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Abstract. For two positive integers r and s, G(n; r; θs) denotes to the class of graphs

on n vertices containing no r of edge disjoint θs-graphs and f(n; r; θs) = max{E(G) :

G ∈ G(n; r; θs)}. In this paper, for integers r, k ≥ 2, we determine f(n; r; θ2k+1) and

characterize the edge maximal members in G(n; r; θ2k+1).

1. Introduction

The graphs considered in this paper are finite, undirected and have no loops or
multiple edges. Most of the notations that follow can be found in [6]. For a given
graph G, we denote the vertex set of a graph G by V (G) and the edge set by E(G).
The cardinalities of these sets are denoted by ν(G) and E(G), respectively. The
cycle on n vertices is denoted by Cn. A theta graph θn is defined to be a cycle Cn

to which we add a new edge that joins two non-adjacent vertices. We would like to
mention that the method used in this paper follows the same lines used in [2] for
the same authors.

Let G1 and G2 be graphs. The union of G1 and G2 is a graph with vertex set
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). G1 and G2 are disjoint if and only
if V (G1) ∩ V (G2) = ∅; G1 and G2 are edge disjoint if E(G1) ∩ E(G2) = ∅. If G1

and G2 are disjoint, we denote their union by G1 +G2. The intersection G1 ∩G2

of graphs G1 and G2 is defined similarly, but in this case we need to assume that
V (G1) ∩ V (G2) ̸= ∅. The join G ∨H of two disjoint graphs G and H is the graph
obtained from G + H by joining each vertex of G to each vertex of H. For two
vertex disjoint subgraphs H1 and H2 of G, we let EG(H1,H2) = {xy ∈ E(G) : x ∈
V (H1), y ∈ V (H2)} and EG(H1,H2) = |EG(H1,H2)|.
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In this paper we consider the Turán-type extermal problem with the odd edge-
disjoint theta graphs being the forbidden subgraph. Since a bipartite graph contains
no odd theta graph, the non-bipartite graphs have been considered by some authors.
First, we recall some notations and terminologies. For a positive integer n and a
set of graphs F, let G(n;F) denote the class of non-bipartite F-free graphs on n
vertices, and

f(n;F) = max{E(G) : G ∈ G(n;F)}.

An important problem in extermal graph theory is determine the values of the
function f(n;F). Further, an additional goal is to characterize the extermal graphs
G(n;F) where f(n;F) is attained. This problem has been studied extensively by a
number of authors [4, 5, 7, 8, 9]. In 1998, Jia proved that E(G) ≤

⌊
(n− 2)2/4

⌋
+ 3

for G ∈ G(n;C5) and n ≥ 10. Furthermore, equality holds if and only if G ∈
G∗(n) where G∗(n) is the class of graphs obtained by adding a triangle, two vertices
of which are new, to the complete bipartite graph K⌊(n−2)/2⌋,⌈(n−2)/2⌉. In 2007,
Bataineh established the following result: Let k ≥ 3 be a positive integer and
G ∈ G(n;C2k+1). Then for large value of n, E(G) ≤

⌊
(n− 2)2/4

⌋
+3. Furthermore,

equality holds if and only if G ∈ G∗(n) where G∗(n) is as above.

Let G(n; r; θs) denote to class of graphs on n vertices containing no r edge-
disjoint θs-graphs and

f(n; r; θs) = max{E(G) : G ∈ G(n; r; θs)}.

Note that

G(n; 1; θs) ⊆ G(n; 2; θs) ⊆ G(n; 3; θs) ⊆ · · · ⊆ G(n; r; θs).

Let Ω(n, r) denote the class of graphs obtained by adding r−1 edges to the complete
bipartite graphs K⌊n

2 ⌋,⌈n
2 ⌉. Figure 1 displays a member of Ω(n, 2).

The Turán-type extermal problem with r odd edge-disjoint cycles being the
forbidden subgraph, was studied by Bataineh and Jaradat [2], In fact, they proved
that for G ∈ G(n; r;C2k+1), k ≥ 2 and large value of n, f(n; r;C2k+1) ≤

⌊
n2/4

⌋
+

r− 1. Furthermore, equality holds if and only if G ∈ Ω(n, r). Recently, Bataineh et
al [3] and Jaradat et al [10], proved the following results:

Theorem 1.1(Bataineh et al). For n ≥ 9,

f(n; θ5) ≤
⌊
(n− 1)2

4

⌋
+ 1.

