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ABSTRACT Smart meters are continuously being deployed in several countries as a step in the direction of
modernizing the power grid. Smart meters allow for automatic electricity consumption reporting to energy
providers to facilitate billing and demand-based power generation. However, research has shown that such
high resolution reporting to suppliers can potentially be used to invade consumers’ privacy; by identifying
and predicting their behavior based on their consumption readings. This work presents a new protocol to
preserve users’ privacy while maintaining the benefits of smart grids. The proposed method utilizes different
techniques like randomization, masking, and differential privacy to build the scheme. The proposedmethod is
shown to bemore efficient compared to previouswork in terms of performance and communication overhead.
The implementation, simulation, and analysis are performed on datasets of real smart meters readings of
households and electric vehicle chargers.

INDEX TERMS Privacy, security, smart meters, electric vehicle charging.

I. INTRODUCTION
The smart grid is an ever growing field of engineering and
technology [1]. It attempts to transform traditional power
grids into smart and reactive grids. Such grids need to operate
several components and enable communication between
many entities like energy suppliers; companies for power
generation, transmission, and distribution; and down to the
consumers with metering devices.

Using such a large scale network raises security concerns
and urges researchers to investigate suitable solutions to
provide acceptable confidentiality, integrity, and availability.
In addition to typical security concerns, users’ privacy
is another major issue [2]. Power consumption data can
allow entities with access to this data to infer private
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information about the users. Examples of such information
include human location and activity patterns [3], detection of
household devices and occupants [4], and profiling of electric
vehicles (EVs) [5].
Privacy preserving smart grid systems have been sur-

veyed in the literature [6]. Several techniques and tools
have been used by researchers to address this issue. One
notable commonly used concept is known as ‘‘differential
privacy’’ that is a definition to formalize data privacy [7].
By adding controlled noise to the data, it ensures that the
presence or absence of an individual does not affect the
final result. ‘‘Local’’ differential privacy is also commonly
utilized where each node adds noise locally to avoid the
need for a trusted data curator. These techniques have
had a significant role in advancing privacy preservation
of power consumption data [8]. Other methods have
been used to preserve energy consumption privacy like
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homomorphic encryption [9], [10] and blockchain-based
systems [10], [11], [12].

This paper attempts to provide a complete protocol to
secure and preserve the privacy of users in smart grids without
relying on a central or trusted entity. The contribution of this
work can be summarized in the following points.

1) Introduce a novel comprehensive and efficient protocol
to secure and preserve users’ privacy in smart grids.

2) Incorporate hash chain keys to achieve local differential
privacy without relying on a trusted party.

3) Tolerate faulty or disconnected smart meters at the
supplier side without revealing individual meters’
measurements.

4) Simulate the implemented protocol with real datasets
and evaluate with respect to existing similar protocols.

This paper is organized as follows: Section II lists and
compares some related methods in the literature. Section III
introduces the grid model, adversary model, and the require-
ments of the problem. The proposed solution and preliminary
concepts are described in Section IV. The scheme is analyzed
and evaluated in Section V. Section VI concludes the paper
with final remarks and future research directions.

II. RELATED WORKS
Several researchers have tried to approach smart grid data
aggregation in a secure and privacy preserving manner. This
is due to the fact that aggregation is a basic required function
in smart grids and attacks have been developed to violate
users privacy from the data being aggregated [2].

Blockchains have been widely used in recent work in this
area [10], [11], [12]. A blockchain based grid aggregation
scheme is proposed in [11] to preserve the data privacy.
Blockchains are used to enable data immutability and
unforgeability. The consumption data is sent to one of the
nodes in a residential area to function as an aggregator. This
node acts as a mining node in the blockchain and is elected
by other nodes using peer-to-peer communication. Thus,
trust is indirectly placed on the mining node. A consortium
blockchain is used in another work with ring learning
with errors (RLWE) as a post-quantum encryption method
for metering data [12]. Meter measurements are encrypted
and signed before sending to the aggregator. Homomorphic
encryption and hash chains are used in combination with
blockchains in [10] to secure the grid data. The blockchain
in this work functions on the edge to reduce the overhead
on the smart meters. Different homomorphic cryptogra-
phy techniques were applied to ensure privacy of smart
meter readings in the smart grid. Paillier cryptosystem is
used in [9] to hide individuals’ usage data. This method
aggregates data, perform batch verification, and tolerate
faults. Such homomorphic operations are, however, relatively
expensive and might not be the best for low-cost micro
controllers.

