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ABSTRACT. For two positive integers r and s, §(n;r;60s) denotes to the class of graphs
on n vertices containing no r of edge disjoint Os-graphs and f(n;r;0s) = max{&(G) :
G € G(n;7;05)}. In this paper, for integers r, k > 2, we determine f(n;r;62,+1) and
characterize the edge maximal members in §(n; r; 02x41).

1. Introduction

The graphs considered in this paper are finite, undirected and have no loops or
multiple edges. Most of the notations that follow can be found in [6]. For a given
graph G, we denote the vertex set of a graph G by V(G) and the edge set by E(G).
The cardinalities of these sets are denoted by v(G) and &(G), respectively. The
cycle on n vertices is denoted by C),. A theta graph 0,, is defined to be a cycle C),
to which we add a new edge that joins two non-adjacent vertices. We would like to
mention that the method used in this paper follows the same lines used in [2] for
the same authors.

Let G; and G5 be graphs. The union of G; and G; is a graph with vertex set
V(G1) UV (G2) and edge set E(G1) U E(G2). G and Go are disjoint if and only
if V(G1) NV (G2) = @; Gy and Gy are edge disjoint if E(G1) N E(Gy) = 2. If Gy
and Go are disjoint, we denote their union by G; + Gs. The intersection G; N Go
of graphs G; and G5 is defined similarly, but in this case we need to assume that
V(G1)NV(Gs) # @. The join GV H of two disjoint graphs G and H is the graph
obtained from G + H by joining each vertex of G to each vertex of H. For two
vertex disjoint subgraphs H; and Hy of G, we let Eg(H1,Hs) = {zy € E(G) : x €
V(Hl),y S V(HQ)} and 8G(H1,H2) = |EG(H1,H2)|.
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In this paper we consider the Turdn-type extermal problem with the odd edge-
disjoint theta graphs being the forbidden subgraph. Since a bipartite graph contains
no odd theta graph, the non-bipartite graphs have been considered by some authors.
First, we recall some notations and terminologies. For a positive integer n and a
set of graphs F, let G(n;F) denote the class of non-bipartite F-free graphs on n
vertices, and

f(n; F) =max{&(G) : G € §(n; F)}.

An important problem in extermal graph theory is determine the values of the
function f(n;JF). Further, an additional goal is to characterize the extermal graphs
G(n; F) where f(n;F) is attained. This problem has been studied extensively by a
number of authors [4, 5, 7, 8, 9]. In 1998, Jia proved that &(G) < |(n —2)?/4] +3
for G € G(n;C5) and n > 10. Furthermore, equality holds if and only if G €
G*(n) where G*(n) is the class of graphs obtained by adding a triangle, two vertices
of which are new, to the complete bipartite graph K| (,_2)/2) [(n—2)/21- In 2007,
Bataineh established the following result: Let & > 3 be a positive integer and
G € §(n; Cag1). Then for large value of n, &(G) < |(n — 2)?/4] + 3. Furthermore,
equality holds if and only if G € §*(n) where §*(n) is as above.

Let G(n;r;6;) denote to class of graphs on n vertices containing no r edge-
disjoint f4-graphs and

flnyr;0s) = max{&(G) : G € G(n;r;05)}.
Note that
S(n;1;6,) € G(n;2:6,) € G(n:3;05) € --- C G(n; 73 6,).

Let Q(n, r) denote the class of graphs obtained by adding r—1 edges to the complete
bipartite graphs KL [2] Figure 1 displays a member of Q(n,2).

3]z

The Turan-type extermal problem with r odd edge-disjoint cycles being the
forbidden subgraph, was studied by Bataineh and Jaradat [2], In fact, they proved
that for G € G(n;r; Cars1),k > 2 and large value of n, f(n;r;Copi1) < Ln2/4J +

r — 1. Furthermore, equality holds if and only if G € Q(n, ). Recently, Bataineh et
al [3] and Jaradat et al [10], proved the following results:

Theorem 1.1(Bataineh et al). Forn > 9,

J(n505) < V”;”?J 1

Furthermore, the bound is best possible.

Theorem 1.2(Jaradat et al). Let k > 3 be a positive integer and G € G(n; Oaxy1)-

Then for large n,
_9)2
£(G) < {(nﬁ)J +3.
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Figure 1: The figure represents a member of Q(n, 2).

Furthermore, the bound is best possible.

Theorem 1.3(Jaradat et al). Let k > 3 be a positive integer and G be a graph on
n vertices that contains no 041 graph as a subgraph. Then for large value of n,

n

2
e <|—1.
@ =<|%]
Furthermore, equality holds if and only if G 14s the complete bipartite graph

Klgl 151

We continue the work initiated in [3] and [10] by generalizing and extending
the above theorem. In fact, we determine f(n;r;60s,+1) and characterize the edge
maximal members in G(n;r;fa,41) for k,r > 2.