Furthermore, the bound is best possible.

Theorem 1.2(Jaradat et al). Let k ≥ 3 be a positive integer and G ∈ G(n; θ2k+1).
Then for large n,

E(G) ≤
⌊
(n− 2)2

4

⌋
+ 3.
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Figure 1: The figure represents a member of Ω(n, 2).

Furthermore, the bound is best possible.

Theorem 1.3(Jaradat et al). Let k ≥ 3 be a positive integer and G be a graph on
n vertices that contains no θ2k+1 graph as a subgraph. Then for large value of n,

E(G) ≤
⌊
n2

4

⌋
.

Furthermore, equality holds if and only if G is the complete bipartite graph
K⌊n

2 ⌋,⌈n
2 ⌉.

We continue the work initiated in [3] and [10] by generalizing and extending
the above theorem. In fact, we determine f(n; r; θ2k+1) and characterize the edge
maximal members in G(n; r; θ2k+1) for k, r ≥ 2.

In the rest of this paper, NG(u) stands for the set of neighbors of u in the graph
G. Moreover, G[X] denotes the induced subgraph of X in G.

2. Edge-Maximal θ2k+1 - Disjoint Free Graphs

In this section, we determine f(n; r; θ2k+1) and characterize the edge maximal
members in G(n; r; θ2k+1) for k, r ≥ 2. Observe that Ω(n, r) ⊆ G(n; r; θ2k+1) and
every graph in Ω(n, r) contains

⌊
n2/4

⌋
+ r − 1 edges. Thus, we have established

that
f(n; r, θ2k+1) ≥

⌊
n2/4

⌋
+ r − 1.

In the following theorem, we establish that equality holds. Further, we characterize
the edge maximal members in G(n; r; θ2k+1).
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Theorem 2.1. Let k, r ≥ 2 be two positive integers and G ∈ G(n; r; θ2k+1). For
large value of n,

f(n; r; θ2k+1) ≤
⌊
n2/4

⌋
+ r − 1.

Furthermore, equality holds if and only if G ∈ Ω(n, r).

Proof. We prove this theorem using induction on r.
Step 1: We show the result for r = 2 and k ≥ 2. Let G ∈ G(n, 2; θ2k+1).

If G contains no θ2k+1 as a subgraph, then by Theorem 1.3, E(G) ≤
⌊
n2/4

⌋
.

Thus, E(G) <
⌊
n2/4

⌋
+ 1. So, we need to consider the case when G has θ2k+1 as

a subgraph. Assume x1x2 . . . x2k+1x1xt be a θ2k+1 in G for some 3 ≤ t ≤ 2k.
Consider H = G − {e1 = x1x2, e2 = x2x3, . . . , e2k+1 = x2k+1x1, e2k+2 = x1xt}.
Observe that H cannot have θ2k+1 as otherwise G would have two edge-disjoint
θ2k+1 as a subgraph. We now consider two cases:

Case 1: H is not a bipartite graph. Then we split this case into two subcases:

Subcase 1.1. k = 2. Then by Theorem 1.1

E(H) ≤
⌊
(n− 1)2/4

⌋
+ 1.

Now,

E(G) = E(H) + 2k + 2

≤
⌊
(n− 1)2

4

⌋
+ 2k + 3

<

⌊
n2

4

⌋
+ 1

for n ≥ 4k + 7.

Subcase 1.2. k ≥ 3. Then by Theorem 1.2

E(H) ≤
⌊
(n− 2)2/4

⌋
+ 3.