The systemsmentioned previously rely on a trusted author-
ity to initialize the system. Additionally, using blockchain
brings a significant overhead to the system that can be

problematic in the context of smart grids with weak edge
devices.

Aggregation of meter data can be done over multiple
parties as presented in [13], after initialization of a trusted
authority, each smart meter has multiple ‘‘proxies’’ where
each proxy is another smart meter. Smart meters mask their
readings before sending and each of their proxies mask again
to eventually cancel the initial mask after aggregating. This
means that all proxies need to collude to reconstruct the
original readings, but this also requires strict coordination
between all nodes.

Utilizing differential privacy in the smart grid has been
also studied in the literature [14], [15], [16]. It was shown
that differential privacy is able to prevent load monitoring
in smart grids [15]. A distributed Laplacian or Gaussian
noise is masked with smart meter readings in [16]. This
work introduces some form of local differential privacy
where each meter adds Gamma noise. When the meters
are summed together, the total becomes Laplacian. In this
work, Keys are shared with the supplier and peer users.
‘‘dummy’’ keys are generated between groups of users to
force the supplier to aggregate the results and cancel out
those keys. This scheme is light in terms of cryptographic
operations, however, the communication between smart
meters is increased. A similar work follows the same noise
generation mechanism but makes the data more private by
shuffling themeasurements over a timewindow [17]. Gamma
noise is added to the readings before sending to an aggregator
that sums the measurements and send them to the supplier.
Thismethod requires less communication overhead, however,
shuffling the data to hide the consumption information
would effectively be equivalent to reducing the sampling
rate.

Another work used a more traditional approach of
randomized response in smart grids [18]. Knowing that users
report consumption data in known ranges, this work divides
this data into intervals. This idea is used to transform the
readings to discrete values. Using k-Randomized Response,
these discrete values are perturbed. The frequencies of
the resulting values are then calculated by the aggregator
to effectively get a differentially private aggregate of the
data.

Differential privacy has been also used along with the
concept of virtual batteries [19]. The virtual batteries act
as a method to preserve users’ privacy by charging and
discharging while providing accurate billing. This work
utilizes aggregators functioning in a fog architecture and
verifies the authenticity of messages.

EV chargers have been attacked in a similar manner using
metering data [5], [20]. Power readings are exploited in [20]
whereas current measurements are used in [5]; both from real
EV charging stations datasets. Discrete Wavelet Transform
(DWT) is used to extract the power load profiles in [20].
To prevent such attacks, authors propose additive charging
load patterns. Such technique should preserve EV users’
privacy.
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TABLE 1. Related works features comparison; F1: Privacy preservation,
F2: Differencially private, F3: Locally differencially private, F4: No trusted
entity, F5: Integrity verification, F6: Fault tolerance, F7: Private billing.

FIGURE 1. Grid network model.

Overall, the proposed LPPDA preserves smart meters’
data privacy with locally differential noise, does not rely
on a trusted authority, verifies the integrity, tolerate faulty
nodes, and allows billing in a privately. Up to the knowledge
of the authors, none of the existing literature offer those
features in one protocol. Table 1 lists the discussed features
in the proposed LPPDA and some related works found in the
literature.

III. GRID AND ADVERSARY MODEL
The components of the smart grid can be abstractly modeled
using three main categories as shown in Figure 1. A smart
meter (SM) is the meter installed on the customers’ side. It is
the sensing device in the system and is assumed to report real
measurements. A supplier (S) is the entity responsible for
supplying the main grid electricity and charges consumers.
An aggregator (A) collects consumption readings from a
cluster ofN SMs and submits the aggregates of those readings
to S.

A. ADVERSARY
LPPDA considers three types of adversaries as follows:

1) SUPPLIERS AND AGGREGATORS
are considered to be honest-but-curious. They follow the
protocols honestly but they are curious in accessing the users’
data. They may attempt to read personal data of users, infer
behavioral data, and violate their privacy. Such a situation is
practically applicable even though it allows a level of trust in

the honesty of the suppliers. This is due to the nature of the
system where the supplier is the entity in charge of providing
the service. To reduce the complexity of the system, collusion
between aggregators and suppliers is not considered in this
work. Such a threat can be avoided using different methods
like collaborative generation of keys between SMs [16] or
using different SMs as proxies [13]

2) SMART METERS
are also considered to be honest-but-curious. They follow the
protocol and send correct metering values being the physical
measuring devices in the system. However, smart meters can
be curious to violate the privacy of smart meters other than
themselves.

