Results in Physics 28 (2021) 104557

& >

FI. SEVIER

Contents lists available at ScienceDirect
Results in Physics

journal homepage: www.elsevier.com/locate/rinp

Resutts in

Check for

Exact traveling wave solutions for two prolific conformable M-Fractional = [%&s
differential equations via three diverse approaches

Imran Siddique °, Mohammed M.M. Jaradat ™, Asim Zafar , Khush Bukht Mehdi ?, M.S. Osman “

@ Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan

b Department of Mathematics, Statistics and Physics, Qatar University, Doha, Qatar
¢ Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Pakistan
4 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

ARTICLE INFO ABSTRACT

Keywords:

Generalized reaction duffing model
Diffusion reaction equation
M—fractional derivative

Exact traveling wave solutions

In this paper, we obtain the exact traveling solutions of the M-fractional generalized reaction Duffing model and
density dependent M-fractional diffusion reaction equation by using three fertile, (G /G, 1/G), modified (G /G?)

and (1/G )-expansion methods. These methods contribute a variety of exact traveling wave solutions to the
scientific literature. The obtained solutions are also verified for the aforesaid equations through symbolic soft

computations. Furthermore, some results are explained through numerical simulations that show the novelty of
our work. Moreover, we observe that all the solutions are new and an excellent contribution in the existing
literature of solitary wave theory.

Introduction

Nonlinear fractional differential equations (NFDEs) occur more
frequently in engineering applications and different research areas
[1-8]. Then, many real-life problems can be modeled by ordinary or
partial differential equations involving the derivatives of fractional
order. In order to better understand and apply these physical phenom-
ena in practical scientific research, it is important to find their exact
solutions. Finding exact solutions of most of the NFDE:s is not easy, so
searching and constructing exact solutions of NFDEs is a continuing
investigation.

Recently, many powerful methods for obtaining exact solutions of
nonlinear partial differential equations (NLPDEs) have been presented
such as, Hirota’s bilinear method [9], modified expansion function
method [10], sine-cosine method [11], tanh-method [12], Adomin
decomposition method [13,14], variational iteration method [15,16],
homotopy perturbation method [17], homotopy analysis method [18],
Laplace iterative method [19], nonlinear Schrodinger equation [20-22],
Boussinesq fractional type model [23]. Periodic-type solutions have
been investigated by implementing the Variational principal method of
the KMN equation in the (2 + 1) - dimensional form [24], Riccati
equation method [25], tanh-expansion method [26], extended direct
algebraic method [27-31], Kudryashov method [32], Exp-function
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method [33], the modified extended exp-function method [34], F-
expansion method [35], the Backlund transformation method [36,37],
reductive perturbation method [38], the extended tanh-method [39,40],
Jacobi elliptic function expansion methods [41 —43], the residual power
series method [44], extended sinh- Gordon equation expansion method
[45] and different other methods [46-50].

The primary prospect of this paper is to determine the exact solutions
of the fractional generalized reaction Duffing model [51]

azagt(;’ ) p 0200';(;’ ) +qu(x, t) + r? (x, 1) +su’(x,0) =0, £ >0, 0 < a<l,
@
and nonlinear fractional diffusion-reaction equation
6”13(: J + ku(x, 1) aa’;i);’ ) = Daza(;;(;;7 ) +au(x,t) — bu*(x,t), t >0, 0
< agl,
(2)

