
Citation: Baklizi, A. Refined

Inference on the Scale Parameter of

the Generalized Logistic Distribution

Based on Adjusted Profile Likelihood

Functions. Symmetry 2022, 14, 2369.

https://doi.org/10.3390/sym14112369

Academic Editor: Manuel Manas

Received: 4 October 2022

Accepted: 31 October 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Refined Inference on the Scale Parameter of the Generalized
Logistic Distribution Based on Adjusted Profile
Likelihood Functions
Ayman Baklizi

Statistics Program, Department of Mathematics, Statistics and Physics, College of Arts and Science,
Qatar University, Doha 2713, Qatar; baklizi1@gmail.com

Abstract: We consider inference based on the profile likelihood function for the scale parameter of
the generalized logistic distribution. This distribution is a generalization of the logistic distribution,
a symmetric distribution like the normal distribution, and it has several applications in various
fields. The generalization allows for possible left or right skewness, which makes it more flexible
for modeling purposes. Inference procedures based on the profile likelihood of the scale parameter
do not perform very well when the sample size is small, therefore, we derived adjustments to the
profile likelihood for the generalized logistic distribution using results from higher-order likelihood
theory. We obtained an adjustment based on the empirical covariances of certain scores of the profile
likelihood function. Another adjustment is derived using ancillary statistics. The performance of the
adjustments is investigated for point estimation of the scale parameter of the generalized logistic
distribution using the bias and mean squared error criteria. Using an extensive simulation study, we
found the adjustments are very successful in reducing the bias and the mean squared error of the
maximum profile likelihood estimator in most situations. Moreover, we studied the performance of
the profile likelihood ratio test and its adjustments using the criterion of the attainment of nominal
sizes. We found that, when the sample size is small, the profile likelihood ratio test has empirical
sizes that are highly inflated. Therefore, the test will be invalid in such situations. Simulation results
show that the adjusted versions of the profile likelihood produce tests that attain the nominal sizes
even for very small samples. This also applies to confidence intervals derived from these tests. In
conclusion, both adjustments of the profile likelihood have significantly better performance than the
unadjusted profile likelihood and are recommended, especially for small samples. In particular, the
adjustment based on ancillary statistics appears to have the best overall performance in all situations
considered. We applied the methods in this paper to real data on Carbon fibers.

Keywords: profile likelihood; generalized logistic distribution; Barndorff-Nielsen’s adjustment

1. Introduction

The standard logistic distribution is a symmetric distribution that is close in shape
to the standard normal distribution, but it has heavier tails. Balakrishnan and Leung [1]
introduced the generalized logistic distribution as a generalization to the standard lo-
gistic distribution. They obtained this distribution by compounding the extreme value
distribution with the Gamma distribution.

The Two parameter generalized logistic distribution with shape parameter α and scale
parameter β has cumulative distribution function and probability density function given
respectively by

F(x, α, β) =
(

1− e−βx
)−α

, x > 0, α > 0, β > 0, (1)

f (x, α, β) = αβ
(

1− e−βx
)−α−1

e−βx, x > 0, α > 0, β > 0. (2)
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This distribution is skewed. However, for α = 1 it reduces to the logistic distribution,
and it is symmetric, while it is positively skewed for α > 1 and it is negatively skewed
for 0 < α < 1. This distribution is unimodal and log-concave for all values of α, see
Alkasasbeh and Raqab [2]. The earliest known application of this distribution was by
Verhulst [3] to represent population growth. Ahuja and Nash [4] studied the relation
between the Gompertz and Verhulst generalized logistic distributions and the family of
Pearson curves and studied their moments and cumulants. Recently, this distribution
has received attention from several authors in the literature, particularly because of its
direct relation with the logistic distribution and it many applications in reliability, survival
analysis, actuarial modeling, and economics. Asgharzadeh [5] studied point and interval
estimation of the parameters of this distribution under progressively type II censored data.
Sreekumar and Thomas [6] consider estimation of the location and scale parameters using
U-statistics constructed by using best linear functions of order statistics as kernels. They
compare the performance of their estimators with the maximum likelihood estimators.
Characterization of type 1 generalized logistic distribution was studied by [7]. Various
characteristics of this distribution were studied by [8], including the moment generating
function, the characteristic function, the moments, and the Renyi entropy. Lagos-Alvariz [9]
proposed a Bayesian approach for the estimation of the generalized logistic distribution.

