic conditions, thus setting the stage for redistribution 
of MDM2 in the cytoplasm and ultimate binding of VEGF 
mRNA to increase its stability [77].

MDM2 also stimulates angiogenesis by preventing 
the stimulation of anti-angiogenic factors. A recent study 
revealed the potential of MDM2 to prevent the stimulation 
of the anti-angiogenic factor, Von Hippel-Lindau (VHL), by 
neddylation. The neddylation of VHL disables its interac-
tion with TP53, leading to the inactivation of anti-angiogen-
esis process [80]. In renal cell carcinoma, VHL suppresses 
HIF thus inhibiting its interaction with MDM2 required for 
stabilizing the expression of VEGF [81].

MDM2 promotes metastasis

Metastasis involves the migration of cancerous cells from 
their place of origin to another suitable site to spread cancer. 
The cellular intravasation depends on epidermal to mesen-
chymal transition (EMT) of cells, intravasation into blood, 

process of transcription of estrogen-responsive genes [62]. 
Moreover, the turnover period extends to 45 min and pro-
longed engagement of the promoter by Pol II allows the 
transcription of estrogen-responsive genes [63]. Consistent 
with these findings, the elevation of MDM2 and exposure to 
estrogen stimulates the growth of ER-α positive breast can-
cer cell line (MCF-7) while conferring sensitivity to endo-
crine therapy [61]. Interestingly, in the presence of estrogen, 
ER-α protects TP53 from inhibition by MDM2, allowing 
TP53 to enhance the transcription of MDM2 via MDM2/
TP53 autoregulatory loop [64]. The ligand-bound ER can 
also upregulate MDM2 expression by interacting with 
promoters in the vicinity of the TP53 binding site. Hence, 
compounded effects of MDM2/TP53 loop and ER-α medi-
ated MDM2 regulation in the presence of estrogen boost the 
level of MDM2 [65].

MDM2 regulates AR at various levels. MDM2 ubiq-
uitinates AR to regulate AR levels crucial to maintaining 
normal cellular physiology [66]. MDM2-based regulation 
of AR involves the androgen-responsive elements (ARE) 
possessed by AR target genes. In a complex formed by the 
association of AR with HDAC-1 (histone deacetylase-1) 
and MDM2, MDM2 ubiquitinates the other two partners 
(HDAC-1 and AR) to reduce the transcription of AR. To 
achieve optimal ubiquitination, HDAC-1 deacetylation 
activity is required, suggesting the interplay between deacet-
ylation and ubiquitination [67]. Co-activators of AR such 
as P300/CBP-associated factor (PCAF) and Tip60 (histone 
acetyltransferase (HAT) enzyme) are also potential targets 
of MDM2 [68]. The downregulation of AR is required for 
the maintenance of self-renewal capabilities in stem cells of 
prostate cancer [69].

The third genre of steroid receptors influenced by MDM2 
expression levels is related to the family of glucocorticoid 
receptors (GR). Glucocorticoids bear the potential to pro-
voke cell death or proliferation according to cell type and 
growth condition [70]. A group of genes containing GRE 
(Glucocorticoid Responsive Elements) is activated or 
repressed by GR[71]. In response to stress stimuli, a tri-
molecular complex containing TP53/MDM2/GR is formed 
where MDM2 suppresses the transcriptional activity of GR 
leading to apoptosis in mammary epithelial cells, vascular 
endothelial cells, and liver cells while enhancing survival 
in lymphocytes, lymphoma, and leukemia [72]. MDM2-
mediated ubiquitination of GR takes place in the presence of 
TP53, i.e., the interaction of GR with TP53 requires MDM2 
ligase activity. Thus, MDM2-mediated regulation of GR is 
highly dependent on TP53 levels in cells [73].
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number of circulating cells [89]. Another study on hepato-
cellular carcinoma (HCC) identified the significant role of 
MDM2 inhibitor (SP141) in the repression of metastasis 
[90]. An in-vitro study conducted on a human ovarian can-
cer cell line (SKOV3) demonstrated the role of MDM2 in 
promoting EMT through inhibition of E-cadherin and acti-
vation of various growth-promoting transcription factors 
e.g., TGF-β/Smads and Snail/Slug [48, 87]. MDM2 also 
possesses the capability to activate the Smads (small moth-
ers against decapentaplegic) pathway independent of TGF-β 
by direct phosphorylation of Smad-2 [87].