with M-fractional derivative [52] based on three different methods, the
(G /G, 1/G) —expansion method [53,54], the modified
(G'/G?) —expansion method [55] and the (1/G) —expansion method
[56]. These methods are frequently used to find the different types of the
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exact solutions of the NLPDEs. The main concept of the two variables
(G'/G, 1/G) —expansion method is that the exact traveling wave solu-
tions of nonlinear evolution equations (NLEEs) can be written as a
polynomial in two variables (G /G) and (1/G), in which G = G(z) sat-
isfies a second order linear ODE G'() + AG(y) = u, where A and y are
constants. For these methods, the degree of the polynomials can be
evaluated by a taking homogenous balance between the highest-order
derivatives and nonlinear terms in the given nonlinear PDEs. Besides,
the coefficients of the polynomial can be determined by solving a set of
algebraic equations resulting from the process of using the methods. For
examples, Hafiz [57] determined the close form solutions of the frac-
tional generalized reaction Duffing model and the density dependent
fractional diffusion reaction equation by (G /G, 1/G)-expansion
method. Traveling wave solutions of the Zakharov and nonlinear Kdv-
mKdv equations have been found by Li et al [53] and Zayed et al
[54]. The general solutions of the fifth order NLEEs and the Burger KP-
equation have been obtained in [58,59]. Exact traveling wave solution
of nonlinear fractional evolution equations obtained by Sirisubtawee
[60]. By using the modified (G'/G?) —expansion method, traveling wave
solutions have been found for the nonlinear Schrodinger equation along
the third-order dispersion [55]. Different types of traveling wave solu-
tions of the Fokas-Lenells equations have been determined by this
method [61]. Aljahdaly found the general exact traveling wave solutions
to the NLEEs in [62]. Dragon and Donmez [63] obtained the traveling
wave solutions of the Gardner equation and their applications to the
different physical plasma. Exact solutions of nonlinear and supernon-
linear traveling wave’s solutions for Sharma-Tasso-Olver (STO) equa-
tions are obtained by Ali et al. [64].

This article organized it as follows: In Sect. 2, we present the M-
fractional derivative and its properties. The descriptions of strategies are
given in Sec.3. In Sec.4, we present a mathematical analysis of the
models and its solutions via proposed methods. Some conclusions are
drawn in the last section.

M-fractional derivatives and its properties

Definition. Assume thatf : (0,c0)—R, then, the newltruncated M-
fractional derivative of function fof order « is defined as:

DYf(1) = lim-w

,forallz >0, 0<a<1, >0,
=0 €

where €4(-) is a truncated Mittag-Leffler function of one parameter [52].

Properties. Leta € (0, 1], > 0 and f = f(t), g = g(t) be a- differen-
tiable, at a point t > 0, then:

1. D%’ (af + bg) = aD%’f +bDfg for all a, b € R.
2. D&’ (c) =0, where f(t) =, is a constant.
3. D3/ (f.g) = gDy (F) + M (g

ap a.p
4. D% @ — SOl

5. Furthermore; if the function f is differentiable; then

l,l—rl df

Fp+1) dr 3)

Diff(r) =

6. DI (f°g)(t) = f (g(t) D g(t), for f differentiable at g(t).
This characterization also fulfills the Chain rule.

Description of strategies
(G /G, 1/G) —Expansion method
In this describe the

section, we main steps of the
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(G /G, 1/G) —expansion method [53,54] for finding travelling wave
solutions of nonlinear evolution equations. Let us consider the second
order linear ordinary differential equation (ODE):

G'(n) +4G(n) = p, 4

where ¢ = G//G and y = Ve then we attain

=P tm = v =~y (5)
Case 1. When 4 < 0, the general solutions of Eq. (4) is given as
G(n) = Alsinh(\/—ﬁ r]) +Azcosh<\/—/1 ;7) +%‘, ®)
and we have
SR 22 ), 7
V= e ), @)

where A; and A, are arbitrary integration constants ando = A2 —A2.

Case 2. When 4 > 0, the general solutions of Eq. (4) is clearly

G(n) = Aysin (\//—171) +Azcos(\//—111> +%, (8)
and we have
2 A 2
= -2 A 9
v ,1207”2(4’ uy +2), ©)

where A; and A are arbitrary integration constants ando = A2 + A2.

Case 3. When 1 = 0, the general solutions of Eq. (4) is

G(n) :gn2+A1n +As, 10)

and we have

1
W :m(¢2 —2uy), an

where A; and A, are arbitrary integration constants.