Now,

E(G) = E(H) + 2k + 2

≤
⌊
(n− 2)2

4

⌋
+ 2k + 5

≤
⌊
n2

4

⌋
− n+ 2k + 6,

for n ≥ 2k + 6, we have

E(G) <

⌊
n2

4

⌋
+ 1.
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Case 2: H is a bipartite graph. Let X and Y be the partition of V (H). Thus,
E(H) ≤ |X||Y |. Observe |X| + |Y | = n. The maximum of the above is obtained

when |X| =
⌊
n
2

⌋
and |Y | =

⌈
n
2

⌉
. Thus, E(H) ≤

⌊
n2

4

⌋
. Restore the edges of the

θ2k+1-graph. We now consider the following subcases:

Subcase 2.1: One of X and Y contains two edges of the θ2k+1-graph, say ei
and ej in X. Let y1, y2, . . . , yk−1 be a set of vertices in X−{xi, xi+1, xj , xj+1}. We
split this subcase into two subsubcases:

Subsubcase 2.1.1: i and j are not consecutive. Then |NY (xi) ∩NY (xi+1) ∩
NY (xj) ∩NY (xj+1) ∩NY (y1) ∩NY (y2) ∩ . . . ∩NY (yk−1)| ≤ k + 2, as otherwise G
contains two edge-disjoint θ2k+1-graph. Thus,

EG({xi, xi+1, xj , xj+1,y1, y2, . . . , yk−1}, Y ) ≤ (k + 2)|Y |+ k + 2.

So,

E(G) = EG(X − {xi, xi+1, xj , xj+1, y1, y2, . . . , yk−1}, Y ) +

EG({xi, xi+1, xj , xj+1,y1, y2, . . . , yk−1}, Y ) + E(G[X]) + E(G[Y ])

≤ (|X| − k − 3)|Y |+ (k + 2)|Y |+ k + 2 + 2k + 2

≤ |X||Y | − |Y |+ 3k + 4

≤ (|X| − 1)|Y |+ 3k + 4

Observe that |X| + |Y | = n. The maximum of the above equation is when |Y | =⌈
n−1
2

⌉
and |X| − 1 =

⌊
n−1
2

⌋
. Thus,

E(G) ≤
⌊
(n− 1)2

4

⌋
+ 3k + 4.

Hence, for n ≥ 6k + 9,

E(G) <

⌊
n2

4

⌋
+ 1.

Subsubcase 2.1.2: i and j are consecutive, say j = i+ 1. Then by following
the same arguments as in subsubcase 2.1.1 and by taking into the account that
|NY (xi) ∩ NY (xi+1) ∩ NY (xj+2) ∩ NY (y1) ∩ NY (y2) ∩ . . . ∩ NY (yk−1)| ≤ k + 1
and so E({xi, xi+1, xi+2, y1, y2, . . . , yk−1}, Y ) ≤ (k + 1)|Y |+ k+ 1, we get the same
inequality.

Subcase 2.2: E(G[X]) = 1 and E(G[Y ]) = 0 or E(G[X]) = 0 and E(G[Y ]) = 1.
Then

E(G) ≤ E(H) + 1

≤
⌊
n2

4

⌋
+ 1
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One can observe from the above arguments that for r = 2 only time when we have
equality is when G is obtained by adding an edge to the complete bipartite graph
K⌊n

2 ⌋,⌈n
2 ⌉. This leads to the class Ω(n, 2).

Step 2: Assume that the result is true for r − 1.

Step 3: We show the result is true for r ≥ 3. To accomplish that we use similar
arguments to those in Step 1. Let G ∈ G(n; r; θ2k+1). If G contains no r − 1
edge-disjoint of θ2k+1-graphs, then by the inductive step E(G) ≤

⌊
n2/4

⌋
+ r − 2.

Thus, E(G) <
⌊
n2/4

⌋
+ r − 1. So, we need to consider the case when G has r − 1

edge-disjoint of θ2k+1-graphs. Assume that {θ(i) = xi1xi2 . . . xi(2k+1)xi1xit}r−1
i=1 be

the set of r − 1 θ2k+1-graphs. Consider H = G − ∪r−1
i=1E(θ(i)). Observe that H

cannot have θ2k+1-graphs as otherwise G would have r edge-disjoint θ2k+1-graphs.
As in Step 1, we consider two cases:

Case I: H is not a bipartite graph. Then we consider two subcases

Subcase 1.1. k = 2. Then by Theorem 1.1

E(H) ≤
⌊
(n− 1)2/4

⌋
+ 1.