In ovarian malignancies, MDM2 facilitates cell motility 
and EMT through crosstalk of TGF-β-Smads pathway [87]. 
TGF-β activates the type II receptor (TβRII) kinases to phos-
phorylate type I receptor (TβRI) which further stimulates 
Smad2/3 by phosphorylation. The trimer molecule complex 
resulting from the union of activated Smad-2, -3, and − 4, 
after entering the nucleus regulates the expression of key 

extravasation at the appropriate site, and eventually conver-
sion from mesenchymal to epidermal (MET) cells to settle 
and establish a new population of tumorous cells at the new 
site [82]. During EMT, cancerous cells modify their identity 
by loss of epithelial properties and gain of mesenchymal 
characteristics [83]. The process of EMT enabling dis-
semination and invasion of the cells include the acquisition 
of mobility, invasiveness, and potential to disintegrate the 
complex network of extracellular matrix (ECM) [84, 85]. 
Although EMT possesses similarity in key cellular events, 
the critical details differ according to tissue nature and site 
[86].

Several studies advocate the promotive role of MDM2 
in metastasis [87–89]. MDM2 induces EMT-related cellu-
lar events through the regulation of multiple mediators as 
demonstrated in Fig. 3. In a study, silencing the expression 
of MDM2 in breast cancer led to decreased vascularization 
in primary tumor tissue along with a significantly lower 

Fig. 3  Role of MDM2 in metastasis. Upon TGF-β induction, 
TβRIIKinase phosphorylates TβRI which further phosphorylates 
Smad2 and Smad3. Phosphorylated Smad2 and Smad3 combine with 
Smad 4 to form smad complex which enters the nucleus to induce snail 
transcription factor (TF). Snail TF regulates the expression of cadher-
ins. MDM2 possesses the ability to phosphorylate Smad2 and induce 

Snail TF, MMP-2 and MMP-9 while inhibiting MMP-3, MMP-10 and 
MMP-13
Abbreviation: MDM2, Murine Double Minute 2; TGF-β, Transform-
ing Growth Factor-beta; TβRIIK, type II receptor kinases; TβRI, type 
I receptor; MMP, Matrix Metalloproteinases; TF, Transcription fac-
tor; Smad, Small mothers against decapentaplegic; E-cad, E cadherin; 
N-cad, N-cadherin
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endopeptidases that remodel ECM using their proteolytic 
abilities [94]. Knockdown studies on breast cancer cell lines 
establish the role of MDM2 in upregulating the expression 
while downregulating the expression of MMP-3, MMP-10 
and MMP-13 [95, 96]. The upregulation of MMP-2 [89] and 
MMP-9 allows the breakdown of the extracellular matrix 
for tumor intrusion allowing the spread of cancer [36, 97].

MDM2 enables metabolic reprogramming

MDM2-mediated metabolic reprogramming plays a funda-
mental role in the progression of cancer. Direct and indi-
rect involvement of MDM2 in the metabolism of glucose, 
amino acids, and lactates signifies its potential to improve 
the survival of cancerous cells in an environment with 
scarce resource availability [98]. Figure 4 presents a brief 
overview of the diverse functioning of MDM2 in meta-
bolic rewiring. Enhanced glycolysis is one of the peculiar 
adaptations of cancerous cells that enables cells to meet up 
increasing energy demands. TP53 negatively regulates the 
processes of glycolysis while MDM2 being the regulator 
of TP53 allows the continuation of cellular processes with-
out any interference from TP53 [98]. TP53 obstructs the 
entrance of glucose in a cell by suppressing the transcrip-
tion of GLUT1, GLUT4, or GLUT3 through the inhibition 
of NF-κB [99]. TP53 also upregulates RRAD (Ras-related 

mediators of metastasis [91]. To explore the role of MDM2 
in modulating TGF-β-Smad pathway, exogenous MDM2 
was introduced in SKOV3 cell line, resulting in the upregu-
lation of transcription and translation of Snail and Slug tran-
scription factors [87]. Similar observations that silencing 
MDM2 in lung adenocarcinoma repressed the transcription 
of Snail and Slug induced by TGFβ1-Smad pathway were 
reported in another study [48]. Surprisingly, instead of E3 
ligase activity, the N-terminal domain of MDM2 is essential 
for cancerous cells to undergo EMT and migrate [87].