In this paper, we will consider estimation of the scale parameter of type 1 generalized
logistic distribution, treating the shape parameter as a nuisance parameter. The scale
parameter is important in statistical distributions as it can be considered the “unit of
measurement” of the available data. Moreover, it is viewed as a measure of the spread of
the distribution. The larger the scale parameter, the larger the spread of the distribution
and vice versa, see [10,11]. Yang and Xie [12] considered modified profile likelihood for
inference about the shape parameter of the Weibull distribution. They used the idea of
parameter orthogonality of [13]. Ferrari et al. [14] further investigated profile likelihood
inference for the shape parameter of the Weibull distribution and considered adjustments
developed by [15] and its approximations proposed by [16,17]. Sewailem and Baklizi [18]
extended the work of [14] to the Lomax distribution. Other relevant work on modified
profile likelihood functions includes [19] on Gumbel mixture model, [20] on fixed effects
panel data models, [21,22] on the β-model and fixed effects models, respectively.

In this work, we will consider profile likelihood inference on the scale parameter of the
generalized logistic distribution. It is well known that the maximum likelihood estimator
is generally a biased estimator, especially in small samples. Moreover, the likelihood
ratio test that is used for hypotheses testing and confidence interval estimation is a large
sample test, whose validity depends on asymptotic theory. Therefore, it is desirable to
have some adjustments to the profile likelihood function in the hope of reducing the bias
of the maximum likelihood estimator and improving the performance and validity of the
likelihood ratio test in small samples. The rest of the paper will be as follows. We will
obtain the profile likelihood function for the scale parameter of the generalized logistic
distribution and derive some adjustments for it in the hope of obtaining sharper inferences.
We studied the performance of the derived estimators using simulation. The sizes of the
likelihood ratio tests based on the profile likelihood and its adjustments are studied by
simulation. The profile likelihood function is obtained in Section 2. The adjustments are
derived for the generalized logistic distribution in Section 3. The profile likelihood ratio
test and its modifications are presented in Section 4. An extensive simulation study to
investigate and compare the inference procedures is described in Section 6. The findings
and conclusions are given in the final section.

2. Profile Likelihood Function for the Generalized Logistic Distribution

Let x1, . . . , xn be a random sample from the generalized logistic distribution with pdf
given in (1), the likelihood function of the parameters α and β is given by:
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L(α, β) = (αβ)ne−β ∑n
i=1 xi

n

∏
i=1

(
1− e−βxi

)−α−1
, α > 0, β > 0. (3)

The loglikelihood function is given by:

l(α, β) = nln(α) + nln(β)− β ∑n
i=1 xi − (α + 1)∑n

i=1 ln
((

1− e−βxi
))

. (4)

Differentiating with respect to α we obtain:

lα(α, β) =
∂l(α, β)

∂α
=

n
α
−∑n

i=1 ln
((

1− e−βxi
))

. (5)

Equating this derivative to zero we obtain the root α̂ as a function of β as follows:

α̂ =
n

∑n
i=1 ln

((
1− e−βxi

)) (6)

Substituting this root in the loglikelihood function we obtain a function of β alone.
This function is the profile likelihood function lP(β) as follows:

lP(β) = nln

(
n

∑n
i=1 ln

((
1 + e−βxi

)))+ nln(β)− β ∑n
i=1 xi − n−∑n

i=1 ln
((

1 + e−βxi
))

. (7)

Maximizing the profile likelihood, we obtain the maximum profile likelihood estimator
β̂ of β, which coincides with the maximum likelihood estimator. Note that we have
eliminated the nuisance parameter α. However, it is well known that the profile likelihood
is not a genuine likelihood, therefore, it does not enjoy some of the desirable properties of
the usual likelihood function. For example, the profile likelihood score function does not
have zero expectation, see [23]. Therefore, several attempts were made in the literature to
improve the statistical properties of the profile likelihood function. Some of these attempts
are based on using certain adjustments to the profile likelihood function. One of the widely
used is Barndorff-Nielsen’s [15] modified profile likelihood. In the next section, we shall
introduce this adjustment. Since it is usually very complicated to calculate, we will present
some approximations of this adjustment.