Let us consider the nonlinear partial differential equation (NLPDE) is
in the form

Q(Ll, Ury Uxy U Uxry Uy, ) =0, 12)

where u = u(x, t) is an unknown function, Q is a polynomial of u(x, t) and
its  various  partial  derivatives. = The main steps of
(G' /G, 1/G) —expansion method are:

Step 1: By coordinates transformation

n=x—vt, u(x,t)=U(n). 13)

Here,v is the speed of traveling wave.
The wave variable allow us to reduce Eq. (12) into a nonlinear ODE
forU = U(n) :

m

RU, U, U"U", ..) =0, a4

where R is a polynomial of U(y) and its total derivatives with respect toy.
Step 2: Assume that the solutions of Eq. (14) can be expressed by a
polynomial in two variables ¢ and y as:

U =Y ad'+ Y by, (15)
i=0 i=1
where a;(i=0, 1, .., m) and bi(i=1, .., m) are constants to be

determined later, and the positive integer m can be determined by using
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the homogenous balance between the highest order derivatives and the
nonlinear terms appearing in ODE (14).

Step 3: Substituting Eq. (15) into Eq. (14) along with Egs. (5) and
(7), the left hand side of Eq. (14) can be converted into a polynomial in
terms of ¢ and y, in which the degree of i is not larger than 1. Equating
each coefficient of the polynomial to zero yields a system of algebraic
equations which can be solved by using the software MATHEMATICA to
get the values ofq;(i=0, 1,...m), bi(i=1,..m), v, u, AA<0),
A1 and Ag.

Step 4: Substituting the values of ;(i=0,1,...,m), bj(i=1,...,m),v,
u, A(A<0), A; and Ajobtained into (15); one can attain the traveling
wave solutions expressed by the hyperbolic functions of Eq. (14).

Step 5: Similar to step 3 and step 4, substituting (15) into Eq. (14)
along with (5) and (9) (or (5) and (11)), we attain the exact travelling
wave solutions of Eq. (14) expressed by trigonometric functions (or
expressed by rational functions).

The modified (G /G2)- expansion method

Here, we will describe the basic steps of modified (G /G?)- expansion
method [55]

Step 1: Consider Egs. (12), (13) and (14).

Step 2: Extend the solutions of Eq. (14) in the following form

Uln) = ia<%>

i=0

(16)

where ¢;(i=0,1,2,3,...,m) are constants and find to be later. It is
important that q; # 0.
The function G = G(1) satisfies the following Riccati equation

G\
&) =
where ¢ and 1; are constants. We gain the below solutions to Eq. (17)

due to different conditions of Ag:
When Aod1 < 0,

(Q) _ _Vih] V|
A

17

Cysinh(v/2oA1 ) + Cacosh(\/ Aok n)}

G? 2 |Cicosh(\/IgAin) + Casinh(\/Aoh1 1)
18)
When g4, > 0,
(g’) _ \/@ Cicos(VAodi 1) + Casin(v/AoZi 1) 19)
G? M| Cysin(v/Aody ) — Casin(v/Aoh 1)
When 4o = 0 and 4; # 0,
G Ci
B L E— 20
<G2> 4(Ci+ G 0

where C; and C, are arbitrary constants.
Step 3: Replacing Eq. (16) into Eq. (14) along with Eq. (17) and

1
tracing all coefficients of each (%) to zero, then solving that algebraic

equations generated in the terms a;, 49, 41, v and other parameters.
Step 4: Replacing Eq. (16) of which «;, v and other parameters that
are found in step 3 into Eq. (13), we get the solutions of Eq. (12).

(1/G)- expansion method
Here, we will describe the basic steps of (1/G') —expansion method

[56].
Step 1: Consider Egs. (12)-(14).
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Step 2: Extend the solution of Eq. (14) in the following form

v =3 a()

i=0

(21)

where G = G(1) and satisfies the following second order linear ODE

G"(n)+4G (n)+u=0, (22)

where a;(i=1,....,m), A and yu are constants to be determined later and
the positive integer m is a homogenous balance number. The solution of
the differential Eq. (22) is

Gn) = cie L+ 23)
Then
1 A
— ) = 2
(G’) —p + AC,[cosh(An) — sinh(An) ] (29)

can be written, where C; and C, are arbitrary constants.