MDM2 is stabilized by an MDM2 binding protein 
(MTBP) which is an important regulator of MDM2. MTBP 
when coupled to MDM2 discourages its self-ubiquitination 
ability, hence protecting its integrity and allowing the deg-
radation of many target proteins [92]. MDM2 overexpres-
sion in MCF-7 cells led to a subsequent increase in the level 
of mesenchymal markers (vimentin, N-cadherin) whereas 
the expression of E-cadherin (an epithelial cell marker) 
significantly dropped indicating the transition of the cells 
[93]. Upon knocking down MDM2 in MDA-MB-231 cells 
expressing mesenchymal markers, the cells acquired epi-
thelial characteristics by expressing higher levels of E-cad-
herin while lowering vimentin and N-cadherin expression 
levels [93]. A study on invasive ductal breast carcinoma 
revealed the role of MDM2 in facilitating the invasion of 
malignant tumors by mediating the expression of matrix 
metalloproteinases (MMPs). MMPs are zinc-dependent 

Fig. 4  MDM2 in metabolic reprogramming. MDM2 regulates metabo-
lism in TP53-dependent and -independent manner. Being the negative 
regulator of TP53, it manages to remove the inhibitory influence of 
TP53 from MCT1, RRAD and GLUT(1,3 and 4). In TP53 independent 
manner, it promotes the de-novo synthesis of Serine and Glycine. It 

also downregulates MT-ND6 to block its inhibition on production of 
ROS
Abbreviation: MDM2, Murine Double Minute 2; TP53, Tumor Protein 
p53; MCT1, Monocarboxylate transporter 1; GLUT1, Glucose trans-
porter 1; GLUT3, Glucose Transporter 3; GLUT4, Glucose Trans-
porter 4; MT-ND6, Mitochondrially encoded NADH Dehydrogenase 
6; ROS, Reactive Oxidative Species; RRAD, Ras-related glycolysis 
inhibitor and calcium channel regulator
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cell lines [110], suggesting an immunosuppressive role of 
MDM2 in part via IL-6 regulation.

Guo and colleagues previously reported that TP53 acti-
vation by an MDM2 inhibitor (Nutlin-3) led to the secre-
tion of DAMPs (damage-associated molecular patterns) 
resulting in TP53-dependent immunogenic cell death [111]. 
In another recent study, it was demonstrated that MDM2 
blockade triggers an immune response, which is further 
accentuated by inhibition of the PD-1/PD-L1 pathway[112]. 
The overexpression of PDL-1 (Programmed death-ligand 
1) is narrated in multiple tumor classes and the binding of 
PDL-1 with PD-1 (receptor) of T cells inhibits T cells[113]. 
Thus, providing a rationale for co-treatment with MDM2 
inhibitors and immune checkpoint-blocking antibodies in 
cancer patients with wild-type TP53. Although a correlation 
between the high expression of MDM2 and immunosup-
pressive activities of cancer cells has been established, the 
underlying mechanism is yet to elucidate.

Resistance fostering by MDM2 against 
therapeutic agents

The hypothesis that MDM2 provokes anti-therapeutic 
resistance in human malignancies was initially validated 
through a study performed on epidermoid carcinoma where 
the MDM2-p53 regulatory loop contributed to the develop-
ment of resistance against cisplatin[114]. Cisplatin-induced 
phosphorylation of TP53 inhibits TP53 resistance response 
meanwhile switching on an auto-regulatory loop that results 
in an increased level of MDM2 and non-phosphorylated 
TP53, thus instigating cells to resist therapeutics [115]. 
MDM2 also induces resistance against cisplatin by down-
regulating TP53 [116]. The elevated expression of MDM2 
renders resistance to doxorubicin by downregulating the 
expression of WT TP53. In-vivo study on breast cancer 
demonstrated that the cells transfected with MDM2 showed 
high resistance to doxorubicin. In addition, the level of 
MDM2 was higher in doxorubicin-resistant cells than in 
doxorubicin-sensitive cells [117].