In the rest of this paper, N¢(u) stands for the set of neighbors of » in the graph
G. Moreover, G[X] denotes the induced subgraph of X in G.

2. Edge-Maximal 05541 - Disjoint Free Graphs

In this section, we determine f(n;r;6ax+1) and characterize the edge maximal
members in G(n;r;041) for k,r > 2. Observe that Q(n,r) C G(n;r;02,+1) and
every graph in Q(n,r) contains LnQ /4J + r — 1 edges. Thus, we have established
that

f(n;r, ba41) > Ln2/4j +r—1

In the following theorem, we establish that equality holds. Further, we characterize
the edge maximal members in G(n;r;0a11).
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Theorem 2.1. Let k,r > 2 be two positive integers and G € G(n;r;0+1). For
large value of n,

flnyr;api1) < L /4J +r—1
Furthermore, equality holds if and only if G € Q(n,r).

Proof. We prove this theorem using induction on 7.

Step 1: We show the result for r = 2 and k& > 2. Let G € G(n,2;0254+1).
If G contains no fo,41 as a subgraph, then by Theorem 1.3, £(G) < |n%/4].
Thus, &(G) < [n?/4] + 1. So, we need to consider the case when G has ;41 as
a subgraph. Assume x1xs...ZTopt12127: be a O;41 in G for some 3 < t < 2k.
Consider H = G — {e1 = x129,62 = TaZ3,...,€2541 = Tog+1%1, €2k+2 = T1Tt}.
Observe that H cannot have 05,41 as otherwise G would have two edge-disjoint
021+1 as a subgraph. We now consider two cases:
Case 1: H is not a bipartite graph. Then we split this case into two subcases:

Subcase 1.1. k£ = 2. Then by Theorem 1.1
E(H) < [(n—1)%/4] +1

Now,

(@) H) + 2k +2

71
{n J+2k+3

for n > 4k + 7.
Subcase 1.2. k > 3. Then by Theorem 1.2

E(H) < [(n—2)%/4] +3

Now,
&G) = E(H)+2k+2
_ 2
< {WJ +2k+5
n2

for n > 2k + 6, we have
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Case 2: H is a bipartite graph. Let X and Y be the partition of V/(H). Thus,
E(H) < |X|]Y|. Observe | X|+ |Y| = n. The maximum of the above is obtained

when |X| = [2] and |Y| = [%]. Thus, E&(H) < V;J Restore the edges of the

021 +1-graph. We now consider the following subcases:

Subcase 2.1: One of X and Y contains two edges of the 0o141-graph, say e;
and e; in X. Let y1,92,...,Yk—1 be a set of vertices in X — {z;, z;41, 2, 41} We
split this subcase into two subsubcases:

Subsubcase 2.1.1: i and j are not consecutive. Then [Ny (z;) N Ny (zi41) N
Ny (z;) N Ny (zj41) N Ny (y1) N Ny (y2) N ... N Ny (yg—1)| < k + 2, as otherwise G
contains two edge-disjoint 0ap1-graph. Thus,

Ea{mis Tip1 25, jp1,y1, Y2, - k=11, Y) S (K +2)[Y ]+ +2.

o™
Q

~—
I

Ea(X —{zi, ®it1, 25, Tj41, Y1, Y2, - -, Y1}, Y ) +
Ea({wi, Tiv1, 75, j41,91, Y2, - Yk—11, Y) + E(G[X]) + E(G[Y])
(| X|=kE=3)Y|+ (k+2))Y|+Ek+2+2k+2

XY= Y|+ 3k+4

(IX]=D|Y|+3k+4

INIACIA

Observe that | X |+ |Y| = n. The maximum of the above equation is when |Y| =

("771] and | X|—1= L%J Thus,

&(G) < V”;DQJ + 3k +4.

Hence, for n > 6k + 9,

Q) < HJ +1.

Subsubcase 2.1.2: ¢ and j are consecutive, say j = ¢+ 1. Then by following
the same arguments as in subsubcase 2.1.1 and by taking into the account that
|Ny($l) M Ny(xiJrl) N Ny(.%‘j+2) N Ny(yl) n Ny(yg) N...N Ny(ykfl)‘ < k+1
and so ({4, Tit1, Tit2, Y1, Y2, - Yk—14,Y) < (K + 1)|Y| 4+ k+ 1, we get the same
inequality.

Subcase 2.2: £(G[X]) =1 and E(G[Y]) =0 or E(G[X]) =0 and E(G[Y]) = 1.
Then

IA

(@) E(H)+1

HE

IA
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One can observe from the above arguments that for » = 2 only time when we have
equality is when G is obtained by adding an edge to the complete bipartite graph
KL I.[2]" This leads to the class (n, 2).