3. Adjusted Profile Likelihood Functions

Inference on the interest parameter is generally affected by the presence of nuisance
parameters. The usual approaches to dealing with nuisance parameters are through con-
ditioning or marginalization [23]. However, in many cases, it is not possible to obtain
the required conditional or marginal likelihood. Therefore, several adjustments to the
profile likelihood function appeared in the literature to improve its performance. Barndorff-
Nielsen [15] obtained an adjustment to approximate the conditional or marginal likelihood
of the interest parameter, if it exists, so that inferences on the interest parameter can be
improved. Consider the profile loglikelihood function lP(β). The Barndorff-Nielsen’s
adjustment applied to the generalized logistic distribution is as follows:

lBN(β) = lp(β)− log
∣∣∣∣∂α̂β

∂α̂

∣∣∣∣− 1
2

log
∣∣jαα

(
α̂β, β

)∣∣, (8)

where jαα

(
α̂β, β

)
= − ∂2l(α̂β ,β)

∂α2 = n
α2 and

∂ α̂β

∂α̂ is the partial derivative of α̂β with respect to

α̂. The difficulty lies in computing
∣∣∣ ∂α̂β

∂α̂

∣∣∣. To avoid this problem, several approximations
to Barndorff-Nielsen’s adjustment were proposed in the literature. We will consider two
approximations suggested by [16,17] and Fraser and Reid [24], respectively.
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The approximation of [16,17] is given by

lBN = lp(β) +
1
2

log
∣∣∣∣jαα(α̂β, β)

∣∣∣∣−log
∣∣Iα

(
α̂β, β ; α̂ , β̂

)∣∣, (9)

where,
Iθ(α, β ; α0, β0) = E(α0,β0){lα(α, β)lα(α0, β0)}, (10)

with lα(α, β) =
∂l(α,β)

∂α = n
α −∑n

i=1 ln
((

1 + e−βxi
))

. Note that Iα(α, β ; α0, β0) represents the
covariance between lα(α, β) and lα(α0, β0). The computation of this covariance, however,
involved some complicated integrals. An alternative approach followed in this paper is
suggested by [17]. It is based on empirical covariances approximation as follows

Ĭ
(
α̂β, β, α̂, β̂

)
= ∑n

j=1 l(j)
α (α̂β, β) l(j)

α

(
α̂, β̂

)
, (11)

were, l(j)
α = 1

α − ln
((

1 + e−βxj
))

is the score function of the jth observation. The corre-

sponding modified maximum profile likelihood estimator is denoted by β̂1.
The other adjustment, proposed by Fraser and Reid [24] and Fraser et al. [25], is

given by:

l̃BN(β) = lP(β) +
1
2

log
∣∣jαα

(
α̂β, β

)∣∣− log
∣∣lα;x

(
α̂β, β

)
V̂α

∣∣, (12)

where, lα;x(α, β) =
∂lα(α,β)

∂xT is the score function for xT = (x1, . . . , xn). It is given by

lα;x(α, β) =
∂lα(α, β)

∂xT =

(
βe−βx1

1 + e−βx1
, . . . ,

βe−βxn

1 + e−βxn

)
. (13)

The vector of ancillary directions V̂α is given by:

V̂α =

(
−

∂F1
(
x1; α̂, β̂

)
/∂α̂

f1
(
x1; α̂, β̂

) , . . . . . . . . . . . . ,−
∂Fn
(
xn; α̂, β̂

)
/∂α̂

fn
(

xn; α̂, β̂
) )T

, (14)

where f j(x; α, β) and Fj(x; α, β) are the probability density function and the cumulative
distribution function of xj, respectively. For the generalized logistic distribution, we have

−
∂F
(
xj, α̂, β̂

)
/∂α̂

f
(

xj, α̂, β̂
) =

(
1 + e−β̂xj

)−α̂
ln
(

1 + e−β̂xj
)

The corresponding modified maximum profile likelihood estimator is denoted by β̂2.