Research showed that mere targeting of the TP53-MDM2 
loop does not yield the desired outcomes as the presence of 
excessive MDMX suppresses TP53 transcription to regulate 
TP53 levels[118]. Additionally, tying MDMX with MDM2 
heightens the enzymatic degradative activity of MDM2 
for TP53 [119]. Hence, drugs targeting both MDM2 and 
MDMX might prove better therapeutic options to reactivate 
TP53 [120]. For instance, following treatment with Inulano-
lide A, a drug that hampers the binding of MDM2-MDMX, 
reduced proliferative and invasive potentials were observed 
in prostate cancer [119]. Another study on triple-negative 
breast cell lines and mice model validated the synergistic 

glycolysis inhibitor and calcium channel regulator) to ham-
per the access of GLUT1 to the plasma membrane [100]. 
Additionally, TP53 regulates lactate transportation by 
repressing the expression of MCT1 (monocarboxylic acid 
transporter 1) resulting in the accumulation of lactate in 
the cell that in turn slows down glycolysis [101]. In cancer 
cells, overexpression of MDM2 prevents the anti-glycolysis 
activities of TP53 by downregulation and degradation of 
TP53 [102].

MDM2 also initiates de-novo synthesis of serine and gly-
cine when a cell faces a serine and glycine deficient environ-
ment [103]. In an experimental study, suppression of MDM2 
in cancerous cells exposed to serine and glycine-deficient 
medium eventually abated cell growth suggesting the sig-
nificance of MDM2 in regulating serine and glycine metab-
olism [103]. Furthermore, MDM2 recruitment to chromatin 
allows the induction of transcription of genes involved in 
the synthesis, metabolism, and transport of serine and gly-
cine amino acids [104]. In response to oxidative stress, 
mitochondrial localized MDM2 promotes the production of 
reactive oxygen species (ROS) by quashing the transcrip-
tion of an NADH dehydrogenase (MT-ND6) that disrupts 
the respiration process [104]. The increased mitochondrial 
ROS production combined with decreased respiration is 
associated with enhanced metastatic potentials in cancerous 
cells [105]. In addition, MDM2 may impact super complex 
assemblage and complex I by sequestrating and degrading 
subunits of complex I i.e., NDUFS1 along with increased 
production of ROS and DNA damage [103].

MDM2 suppresses immune response

Cancer cells gain the ability to evade immune checkpoints 
by secretion of molecules that bind to T-cells to inhibit their 
response. As the interaction of tumor cells with T-cells and 
subsequent inactivation of T-cells play a key role in the 
endurance of tumor cells. Hence, immune checkpoint inhib-
itors (ICI) have been viewed as potential therapeutic choices 
to hamper the success of tumors. However, the development 
of resistance in most patients receiving ICI [106] and hyper 
progressiveness[107] pose real challenges to its clinical 
application. Overexpression of MDM2 helps the immune 
evasion process through multiple channels. Detailed studies 
of hyper progressive disease (HPD) cells established a posi-
tive correlation with MDM2 expression in cells[108, 109]. 
In addition, high resistance in MDM2 over-expressive ovar-
ian cancer cell lines has been observed against T-cell medi-
ated death whereas silencing MDM2 results in enhanced 
sensitivity[110]. Moreover, in a TP53-independent man-
ner, the expression of proinflammatory cytokine interleu-
kin 6 (IL-6) decreased significantly in MDM2 knockdown 
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(DS-3032) has been found safe in clinical trial 1 in the Jap-
anese population and is now in process of further clinical 
evaluation [125]. Siremadlin (HDM2) was also found safe 
and capable of inhibiting MDM2 in solid malignancies and 
lymphomas [125].

MDMX positively regulates MDM2 while MDM2 
through a negative feedback process downregulates 
MDMX. The interaction between MDM2 and MDMX is 
targeted through small molecule NSC207895 in hepatoblas-
toma which inhibited MDMX ability to upregulate MDM2. 
This in turn decreased the MDM2 level to an extent that 
its inhibitory effect on p53 diminished to cause effect and 
apoptosis took place [125]. SP-141 is another unique inhibi-
tor that possesses the ability to induce autoubiquitination 
in MDM2 molecule thus its degradation. The studies on 
pancreatic cell lines and xenograft tumors in mice models 
validated the cytotoxic and regressive potentials of SP-141 
[125].