3) EXTERNAL ADVERSARIES
are malicious and untrusted. They may attempt to eavesdrop
the channel, inject false data, and modify readings.

B. REQUIREMENTS
Requirements concerning the privacy of customers in the
context of smart grids focus on power consumption data.
Suppliers typically use this data for billing and for analysis.
Analytics, prediction, and on-demand power generation
require high resolution readings from smart meters. This is
because suppliers need to adjust their power generation based
on the data gathered from consumers. Billing, on the other
hand, can be performed over longer periods of time. This
process has little impact on the user’s privacy as it cannot be
used to predict consumer behavior on daily basis.

In addition to preserving the privacy of consumers, security
should also be preserved between all involved parties. The
communication channel must always remain confidential.
There should be no entity capable of accessing the individual
power consumption readings from a meter, other than the
consumer himself. Integrity of the communicated data must
be preserved. Otherwise, attackers can modify the data sent
and cause harm to the connected devices. For example,
an attacker can increase the power readings causing the grid to
supply more power and possibly charge the customer higher
fees, or reduce the readings for the benefit of the customer to
be charged less.

IV. PROPOSED SOLUTION
The solution proposed in LPPDA relies on some preliminary
concepts. Below are descriptions of the basic concepts that
act as the building blocks of the proposed work.

A. HASH CHAINS
Chains of one-way functions were proposed initially by
Lamport in [21] as an authentication method for insecure
communication. The technique was later adopted in [22] to
build a broadcast authentication protocol. Hash functions
were used as the one-way functions in their approach. Similar
concepts are now adopted in blockchains to ensure consensus
of the distributed ledger data between nodes.
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FIGURE 2. Hash chain key generation and use.

The idea is illustrated in Figure 2. The process starts with
a secret seed key qm where m is the number of hashes to be
applied. The largerm is, the less initializations needed for the
chain. In each step j, the key qj is constructed as H (qj−1) and
is used to generate the next key qj+1 = H (qj) down to j = 0.
After m− 1 steps, the keys are used in reverse order starting
from q0 up to qm.

B. DIFFERENTIAL PRIVACY
Differential privacy is a definition to achieve privacy-
preserving analysis over a given computational task [7].
An algorithm is said to be (ϵ, δ)-differentially private if the
following condition holds.

Pr[M(DB1) ∈ S] ≤ eϵPr[M(DB2) ∈ S] + δ (1)

where M is randomized algorithm (mechanism) and S ⊆

Range(M). DB1 and DB2 are neighboring databases where
they differ by one record. That is, ||DB1 −DB2||1 ≤ 1 where
||.||1 is the l1 distance.

This kind of setup usually requires a ‘‘curator’’ who applies
the algorithm in a differentially private manner by adding
controlled noise to the algorithm’s output. Such an entity
needs to be fully trusted as it has access to the original data.
To avoid this situation, local differential privacy aims to add
the noise by each user’s (e.g. smart meter’s) data locally [7].
This hides the original data from all entities other than the
data owners themselves.

Differential privacy is needed in such scenarios to preserve
the privacy of a group of users. It provides the methods
to ensure privacy even when adversaries collude with other
internal entities [16]. This concept is even stronger with local
differential privacy as it functions as a superior model where
only individual users have access to their data [7].

C. NOISE GENERATION MECHANISM
The noise added in the perturbation part is generated
using a differentially private mechanism. In particular,
a Laplace-based mechanismM is used in this work.

M(X , f , ϵ) = f (X ) + L(λ) (2)

where mechanismM curates the value X over the function
f with privacy budget ϵ. The noise L(λ) is drawn from a
Laplace distribution with scale λ

λ = 1f /ϵ (3)

And 1f = max||f (DB1) − f (DB2)||1 where DB1 and
DB2 differ by one entry and ||.||1 is the l1 distance.