4. Sizes of Adjusted Profile Likelihood Ratio Tests

Consider testing the hypothesis H0 : β = β0 vs. H1 : β 6= β0. The profile loglikelihood
function can be used to perform an asymptotic test that rejects the null hypothesis at
significance level γ if

LR = 2
(
lP
(

β̂
)
− lP(β0)

)
> χ2

γ,1. (15)

This is an approximate test based on the asymptotic chi-squared distribution. However,
if the sample size is not large enough, the actual size of the test may not be close to the
nominal size γ. Tests based on the adjusted profile likelihood function are expected to have
faster convergence to the asymptotic distribution and hence smaller sample sizes for their
validity. We will consider tests that are based on the two adjustments introduced earlier in
this paper. Specifically, we have the test based on the empirical covariances adjustment to
the profile loglikelihood function that rejects the null hypothesis at significance level γ if

LR1 = 2
(
l∗P
(

β̂
)
− l∗P(β0)

)
> χ2

γ,1. (16)
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The other modified test is based on the ancillary statistic adjustment, and it rejects the
null hypothesis at significance level γ if

LR2 = 2
(
l∗∗P
(

β̂
)
− l∗∗P (β0)

)
> χ2

γ,1 (17)

The performance of the profile likelihood ratio test and its two adjustments in terms
of attaining the nominal sizes will be investigated and compared using simulation, as will
be explained in Section 6.

5. Real Data Example

Bader and Priest [26] gave a data set on strength measurements in GPA for single
carbon fibers. The data given represent the strength measured in GPA for single carbon
fibers of 10 mm in gauge lengths. The data set consists of 63 observations and is further
considered by Alkasasbeh and Raqab (2009), who checked the fit of the data to the gen-
eralized logistic distribution using the Kolmogorov–Smirnov statistic. They found that
the generalized logistic distribution provides a good fit for the data. Since the data set is
relatively large and the differences between the inferences based on the profile likelihood
and its adjustments will be too small. We randomly selected a subsample of size 15 from
this data set, and they are as follows:

3.264, 3.220, 3.145, 2.474, 2.350, 3.125, 2.132, 3.223, 3.871, 2.624, 2.659, 2.454, 1.901, 2.525, 4.225

We obtained the point estimators and the 95% confidence intervals of the scale pa-
rameter based on the profile likelihood and its two adjustments. In addition, we obtained
the values of the test statistics and the corresponding p-values for testing H0 : β = 3 vs.
H1 : β 6= 3. The results are given in the table below (Table 1).

Table 1. The results of the likelihood inference procedures for the carbon fibers data.

Method Point Estimation 95% Confidence Interval Test Statistic (p-Value)

Profile Likelihood 1.9588 (1.2804, 2.8019) 5.6315 (0.0176)

Empirical Covariances Adjustment 1.8859 (1.2512, 2.7245) 6.4126(0.0113)

Ancillary Directions Adjustment 1.8789 (1.2114, 2.7135) 6.5397(0.0105)

The point estimators based on the adjusted profile likelihood are very close to each
other. The confidence interval based on the profile likelihood is the widest, while the
intervals based on the adjusted likelihood are narrower, especially the interval based on
the ancillary statistic adjustment. For the testing problem, the values of the test statistics
and p-values based on adjusted likelihood are close to each other and smaller than the ones
based on the profile likelihood. These observations are further examined in the simulation
study in the next section.

6. Simulation Study

The performance of the maximum profile likelihood estimator and the estimators based
on the adjusted profile likelihood are investigated and compared through a simulation
study. The criteria of comparison are the bias and the mean squared errors of the estimators.
Similarly, the empirical size performance of the profile likelihood ratio test and the adjusted
profile likelihood ratio tests are investigated and compared based on the attainment of
the nominal sizes. To fulfill this goal, an extensive simulation study is carried out. The
scale parameter is kept fixed at β = 1, because the inferential procedures based on the
profile likelihood are scale invariant. The shape parameter was varied among the values
α = 0.2, 0.5, 0.8 (left skewness), α = 1 (symmetry), and α = 1.5, 2.0, 2.5, 3.0, 4.0 (right
skewness). The sample size is varied from very small to fairly large, specifically, we take
n = 5, 10, 15, 20, 25, 30, 50, 70, 100. For the testing hypotheses problem, we choose the
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nominal size to be γ = 0.01, 0.05, 0.10. The biases, mean squared error, and empirical sizes
are obtained using N = 10,000 replications. The results are given in Tables 2 and 3.

Table 2. Biases and Mean Squared Errors of the Estimators.