Step 3: By substituting Eq. (21) into Eq. (14) and using Eq. (22), the
left hand side of Eq. (14) can be converted into a polynomial in term of
(1/G') Equating each coefficient of the polynomial to zero yields a sys-
tem of algebraic equations. By solving the algebraic equations with
symbolic computation, we obtaina;(i=1,...,m), 4 and p.

Mathematical analyses of the models and its solutions
For fractional generalized reaction Duffing model

Let’s assume the transformations:

_Tp+1)
T a

u(x,t) = U(n), n (25)

(ke — ct*),
where k and c are constants. By using Eq. (25) into Eq. (1), we get the
following ODE

AU +plPU" +qU + rU? + sU° = 0. (26)

In the following subsections, the proposed methods are applied to
extract the required solutions:

Solutions with the (G /G, 1/G) —expansion method
By applying the homogenous balance technique between the terms
U” and U® into Eq. (26), we get m = 1.For m = 1, Eq. (15) reduces into:

U(n) = ao +arp(n) + by (n), 27)

where ap, a; and b; are unknown parameters.

Case 1. For 1 < 0, substituting Eq. (27) into Eq. (26) along with Egs.
(5) and (7) yields a polynomial equation and setting each coefficient
polynomial to zero gives a system of algebraic equations for ag, a;, by,
U, 6, 4, p, q, s, ¢ and k. Solving the obtained system of algebraic
eqations by using symbolic computation software MATHEMATICA, we
obtain the following results:

—3(c’A+ k*pA)

(212
7 :|:3l(c +kp)ﬂ b
2r

a; = by =

3(62 + kzp) ut — 2o
2r =

2r

ap =

2r

(A + k) s =—un
1= (R = S
(28)

Substituting Eq. (28) into Eq. (27), we get the hyperbolic traveling
wave solutions of Eq. (1) as follows:

)
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Fig. 1. 2D and 3D graphics of case 1 for hyperbolic traveling wave solution (30) at.{k = 0.7,p =—0.05,r=1,A=-0.8,A; =1, =2,c =1}
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Fig. 2. 2D and 3D graphics of case 1 for hyperbolic traveling wave solution (31) at.{k = 0.7,p =—0.05,r=1,A=-15A1 =1, =2,c =1}
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Fig. 3. 2D and 3D graphics of case 2 for trignometric traveling wave solution (34) at.{k =0.7,p =-0.05,r=1,1=-0.8,A, =1, =2}

—3(c?A + KpA) i3i(cz +k2p)\/1 A.\/—_/lcosh<\/—_/111> +A2\/—_/15inh<\/—_/111>

Uln) =
2r 2r Aysinh (\/ -2 n) + Ascosh (\/ - 17) + %
(29)
3( +Kp)\/ it — Vo 1
2r Awinh(v —/111) +Azcosh(\/ -2 r]) +£
A
p+1
whereo = A7 ~A3, n = ot — et _ Btk o3I R VA
Family 1.1: If A; =0, Az # 0 and u = 0 in Eq. (29), we obtain the do = 2r P L= 2r ’
following type of the hyperbolic traveling wave solution: (Sees Fig. 1) y T (32)
b i?}(c +kp)\/;4 — A0 (2+k2) 217
=3(*+Kpr) _ 3(F+# 1= ,q=(c P)ys = —r5 s
Uln) = (C; p):F (€ ;r p)mnh<\/—/1n) 2r 9(c* +Kp)A
3 (cz e ) | (30) Substituting Eq. (32) into Eq. (27), we have the following periodic
+ 27[7 V-2 A—sech(\/ —A 17). trigonometric traveling wave solution of Eq. (1) as follows:
r 2

Family 1.2: If A; #0, A, =0 and p = 0 in Eq. (29), we obtain the
following hyperbolic traveling wave solution: (Sees Fig. 2)

~ =3(P 4+ Kph) _3(+Kp)
Ul = » F . lcoth(f—?n)

2 2
M V—io AL cosech <\/ -2 q) .
1

(31

2r

Case 2. For A > 0, substituting Eq. (27) into Eq. (26) along with Egs.
(5) and (9) yields a polynomial equation and setting each coefficient
polynomial to zero gives a set of algebraic equations for ag, a1, b1, p,
o, 4, p, q, s, c and k. Solving the system of algebraic equations with
the help of software MATHEMATICA, we reach the following results:

—3(CAtkp) | 3i(+Kp) VI [ Ar Vicos(Vin) ~AxVsin(Vin)
2r 2r Aysin (ﬁn) +Azcos<\/;111) —%

3(P+K 2P
N (C+Ep)\J i =20 1

2r Aysin (ﬂq) +Ascos (ﬂn) —%

Un)=

i

(33)

wheres = A? + A2,
Family 2.1: If A; =0, Ay # 0 and ¢ = 0 in Eq. (33), we obtain the
following trigonometric traveling wave solution: (Sees Fig. 3)
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Fig. 4. 2D and 3D graphics of case 3 for rational solution (39) at{k = 0.7, 4 = -0.8, A, =1,A; =1, f =2, a = 0.3}.
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Fig. 5. 2D and 3D graphics of hyperbolic periodic traveling wave solution for (42) at{k = 0.8,p =—0.05,r = 1,49 = 0.5,4y =—1,4=2,C; =1,C, =0}
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Fig. 6. 2D and 3D graphics of trignometric traveling wave solution for (43) at{k = 0.8,p =—0.05,r =1,29 =0.5,4; =—1,=2,C, =1,C; =0}
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Fig. 7. 2D and 3D graphics of hyperbolic traveling wave solution for (46) at{k = 3,p =—0.05,r = 3,40 =0.5,4; =-1,=2,c=1,C, =1}
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Fig. 8. 2D and 3D graphics of hyperbolic traveling wave solution for (51) at{k = 3,p =—0.05,r =3,40 =05,y =-1,=2,c=1,C; =1}

—3(?A+ K*pA)

3i(c* 4+ k2
+ l(C p)

A
v = 2r 2r mn(ﬂn)
3(+Kp) V-0 (1 ©9
c p)V =40
I P (A—Zsec(\/ZlO )

Family 2.2: If A; #0, A, =0 and p = 0 in Eq. (33), we obtain the
following trigonometric traveling wave solution

Case 3. For A = 0, substituting Eq. (27) into Eq. (26) along with Egs.
(5) and (11) yields a set of algebraic equations for ap, a1, az, bi,
u and gq. Solving the obtained system of algebraic with the add of
MATHEMATICA, we reach the following results:

HOZO, alii\/zaz 7bl:O, q:()

Substituting Eq. (38) into Eq. (27), we have the following rational
solution for Eq. (1): (Sees Fig. 4)

(38)

+A
U(n) = £/ 2a | 5 i !

T RIS (39)
5P+ A+ Ay

Solutions with the modified (G /G?) —expansion method
By applying the homogenous balance technique into Eq. (26), we get
m=1. Form = 1, Eq. (16) reduces in the form

/

Ul = ap+a (g)

where qp and a; are unknown parameters. By using Eq. (40) with Eq.
(17) into Eq. (26) and summing up all the coefficients of same order of

(40)

(G /G?), we get the set of algebraic equations involving ao, @; and other
parameters. Solving the obtained set of algebraic equations with
MATHEMATICA, we reach the following results:

—6(c2Aok + K2pAohs ) +6i(c2 + 2p) Ik
ap = y dp = yq
r r

’,,2

T I8( + Kp) ok’

= 4(Chod + Fhokr), s (41)
Now we use the Egs. (41), (18)-(20) into Eq. (40) and set the below
cases.
If ;041 < O, then, we have hyperbolic traveling wave solution of Eq.

(1): (Sees Fig. 5)

U(n)

(‘\/ [ Ao
Al

—6(oh +Rpioh)  6(c +Kp) Vil
r

r

C, sinh(%n) + G, Cosh(\//%Tl’I)

+ \/m
C cosh(\/zo—ﬂ;n) + G, sinh(\/Mﬂ)

2

)

(42)

If 2041 > 0, we have trignometric traveling wave solution of Eq. (1):
(Sees Fig. 6)

—6(c*Aodi + K2plods)
r

C, cos(%ﬂ) +G Siﬂ(mn)
C sin(m'?) -G COS(\/M'?)