MDM2 also plays a critical role in supporting the pro-
cess of angiogenesis in tumors. Its interaction with HIF1-α 
is targeted through Serdemetan to weaken the stimulation of 
VEGFA. The effect can be further increased by co-inhibition 
of MDM2 and VEGFA resulting in low vascularization and 
slowing down the progression of tumors [125]. Gossypol 
inhibits the interaction of mVEGF and MDM2 thus desta-
bilizing the mVEGF. As a result, the process of neovascu-
larization gets impaired. Gossypol also regulates MDM2 by 
prompting its autoubiquitination capability [125].

The immunosuppressive potential of MDM2 is another 
major challenge in achieving clinical goals. A recent study 
evaluating the combination of APG-115 (an inhibitor for 
MDM2) with pembrolizumab (antibody targeting PD-1) 
showed a synergistic effect through the enhancement of 
immunity against tumors [125]. AMG-232 inhibition of 
MDM2 lowers the expression of IL-6 which consequently 
sensitizes MDM2 upregulated tumor cells to T cell-medi-
ated death [125].

In conclusion, research over the past two decades has 
unveiled the complex picture of MDM2 as a regulator of 
multiple cellular processes. Beyond being a mere oncogenic 
protein, MDM2 has been established as a novel player 
controlling various aspects of cellular physiology. Taking 
together, the pivotal role of MDM2 in cancer development 
is of great significance for the development of therapeutic 
solutions.

Conclusion

In conclusion, research conducted over the past two decades 
has revealed the intricate role of MDM2 in regulating mul-
tiple cellular processes. Although MDM2 promotes cancer 

effect of MDM2-MDMX inhibitors with doxorubicin in 
restraining cell viability, fostering apoptosis or cell cycle 
arrest, and enhancing the chemosensitivity [121].

MDM2 limits the success of radiotherapeutic treatment 
by reducing the sensitivity of cancerous cells through the 
MDM2-TP53 loop and EMT pathway [122]. MDM2 inhibi-
tors have been shown to boost the probability of success of 
radiotherapy [111,123]. Following the treatment of tumor 
cells with MDM2 inhibitor (MI-219), TP53 degradation 
declined and the sensitivity of cancerous tissue to radia-
tion increased significantly. In another strategy to prevent 
MDM2 and TP53 interaction and subsequent degradation of 
TP53, adenovirus-mediated TP53 gene therapy was found 
to enhance the sensitivity of cells toward radiation [124]. 
A study on gossypol (a natural product extracted from cot-
ton) revealed its anti-cancerous capabilities by targeting 
the MDM2-VEGF pathway. Gossypol not only disrupts the 
MDM2-mediated stabilization of VEGF mRNA but also 
induces MDM2 to undergo an auto-ubiquitination process 
thus inhibiting oncoprogression by targeting angiogenesis 
along with anti-apoptosis [125].

Anti-MDM2 in clinical research

MDM2 is one of the most studied molecules due to its direct 
regulation of p53 which could be used for inducing apopto-
sis in cancerous cells. Various molecules have been synthe-
sized to disrupt the MDM2-p53 regulatory loop and induce 
cell death. Nutlin 3a, an analog of low molecular weight cis-
imidazoline, displaces MDM2 from p53 and binds itself to 
TP53 binding pocket of MDM2 thus freeing p53 to initiate 
a cellular response to genotypic damages [125]. Although 
Nutlin 3a proved highly efficient in killing cancerous cells 
during in-vitro trials but its low specificity hampered further 
clinical research. Other derivatives of Nutlin 3a including 
RG7112 (RO5045337) and RG7388 (RO5503781, Idasa-
nutlin) were synthesized and subjected to clinical trials. 
RG7112 showed high specificity but low potency. Although 
it underwent clinical trial phase I to evaluate optimal dos-
age in solid and hematologic tumors but could not continue 
up to phase II and III. Among Nutlin derivatives, RG7388 
is regarded as the most efficient one for its high specificity 
and potency to kill cancerous cells as RG7388 restricted the 
growth of SJSA1 human osteosarcoma xenograft tumors at 
quantity equivalent to one quarter of RG7112 [125]. In vivo 
study with CGM097 (an MDM2 inhibitor) and OTX015 (a 
Bromodomain and Extra-terminal domain (BET) inhibitor) 
showed the reactivation of p53 in neuroblastoma. Another 
MDM2 inhibitor molecule BI907828 has been found effec-
tive in xenograft models carrying patient-driven MDM2 
rich dedifferentiated liposarcoma [125]. Milademetan 
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