α n Bias(β̂) Bias(β̂1) Bias(β̂2) MSE(β̂) MSE(β̂1) MSE(β̂2)

0.2 5 4.537 4.481 4.501 39.572 39.454 39.517
0.2 10 2.540 2.511 2.518 21.509 21.454 21.479
0.2 15 1.469 1.449 1.452 11.540 11.511 11.521
0.2 20 0.881 0.866 0.868 6.138 6.121 6.125
0.2 25 0.570 0.558 0.559 3.314 3.303 3.305
0.2 30 0.363 0.353 0.354 1.656 1.649 1.650
0.2 50 0.152 0.146 0.147 0.296 0.294 0.294
0.2 70 0.092 0.088 0.088 0.110 0.109 0.109
0.2 100 0.056 0.053 0.053 0.051 0.050 0.050
0.5 5 1.984 1.875 1.894 15.702 15.437 15.542
0.5 10 0.623 0.573 0.578 3.620 3.556 3.572
0.5 15 0.279 0.247 0.249 0.950 0.926 0.930
0.5 20 0.158 0.134 0.135 0.299 0.288 0.289
0.5 25 0.113 0.095 0.096 0.186 0.180 0.181
0.5 30 0.094 0.079 0.080 0.096 0.092 0.092
0.5 50 0.050 0.041 0.041 0.041 0.040 0.040
0.5 70 0.034 0.028 0.028 0.027 0.026 0.026
0.5 100 0.023 0.018 0.019 0.016 0.016 0.016
0.8 5 1.057 0.932 0.935 6.670 6.393 6.457
0.8 10 0.293 0.238 0.238 0.956 0.905 0.912
0.8 15 0.142 0.108 0.108 0.211 0.196 0.197
0.8 20 0.096 0.070 0.070 0.097 0.090 0.090
0.8 25 0.072 0.052 0.052 0.065 0.060 0.060
0.8 30 0.061 0.045 0.045 0.048 0.045 0.045
0.8 50 0.033 0.024 0.024 0.024 0.023 0.023
0.8 70 0.023 0.016 0.016 0.016 0.016 0.016
0.8 100 0.017 0.012 0.012 0.011 0.010 0.010
1 5 0.724 0.598 0.591 3.730 3.484 3.516
1 10 0.197 0.141 0.140 0.349 0.311 0.314
1 15 0.118 0.083 0.082 0.121 0.108 0.108
1 20 0.080 0.055 0.054 0.067 0.061 0.061
1 25 0.063 0.043 0.042 0.050 0.047 0.047
1 30 0.053 0.036 0.036 0.040 0.037 0.037
1 50 0.031 0.021 0.021 0.021 0.020 0.020
1 70 0.022 0.015 0.015 0.014 0.014 0.014
1 100 0.014 0.009 0.009 0.009 0.009 0.009

1.5 5 0.472 0.348 0.321 1.426 1.226 1.204
1.5 10 0.157 0.102 0.096 0.157 0.131 0.130
1.5 15 0.098 0.062 0.060 0.080 0.070 0.070
1.5 20 0.070 0.044 0.043 0.051 0.046 0.045
1.5 25 0.054 0.033 0.032 0.038 0.035 0.034
1.5 30 0.044 0.027 0.026 0.030 0.027 0.027
1.5 50 0.026 0.016 0.015 0.016 0.015 0.015
1.5 70 0.017 0.010 0.010 0.011 0.010 0.010
1.5 100 0.014 0.009 0.009 0.007 0.007 0.007
2 5 0.414 0.292 0.254 0.878 0.706 0.661
2 10 0.150 0.095 0.087 0.138 0.114 0.111
2 15 0.088 0.052 0.049 0.063 0.055 0.054
2 20 0.065 0.039 0.037 0.045 0.040 0.039
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Table 2. Cont.

α n Bias(β̂) Bias(β̂1) Bias(β̂2) MSE(β̂) MSE(β̂1) MSE(β̂2)