Ul =

L 6(C + ) Vo
;
\/E
A

Solutions with the (1/G')-expansion method
By applying the homogenous balance technique into Eq. (26), we get
m = 1. Form =1, Eq. (21) reduces into:

U(n) = ap+a; (Gi)

where qp and a; are unknown parameters. By substituting Eq. (44) with
Eq. (24) into Eq. (26) and summing up all the coefficients of same order

(43)

(44)
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Fig. 9. 2D and 3D graphics of case 1 for hyperbolic traveling wave solution (56) at{s = 0.7,a=0.5,b=0.3,A=-0.8,A2 =1,=2,c =1}
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Fig. 10. 2D and 3D graphics of case 1 for hyperbolic traveling wave solution (57) at{s =0.7,a=0.5,b=0.3,A=-0.8,A; =1, =2,c =1}
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Fig. 11. 2D and 3D graphics of case 2 for trignometric traveling wave solution (60) at{s = 0.7,a = 0.5,b =0.3,4 =-0.8,A; =1,=2,c =1}

of (1/G), we get the algebraic equations involving ao, a; and other following ODE
parameters. Then by solving the obtained set of algebraic equations by
MATHEMATICA, we reach the following results:
Set 1: In the following subsections, the proposed methods are applied to
extract the required solutions:
—3(c*Ap + Kpiy)

—2r?
=00y =——F "L g= NP —kpls = ———.
G =5 r 1= PES =92 T aep)

DU’ — cU —ksUU +aU —bU? = 0. (53)

Solutions with the(G /G, 1/G)-expansion method
(45) By applying the homogenous balance technique between the terms
Replacing values of Eq. (45) into Eq. (44), we have the following U" and UU' into Eq. (53), we get m = 1.For m =1, Eq. (15) reduces in
different type hyperbolic traveling wave solution of Eq. (1): (Sees Fig. 7) the form of Eq. (27).

—3(c2au + Kpan) 2 Case 1. For A < 0, substituting Eq. (27) into Eq. (53) along with Egs.
Uln) — 46 . . . . .
(m) B (_” AC: [cosh(A) — sinh( ﬂ’?)]) (46) (5) and (.7) yields a polynoplal equation and setting ea}ch coefﬁc;ent
polynomial to zero gives a set of algebraic equations
Set 2: foray, a1, b1, u, 0, A, s, c and D. Solving the obtained system of
212 1 1212 ) ) algebraic equations with MATHEMATICA, we reach the following
" 3(22% + K2pa )}a1 _3(Mn +kp/1/4)7q — PR, s results:
r r
- (50) a ia aV/i + o i(4ab®D + a’k*)
92* (¢ + k2p)’ ay=--, a=%t—7= b == ,c=x=%
2b 20V 2bA 42D/
Replacing values of Eq. (50) into Eq. (44), we have the following B iak
different type hyperbolic traveling wave solution of Eq. (1): (Sees Fig. 8) T T2bDVIA
(2 Rpi) | 3(p + Kpiy) A 54
h(x,1) = r + r —u + AC[cosh(An) — sinh(An)] Substituting Eq. (54) into Eq. (27), we get the hyperbolic traveling
1) wave solution of Eq. (2) as follows:
For Density-Dependent fractional Diffusion-Reaction equation Uln) = a_ ia [AV—4 C(’Sh(V —4 '7) + Az\/—_/lSi”h(V -4 'I)
2" 26V2 A]smh<v r]) +Azcosh<\/ 11 "i
Adopting the similar procedure as in sec. 4.1. Let’s assume the ﬂ
transformation:
av/ it + Vo 1
r 1 /4
u(x,t) =U(n), n= %(Wﬂ — ), (52) 26 lsmh(\/ r]) +A2cosh V- r] Z

(55)
where s and ¢ are constants. By using Eq. (52) into Eq. (2), we get the

10



L. Siddique et al. Results in Physics 28 (2021) 104557

lu (x,1)|

[ur (x,8]