Now,

E(G) = E(H) + (r − 1)(2k + 2)

≤
⌊
(n− 1)2

4

⌋
+ (r − 1)(2k + 2)

<

⌊
n2

4

⌋
+ 1

for n ≥ 2(2k + 2)(r − 1) + 1.

Subcase 1.2. k ≥ 3. Then by Theorem 1.2

E(H) ≤
⌊
(n− 2)2/4

⌋
+ 3.

Thus,

E(G) = E(H) + (r − 1)(2k + 2)

≤
⌊
n2

4

⌋
+ (r − 1)− n+ 4 + (2k + 1)(r − 1),

for n > 4 + (2k + 1)(r − 1),

E(G) <

⌊
n2

4

⌋
+ r − 1.

Case II: H is a bipartite graph. Let X and Y be the partition of V (H). Thus,
E(H) ≤ |X||Y |. Observe that |X| + |Y | = n. The maximum of the above is
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obtained when |X| =
⌊
n
2

⌋
and |Y | =

⌈
n
2

⌉
. Thus, E(H) ≤

⌊
n2

4

⌋
. Now, we consider

the following two subcases:

Subcase II.I: There is 1 ≤ m ≤ r − 1 such that θ(m) contains at least two
edges, say ei = xmixm(i+1) and ej = xmjxm(j+1), joining vertices of one of X and Y
, say X. Let y1, y2, . . . , yk−1 be a set of vertices in X−{xmi, xm(i+1), xmj , xm(j+1)}.
To this end we have two susubcases:

Subsubcase II.I.I: i and j are not consecutive. Then |NY (xmi)∩NY (xm(i+1))∩
NY (xmj)∩NY (xm(j+1))∩NY (y1)∩NY (y2)∩ . . .∩NY (yk−1)| ≤ k+2, as otherwise
H∪{ei, ej} contains two edge-disjoint θ2k+1-graphs and soG contains r edge-disjoint
θ2k+1-graphs. Thus, as in Subsubcase 2.1.1 of Step 1,

EH({xmi, xm(i+1), xmj , xm(j+1), y1, y2, . . . , yk−1}, Y ) ≤ (k + 2)|Y |+ k + 2.

And so,

E(G) = E(H) + | ∪r−1
i=1 E(θi)|

= EH(X − {xmi, xm(i+1), xmj , xm(j+1), y1, y2, . . . , yk−1}, Y ) +

EH({xmi, xm(i+1), xmj , xm(j+1), y1, y2, . . . , yk−1}, Y ) + | ∪r−1
i=1 E(θ(i))|

≤ (|X| − k − 3)|Y |+ (k + 2)|Y |+ k + 2 + (r − 1)(2k + 2)

= (|X| − 1)|Y |+ k + 2 + (r − 1)(2k + 2)

Moreover, the maximum of the above inequality is obtained when |Y | =
⌈
n−1
2

⌉
and

|X| − 1 =
⌊
n−1
2

⌋
. Thus,

E(G) ≤
⌊
(n− 1)2

4

⌋
+ k + 2 + (r − 1)(2k + 2)

For n ≥ (6k + 2)(r − 1) + 7, we have

E(G) <

⌊
n2

4

⌋
+ (r − 1).

Subsubcase II.I.II: i and j are consecutive, say j = i+1. Then by following
the same arguments as in Subsubcase 2.1.2 of Step 1 and Subsubcase II.I.II of step
2, we get the same inequality.

E(G) <

⌊
n2

4

⌋
+ (r − 1).

Subcase II.II: Each 1 ≤ m ≤ r − 1, θ(m) has exactly one edge belonging to
one of X and Y . Let e be the edge of θ(1) that belongs to one of X and Y . Then
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G− e ∈ Ω(n, r − 1) ⊆ G(n; r − 1; θ2k+1) and so by the inductive step,

E(G) = E(G− e) + 1

≤
⌊
n2

4

⌋
+ r − 2 + 1

=

⌊
n2

4

⌋
+ r − 1.

This completes the proof of the theorem. 2

We can now characterize the extermal graphs. Throughout the proof, we no-
ticed that the only time when we had equality was in the case when G was obtained
by adding r − 1 edges to the complete bipartite graph K⌊n

2 ⌋,⌈n
2 ⌉. This leads rise

to the class Ω(n, r).
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