2 25 0.050 0.029 0.028 0.031 0.029 0.029
2 30 0.043 0.026 0.025 0.025 0.023 0.023
2 50 0.025 0.015 0.014 0.014 0.013 0.013
2 70 0.018 0.010 0.010 0.010 0.009 0.009
2 100 0.012 0.007 0.007 0.006 0.006 0.006
3 5 0.378 0.258 0.211 0.616 0.464 0.407
3 10 0.143 0.089 0.078 0.118 0.096 0.092
3 15 0.088 0.052 0.047 0.060 0.052 0.050
3 20 0.064 0.038 0.035 0.040 0.036 0.035
3 25 0.052 0.031 0.029 0.029 0.026 0.026
3 30 0.040 0.023 0.021 0.024 0.022 0.022
3 50 0.024 0.013 0.013 0.013 0.012 0.012
3 70 0.017 0.009 0.009 0.008 0.008 0.008
3 100 0.012 0.007 0.007 0.006 0.006 0.006
4 5 0.391 0.269 0.217 0.675 0.511 0.443
4 10 0.146 0.092 0.079 0.123 0.100 0.095
4 15 0.089 0.053 0.048 0.058 0.050 0.048
4 20 0.066 0.039 0.036 0.039 0.034 0.034
4 25 0.052 0.031 0.028 0.029 0.026 0.026
4 30 0.042 0.024 0.022 0.023 0.021 0.021
4 50 0.024 0.013 0.013 0.012 0.012 0.012
4 70 0.016 0.008 0.008 0.008 0.008 0.008
4 100 0.011 0.006 0.005 0.005 0.005 0.005

Table 3. Empirical sizes of the profile likelihood ratio tests.

γ = 0.01 γ = 0.05 γ = 0.10

α n LR LR1 LR2 LR LR1 LR2 LR LR1 LR2

0.2 5 0.003 0.003 0.003 0.017 0.016 0.016 0.054 0.046 0.046
0.2 10 0.003 0.003 0.003 0.038 0.035 0.035 0.115 0.108 0.109
0.2 15 0.007 0.007 0.007 0.067 0.064 0.065 0.146 0.144 0.143
0.2 20 0.009 0.009 0.009 0.073 0.071 0.071 0.136 0.136 0.136
0.2 25 0.014 0.014 0.014 0.071 0.071 0.072 0.130 0.128 0.129
0.2 30 0.012 0.011 0.011 0.062 0.061 0.061 0.120 0.120 0.120
0.2 50 0.011 0.011 0.011 0.058 0.058 0.058 0.111 0.110 0.110
0.2 70 0.013 0.013 0.013 0.055 0.055 0.055 0.103 0.102 0.102
0.2 100 0.010 0.011 0.011 0.050 0.050 0.050 0.103 0.102 0.102
0.5 5 0.010 0.005 0.006 0.065 0.044 0.046 0.147 0.111 0.117
0.5 10 0.014 0.011 0.011 0.073 0.065 0.066 0.133 0.124 0.125
0.5 15 0.014 0.013 0.013 0.063 0.057 0.057 0.115 0.111 0.111
0.5 20 0.012 0.010 0.010 0.056 0.053 0.053 0.111 0.106 0.107
0.5 25 0.013 0.012 0.012 0.057 0.055 0.055 0.112 0.108 0.108
0.5 30 0.011 0.010 0.010 0.057 0.055 0.055 0.111 0.108 0.108
0.5 50 0.011 0.011 0.011 0.054 0.052 0.052 0.103 0.100 0.100
0.5 70 0.012 0.012 0.012 0.057 0.056 0.056 0.109 0.109 0.109
0.5 100 0.010 0.010 0.010 0.053 0.053 0.053 0.103 0.102 0.103
0.8 5 0.018 0.007 0.007 0.089 0.057 0.060 0.165 0.124 0.125
0.8 10 0.018 0.015 0.015 0.069 0.059 0.060 0.127 0.111 0.112
0.8 15 0.015 0.012 0.013 0.061 0.053 0.054 0.117 0.109 0.109
0.8 20 0.012 0.011 0.011 0.060 0.054 0.054 0.110 0.100 0.100
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Table 3. Cont.