3.0
lu ()25
2.0,

-10

200

150

—t=0
100 t=1

—_—t=2

lu (x|
lug(x8)1
A 5 g &8
2
) %
(3]
j
(3]
[ ]]
QR R R
—111
\ o o o

Fig. 13. 2D and 3D graphics of hyperbolic perionic traveling wave solution for (68) at{s =0.7,a=0.5,b =0.3,40 =0.5,4 =-1,=2,C; =0,C; =1,c =1}
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Fig. 14. 2D and 3D graphics of hyperbolic rational solution for (71) at{s =3,a=0.5,b=1,19 = 0.5, 41

where o = A2 —A3, n = "2 (sx* — ct)
Family 1.1: If A; =0, Az # 0 and y = 0 in Eq. (55), we obtain the
following hyperbolic traveling wave solution: (Sees Fig. 9)

(\/_;1) —sech(\/_ﬂ)

2b,1 A 6)

Uln) = 2b 2bf

Family 1.2: If A; #0, A, =0 and ¢ = 0 in Eq. (55), we obtain the
following hyperbolic traveling wave solution: (Sees Fig. 10)

a\/ 6
2b2 Ay

a

2b 2W‘

Ul = (\/—w 17) cosech(\/ﬁ n)

(57)

Case 2. For A > 0, substituting Eq. (27) into Eq. (53) along with Egs.
(5) and (9) yields a polynomial equation and setting each coefficient
polynomial to zero gives a set of algebraic equations for ag, a1, b1, g,
o, 4, s, cand D. Then by solving the obtained system of algebraic
equations with MATHEMATICA, we reach the following results:

R S /Y L
2b 262 2b) 4p2D\/2
- iak
2bDVA
(58)

Substituting Eq. (58) into Eq. (53), we have the following trigono-
metric traveling wave solution for Eq. (2).

12
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[ (xt)]

0.0

10

=-1,=2C =1,k=02,c=3}

a ia Am//icos(ﬂn) —AQﬂsin<ﬂq)
2b 262 Amin(ﬂn) +Azcos<ﬁn>

Un) =
E
(59)

av/iF — Vo 1
2b4 A;sin (ﬂn) + Ascos (ﬂ ﬂ) +

/_4 ’
A

where 6 = A} + A3.
Family 2.1: If A; =0, Ay # 0 and x4 = 0 in Eq. (59), we have the
following trigonometric traveling wave solution: (Sees Fig. 11)

A (see(vin) )

2bA
Family 2.2: If A; #0, A, =0 and ¢ =0 in Eq. (59), we have the
following trigonometric traveling wave solution:

o/ ko (Ai(ﬂ 1) )

Uly) = 2b 2bmn<\f n) (60)

(61)

U(n)*fif

267 2b (ﬁ”> +

Case 3. For A = 0, substituting Eq. (27) into Eq. (53) along with Egs.
(5) and (11) yields a set of algebraic equations for ag, a;, b1, p, o, 4, s,
c and D. Then by solving the obtained system of algebraic equations
with software MATHEMATICA, we reach the following results:

= £/ 2a4, by =0, a=0.

Substituting Eq. (62) into Eq. (53), we have the following different

(62)

aop :07 ap
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Fig. 15. 2D and 3D graphics of hyperbolic traveling wave solution for (73) at{s =3,a=0.5,b=1,40 =0.5,44 =-1,=2,C; =1,k =0.2,c = 3}

type hyperbolic traveling wave solution for Eq. (2): Set2:
iav/A iak i(4ab® K2
pn + A, o= Loy VA ek iR aR)
Uln) = £v/2 (63) 2b 26\ 4bD\ 7o\ 862D\