This mechanism provides (ϵ, 0)-differential privacy to the
system [7].
One problem with the basic solution above is that it

requires a trusted curator to add the noise to the aggregated
results. To reduce the attack surface, a local differentially
private protocol can be appliedwith little additional overhead.
This can be achieved by distributing the Laplace mechanism
over individual users using other distributions like Gamma
and Gauss [23].

An example is to use the Gamma distribution as proposed
in [16]:

L(λ) =

N∑
i=1

(01(N , λ) − 02(N , λ)) (4)

where the noise is picked individually by each SMi as two
independent variables 01(N , λ) and 02(N , λ) from the same
gamma distribution. Once the aggregator sums the noisy
readings of meters in the cluster, the aggregated result gains
a Laplacian noise. However, this technique can leak some
information from individual users even when the noise is
added locally. This is because the differential privacy is
achieved when all those individual readings are summed
together and not at the single reading level. For that reason,
adding masking keys can be used to force aggregating those
readings as shown below in the scheme construction.

D. SCHEME CONSTRUCTION
The solution proposed for LPPDA can be summarized in
Figure 3. Note that a secure communication channel is
assumed for the data transmitted between different entities
of the system. This includes traditional encryption to keep
the shared keys and data confidential and any form of public
key infrastructure (PKI) to manage public keys shared at the
initialization phase.

The terminology used in this paper is listed in table 2 and
the steps of the scheme are given below.

1) INITIALIZATION
• The system is initialized at the beginning and is
reinitialized after m time slots. m is publicly chosen by
S.

• S shares a random large secret, qi0, with SMi. This key
is used to hide readings from aggregators and external
adversary but not from supplier.

• A shares a random large secret, r im, with SMi. This key is
used to ensure the integrity and authenticity of readings
and to hide the readings from the supplier.

• S uses qi0 to seed a pseudo random number generator
RNG to generate a chain of keys for each time slot t up
to qim.

• A generates a hash chain starting with r im down to r i0 for
each time slot t . The chain is then used in reverse. Each r it
at timestamp t is used to seed a RNG to generate r it(mask)
and r it(verify).
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FIGURE 3. Overall system timing diagram.

TABLE 2. Terminology.

• SMi uses qi0 and r
i
m to generate both chains identical to

what S and A have.

2) ENCRYPTION AND PERTURBING AT SMi
• SMi perturbs and encrypts each reading X it as

X ′i
t = X it + noise (5)

X ′′i
t = X ′i

t + qit + r it(mask) (6)

where the noise generation is described in
subsection IV-D6.

• For each reading X it , a message Y it is formed by
concatenating the reading with the signature of the

previous reading

Y it =< H (r it(verify)||Y
i
t−1),X

′′i
t > (7)

3) VERIFICATION AND AGGREGATION AT A
A verifies that the received message Y it is from the authorized
meter SMi using the hash chain and the previous message
Y it−1.

• A receives and expands Y it from each SMi for i ∈ N
• Knowing that A has r it and Y

i
t−1, it generates r

i
t(verify) and

verifies the newly sent H (r it(verify)||Y
i
t−1) from each SMi

• The values are then aggregated, unmasked of r it(mask),
and sent to S

X ′′agg
t =

N∑
i=0

X ′′i
t − (

N∑
i=0

r it(mask)) (8)

4) DECRYPTION AT S
• S decrypts X ′′agg

t by removing the sum of the q keys to
get the noisy aggregate

X ′agg
t = X ′′agg

t − (
N∑
i=0

qit ) (9)

5) BILLING AT SMi, A, AND S
• Billing occurs after each billing period bp.
• A keeps track of each user’s reported X ′′i

t and calculates
X ′′i
bp

X ′′i
bp =

bp∑
t=0

X ′′i
t − (

bp∑
t=0

r it(mask)) (10)

• X ′′i
bp is sent to S and S calculates X ′i

bp

X ′i
bp = X ′′i

bp − (
bp∑
t=0

qit ) (11)

• SMi reports what should be the true value of X ibp to S

X ibp =

bp∑
t=0

X it (12)

• S validates that |X ′i
bp − X ibp| ≈ E(|(

∑N
i=1(01(N , λ) −

02(N , λ))) − L(λ)|)/bp ≈ 0
• If the condition above does not hold, S rejects X ibp and
flags an issue on SMi

• Otherwise, S applies a cost function over the given
power consumption X ibp

Bibp = cost(X ibp) (13)

• S sends the bill Bibp back to SMi.
The process of calculating the bill at SMi and at A is

useful to avoid situations where users report different values
at the time of billing than the values sent periodically at
each time slot. This billing verification approach only focuses
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on matching the submitted measurements, but does not
attempt to find anomalies of energy theft situations. For that,
machine learning-based methods can be used as found in the
literature [24].