γ = 0.01 γ = 0.05 γ = 0.10

α n LR LR1 LR2 LR LR1 LR2 LR LR1 LR2

0.8 25 0.012 0.011 0.011 0.057 0.054 0.054 0.110 0.105 0.105
0.8 30 0.012 0.010 0.010 0.055 0.052 0.052 0.105 0.098 0.098
0.8 50 0.011 0.011 0.011 0.053 0.051 0.051 0.104 0.101 0.101
0.8 70 0.009 0.010 0.010 0.051 0.050 0.050 0.101 0.098 0.098
0.8 100 0.010 0.010 0.010 0.047 0.046 0.046 0.099 0.097 0.097
1 5 0.023 0.011 0.011 0.092 0.059 0.063 0.162 0.117 0.121
1 10 0.016 0.011 0.011 0.065 0.052 0.053 0.122 0.105 0.104
1 15 0.013 0.011 0.011 0.060 0.052 0.052 0.112 0.101 0.102
1 20 0.011 0.010 0.010 0.056 0.049 0.050 0.111 0.099 0.100
1 25 0.011 0.010 0.010 0.054 0.050 0.050 0.107 0.100 0.100
1 30 0.011 0.010 0.010 0.056 0.051 0.051 0.113 0.106 0.106
1 50 0.011 0.011 0.011 0.052 0.051 0.051 0.101 0.099 0.098
1 70 0.012 0.012 0.012 0.053 0.053 0.052 0.105 0.103 0.103
1 100 0.010 0.010 0.010 0.051 0.049 0.050 0.101 0.100 0.100

1.5 5 0.028 0.014 0.014 0.096 0.058 0.059 0.165 0.115 0.114
1.5 10 0.016 0.010 0.010 0.065 0.051 0.050 0.122 0.102 0.100
1.5 15 0.016 0.010 0.011 0.064 0.054 0.053 0.116 0.102 0.104
1.5 20 0.014 0.012 0.011 0.061 0.053 0.053 0.118 0.107 0.107
1.5 25 0.014 0.011 0.011 0.056 0.050 0.049 0.108 0.102 0.101
1.5 30 0.011 0.010 0.010 0.055 0.052 0.052 0.110 0.101 0.101
1.5 50 0.012 0.010 0.010 0.054 0.051 0.051 0.104 0.097 0.098
1.5 70 0.010 0.010 0.009 0.051 0.049 0.049 0.101 0.099 0.099
1.5 100 0.011 0.011 0.010 0.053 0.052 0.052 0.102 0.101 0.101
2 5 0.030 0.014 0.014 0.104 0.062 0.061 0.174 0.116 0.114
2 10 0.019 0.013 0.012 0.071 0.055 0.055 0.134 0.105 0.104
2 15 0.013 0.010 0.010 0.057 0.049 0.047 0.112 0.095 0.095
2 20 0.015 0.011 0.011 0.064 0.055 0.055 0.115 0.106 0.105
2 25 0.011 0.010 0.010 0.054 0.048 0.048 0.108 0.099 0.099
2 30 0.011 0.009 0.009 0.055 0.050 0.050 0.108 0.102 0.101
2 50 0.011 0.010 0.010 0.053 0.049 0.049 0.105 0.099 0.099
2 70 0.010 0.009 0.009 0.052 0.049 0.049 0.106 0.101 0.101
2 100 0.010 0.009 0.009 0.050 0.048 0.048 0.103 0.102 0.102
3 5 0.031 0.014 0.013 0.101 0.059 0.058 0.170 0.116 0.111
3 10 0.017 0.012 0.012 0.070 0.052 0.050 0.127 0.103 0.101
3 15 0.015 0.011 0.010 0.064 0.050 0.051 0.119 0.106 0.105
3 20 0.014 0.012 0.011 0.061 0.051 0.050 0.116 0.107 0.106
3 25 0.012 0.010 0.009 0.057 0.052 0.052 0.109 0.099 0.098
3 30 0.013 0.011 0.011 0.058 0.054 0.053 0.113 0.101 0.101
3 50 0.011 0.010 0.010 0.054 0.050 0.050 0.107 0.101 0.100
3 70 0.011 0.010 0.010 0.050 0.048 0.048 0.099 0.095 0.094
3 100 0.010 0.009 0.009 0.053 0.051 0.050 0.104 0.101 0.101
4 5 0.031 0.014 0.013 0.102 0.059 0.058 0.171 0.115 0.111
4 10 0.019 0.013 0.013 0.077 0.058 0.058 0.140 0.111 0.110
4 15 0.016 0.012 0.011 0.061 0.050 0.051 0.118 0.100 0.099
4 20 0.014 0.011 0.011 0.058 0.052 0.052 0.113 0.099 0.099
4 25 0.014 0.011 0.010 0.059 0.049 0.049 0.113 0.103 0.103
4 30 0.012 0.009 0.009 0.060 0.053 0.052 0.114 0.106 0.105
4 50 0.013 0.011 0.012 0.057 0.054 0.054 0.108 0.104 0.103
4 70 0.011 0.010 0.010 0.055 0.052 0.051 0.109 0.105 0.104
4 100 0.009 0.008 0.008 0.048 0.046 0.045 0.093 0.092 0.091
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7. Findings and Conclusions