If 1041 < 0, then we have hyperbolic traveling wave solution of Eq.
(2): (Sees Fig. 13)
Solutions with the modified (G /G?) —expansion method
By applying the homogenous balance technique into Eq. (53), we get uln) a (1 " iV ( v 1AoA1]

m=1.Form = 1, Eq. (16) reduces in the form of Eq. (40) T2 Vo A
]foi' 1.151ng Efq. (40) W:ith E(; (1,7) 12nto Eq. (53)hand surfnrinnlf uP all the Todi] Clsinh(\/Miy) i Czcosh(\/Mn) ©®
c'oe (.:1er1ts 'o same order of (G /G?), we get the set of a ge raic equa- 5 Crcosh(x/Zoh n) + Casink(v/ZoAs )
tions involving ag, a; and other parameters, then by solving the alge-
braic equations with software MATHEMATICA, we get the following If 1041 > 0, then we have trignimetric traveling wave solution of
solutions (Sees Figs. 9 and 10): Eq. (2):
Set 1
" . Ul = a, iav/A, M | Cicos(v/ oA ) + Casin(y/Zoi 1) 69)
a = i7 a = iza\/—17 s=0,c= 4@ (64) 2b " 2b\/2 Ao Clsin(\/loll r]) — Czsin(\//loﬁl 11)
2b pLavn 2y 20V A
We now using Egs. (64), (18)-(20) into Eq. (40) and set to the below Solutions with the (1/G') —expansion method
cases. By applying the homogenous balance technique into Eq. (53), we get
If 2041 < 0, then we have hyperbolic traveling wave solution of Eq. m=1. Form = 1, Eq. (21) reduces into the form of Eq. (44):
(2): (Sees Fig. 12) By substituting Eq. (44) with Eq. (24) into Eq. (53) and summing up
a iV (—/Toh] a'll the. coefﬁCIents of same order of (1/G ), we get the alge'bralc equa-
Un) = % 1+ v tions involving aop, a;and other parameters. Then by solving the ob-
0 ! tained system of algebraic equations with MATHEMATICA, we reach the
N VIAohi| | Cisinh(v/Zoki ) + Casinh(v/ Ao 1) ©65) following results:
2 Cicosh(v/Zoai 1) + Casinh(~/Aoh 1) : Set 1:

if 2041 > 0, then we have trignimetric traveling wave solution of _ _2DV—a—cp, ak _V—a—ch
ay=0,a, =+ b= ,s ==+ .
Eq. (2): k2 2vDvV=a — ci VDA
(70)
i Cicos(v/ApAl Cysin(v/Aoh
U(n) = Zib + ;Z\//? ( jTO C]C{'”( AU/I ) +C2Y,m( /1021 1) } ) . (66) Replacing the values of Eq. (70) into Eq. (44), we have the following
Vo 1 | Cisin(v/Zodi 1) — Casin(\/ZoA1 i) different type hyperbolic traveling wave solution of Eq. (2): (Sees
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Fig. 14)
Uln) = iZ\/B\/fa — i 1 A 1)
k —p + ACi[cosh(An) — sinh(An)]

Set 2:

o — —2v/Dv/=a + ¢k o — —2vDv=a + cAp b akv/—a + ¢l s

0 k e k2 T VD(2a - 2cl)
_-v-atcl 72)
VDA

Replacing the values of Eq. (72) into Eq. (44), we have the following
different type hyperbolic traveling wave solution of Eq. (2) (see Fig. 15)

Uln) = —2vDv=atci 2V/Dv—a+ciu 1
= k k ~U+AC; [cosh(an) — sinh(An)]
(73)
Set 3:
; 72\/1_)\/—a+cﬂa 72\/5\/—04-6'/1/4 b ak s
0T k e k2 oDy =atak
_ V—a+c 74)

VDA

Replacing the values of Eq. (74) into Eq. (44), we have the following
different type hyperbolic traveling wave solution of Eq. (2)

2vDv—=a+ck 2vDv—a+ciu
Uln) = Z + X

1
(f,u +AC[cosh(An) — sinh(An)] )
(75)

Conclusions

In this article, the three dependent expansion methods(G /G,1/G),
modified (G /G?)and (1/G') have been applied to the M- fractional
generalized reaction Duffing model and density dependent M-fractional
diffusion reaction equation. M-fractional truncated derivative is used. A
variety of new exact solutions in the form of hyperbolic and trigono-
metric functions have obtained. We have also depicted some of the ob-
tained solutions graphically and concluded that the obtained results are
accurate, efficient and versatile in mathematical physics to solve other
NLEEs. Also, it has observed that the results obtained in this chapter
have been presented for the first time.
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