Step 2: Assume that the result is true for r — 1.

Step 3: We show the result is true for » > 3. To accomplish that we use similar
arguments to those in Step 1. Let G € G(n;r;02+1). If G contains no r — 1
edge-disjoint of f2j,11-graphs, then by the inductive step &(G) < [n?/4] +r — 2.
Thus, &(G) < [n?/4] +r — 1. So, we need to consider the case when G has r — 1
edge-disjoint of @y, 1-graphs. Assume that {0 = x;12 .. .wi(gkﬂ)milxit}gf be
the set of 7 — 1 61 1-graphs. Consider H = G — UZT;IIE(H(i)). Observe that H
cannot have fgy41-graphs as otherwise G would have r edge-disjoint o5 1-graphs.
As in Step 1, we consider two cases:

Case I: H is not a bipartite graph. Then we consider two subcases
Subcase 1.1. k = 2. Then by Theorem 1.1

() < [(n— 12/4] +1
Now,
E(G) = +(r—1)(2k+2)
< { ”_1 J +(r—1)(2k+2)
< |7
4
forn >2(2k+2)(r — 1)+ 1.
Subcase 1.2. k > 3. Then by Theorem 1.2

E(H) < [(n—2)%/4] +3
Thus,
E(G) = EH)+(r—-1)(2k+2)
< VfJ +(r—1)—n+4+ 2k+1)(r—1),

forn >4+ (2k+1)(r—1),

2

£(G) < {”J tr—1.

Case II: H is a bipartite graph. Let X and Y be the partition of V(H). Thus,
E(H) < |X||Y|. Observe that |X| 4+ |Y| = n. The maximum of the above is
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obtained when |X| = [%] and Y| = [%]. Thus, &(H) < {%J Now, we consider
the following two subcases:

Subcase IL.I: There is 1 < m < r — 1 such that (™) contains at least two
edges, 8ay €; = TmiTm(i+1) aNd €j = Ty T (j41), joining vertices of one of X and Y
,say X. Let y1,%2,...,yr—1 be a set of vertices in X —{&mi, Tp(i41), Tmj, Tm(j+1) }-
To this end we have two susubcases:

Subsubcase II.LI: i and j are not consecutive. Then | Ny (i) \Ny (L (i-+1))N
Ny (Zmz) YNy (Zp(j4+1)) "Ny (y1) "Ny (y2) N...0 Ny (yr—1)| < k+2, as otherwise
HU{e;, e;} contains two edge-disjoint #a11-graphs and so G contains r edge-disjoint
021 4+1-graphs. Thus, as in Subsubcase 2.1.1 of Step 1,

H({xmia xm(i+1)7 Tmyj, xm(j+l)7 Yi1,Y2, - .- 7yk—1}a Y) S (k + 2)|YV| + k + 2.
And so,

E(G) = E&(H)+|UZ E@®)]
= Ea(X —{Zmi, Tm(it1)s Tmj> Tm(j41)> Y1, Y25 - - s Yo—1},Y) +
Ea({@mis T (i+1)s Tmjs Tm(j+1)s Y1, Y25 - - - Yk-11,Y) + | UZ:_l1 E(o(i)”
< (|X| k— 3)|Y|+(k‘+2|Y|+k+2+(7‘—1)(2/{3+2)
= (|X|-DY|+k+2+(r—-1)(2k+2)

Moreover, the maximum of the above inequality is obtained when |Y| = ["—_1] and

2
|X|—1=[2;!]. Thus,

(n—1)?

e(G)ﬂ 1

J+k+2+(r—1)(2k+2)

For n > (6k + 2)(r — 1) 4+ 7, we have

£(@) < mJ +(r—1).

Subsubcase II.I.II: i and j are consecutive, say j = ¢+ 1. Then by following
the same arguments as in Subsubcase 2.1.2 of Step 1 and Subsubcase IL.I.IT of step
2, we get the same inequality.

£(G) < MJ +(r—1).

Subcase ILII: Each 1 <m < r — 1, 8™ has exactly one edge belonging to
one of X and Y. Let e be the edge of #1) that belongs to one of X and Y. Then
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G—ecQn,r—1) CG(n;r — 1;09,4+1) and so by the inductive step,

EG) = &G-¢e) +1

2
VZJ+T_2+1

2
= VZJJH"I.

This completes the proof of the theorem. O

We can now characterize the extermal graphs. Throughout the proof, we no-

ticed that the only time when we had equality was in the case when G was obtained
by adding r — 1 edges to the complete bipartite graph K L2 [2] This leads rise
|2

to the class Q(n, 7).

n
2
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