Results regarding the performance of the maximum profile likelihood estimator β̂,
the estimator based on the empirical covariances adjustment to the profile likelihood β̂1,
and the estimator based on the ancillary statistics adjustment β̂2 are given in Table 2. The
conclusions are clear-cut. The estimators based on adjusted likelihood have clearly better
performance than β̂ in all situations considered. The bias and MSE are both reduced by
adjustment, the reduction is especially clear for values of the shape parameter (α) greater
than 1. That is, when the parent distribution is positively skewed. The performance of the
two estimators based on adjusted profile likelihoods appears to be similar. For values of
the shape parameter less than 1 (left-skewed distribution), the estimator β̂1 has a smaller
bias and slightly larger MSE than β̂2. For α > 1 (right-skewed distribution), the estimator
β̂2 clearly has the best performance where its bias and MSE are the smallest for all sample
sizes. For α = 1 (symmetry), the performance of β̂1 and β̂2 are very similar, but both are
substantially better than β̂. As an overall result for the comparison between adjustments, it
appears that β̂2, which is based on the adjustment based on ancillary directions proposed
by Fraser and Reid [24] and Fraser et al. [25], has the best overall performance, especially
for the MSE criterion.

For the testing hypotheses problem, the results are given in Table 3. The adjusted
profile likelihood ratio tests appear to attain the nominal sizes better than the unadjusted
test. This is especially clear for sample sizes of less than 30. The improvement becomes
clearer as α moves away from zero. The empirical size performance of the unadjusted test
is poor for sample sizes like 5, 10, or 15 as the empirical size becomes much larger than
the nominal size. This means that unadjusted test is invalid in such cases and should be
avoided. This also has a reflection on the performance of confidence intervals for the scale
parameter. This follows from the dual relation between confidence interval estimation
and hypotheses testing, see, for example, [27]. This means that for small sample sizes,
the intervals based on the profile likelihood are too short and do not achieve the nominal
coverage probability of the interval. On the other hand, the intervals based on the adjusted
profile likelihood will remain valid under these conditions. The performance of the two
adjustments is very similar for the testing and confidence interval estimation problems.

To facilitate the comparison of the biases, mean squared error, and error probabilities
of 95% confidence intervals for different values of the shape parameter (α), we constructed
Figure 1 for sample size n = 10. The pattern is similar for other values of the sample
size. From Figure 1, we observe that the biases and mean squared error decrease for the
increasing value of the shape parameter. It is clear that the bias of the maximum profile
likelihood estimator is considerably reduced by using the adjustments, especially the one
based on ancillary directions. The MSE performance of the estimators is generally the same
for the estimators, with the adjustments giving slightly smaller MSE in general. The error
probability of the confidence interval based on the profile likelihood is generally greater
than that of the adjustments, and it exceeds the nominal error probability.

In conclusion, the adjusted profile likelihood gives inference procedures with better
performance, especially for small sample sizes and under moderate left skewness, sym-
metry, or right skewness of the generalized logistic distribution. The adjustments to the
profile likelihood function derived and applied in this paper were successful in reducing
the effect of the nuisance shape parameter on inference with the scale parameter of the gen-
eralized logistic distribution. This is reflected by a smaller bias of the resulting maximum
likelihood estimator in addition to producing confidence intervals that are valid and attain
the nominal sizes.
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The work in this paper can be extended to cover various types of censored data like
type 1, type 2, or progressive censoring that frequently appear in industrial life testing
experiments and survival analysis. Another direction is to investigate bias reduction
techniques for the maximum likelihood estimator based on the Jackknife or asymptotic
expansions, in addition to computer-intensive methods for the construction of confidence
intervals for the scale parameter. Fuzzy inference may be considered for this situation.
Recent references include Srikanth Reddy [28] and Tang et al. [29]. It is also of interest to
investigate the performance of the profile likelihood function and its adjustments in more
complicated models arising in reliability studies like multicomponent systems [30,31] and
the multicomponent stress-strength model [32] when the component log-lifetimes follow
the generalized logistic distribution.
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