To enable time of use billing, SMi and A can aggregate
multiple values; one corresponding to each rate category and
send these multiple aggregated values for billing instead of
sending one lump sum value.

6) DIFFERENTIALLY PRIVATE NOISE
Noise is drawn from a Gamma distribution as described
earlier. Each SMi adds the noise to its readings in
subsection IV-D2 as the difference of two random variables.
Over the whole cluster, this adds up to become a Laplacian
random.

noise = 01(N , λ) − 01(N , λ) (14)

where λ = 1f /ϵ and 1f is calibrated to the expected values
of the power readings.

E. COMMUNICATION FAULT TOLERANCE
Verification and aggregation are performed by the aggregator
A. The supplier S expects the aggregated result from A to be
masked by N meters. This can be problematic if at least one
key is missing as S subtracts back all the keys it expects the
meters have added. Such case can happen if verification fails
or the node is down or not responding. If such an occasion
occur, A creates a set of IDs β ⊆ N of malfunctioning meters,
adds

∑
j∈β q

j
t(mask) to X

′′agg
t , and sends β along with the new

X ′′agg
t to S. Decryption at S is then performed as X ′agg

t =

(
∑N

i=0 X
′′i
t )− (

∑
i∈N q

i
t )+ (

∑
j∈β q

j
t ). Additionally, knowing

that Xaggt is differentially private means that the impact of
loosing some readings will not cause any significant effect
on the aggregated values. This is due to the statistical nature
of the aggregation operation where the output describes the
community and not any particular individual [7].

V. ANALYSIS AND EVALUATION
The proposed scheme needs to be lightweight and efficient
to be deployed on low-cost hardware at a large scale while
still protecting the privacy of the consumers. Improving the
security and privacy of smart grid systems should have as
little impact on its performance as possible. The communi-
cation overhead must also be as minimal as possible. This is
important to avoid overwhelming the network while handling
a large number of nodes.

A. EXPERIMENTAL SETUP
To test the practicality of the proposed solution, the system
was implemented and simulated. The implementation was
done in Python and run on a PC with an Intel Core
i7 and 16GB of RAM. In this implementation, smart
meters, aggregators, and suppliers function as separate nodes
communicating over a TCP connection. Smart meters have
an abstract interface to collect data. It was built this way to

allow future expansions to different kinds of meters. LPPDA
should work for any electricity consumption data. In our
experiments, two real meters datasets are used. One is for
home smart meters in London1 and the other is for EV
chargers from Caltech University, California2 [25]. Each
smart meter node is assigned to a randomly selected values
of one meter from the used datasets. Nodes are then run
in parallel as separate processes communicating with the
aggregator process and the supplier process.

The proposed LPPDA protocol is evaluated against two
other related works; DPPDA [11] and NHP3 [9]. DPPDA
relies on blockchains where each meter submit the readings
to one chosen node to be the ‘‘mining node’’ that publish
the readings to the blockchain where Paillier cryptosystem to
encrypt the data sent to the mining node. NHP3, on the other
hand, uses another Paillier-based homomorphic encryption to
ensure that no adversary can access private metering values.
Performance and communication overheads are discussed in
the following subsections.

B. SECURITY ANALYSIS
The security of the proposed protocol is analyzed to meet the
assumption of the adversary model in Section III. A curious
adversary would be interested to find X it for a particular meter
SMi. If an aggregator A attempts to recover X it , it monitors X ′′i

t
sent by SMi and subtracts r it(verify) to be left withX

i
t+noise+q

i
t

which is indistinguishable from random noise. An aggregator
adversary cannot subtract qit as this key is only known to
SMi and supplier S. Recovering X it is also hard for a curious
supplier S. First, S needs to eavesdrop the communication
channel between SMi and A as S only receives X ′′agg

t and
have no direct access to X ′′i

t . Assuming S manages to gain
such access, which is hard under the scheme assumptions,
it would still only be able to calculate X it + noise + r it(verify)
after subtracting qit . An external adversaries or a curious smart
meter SMj with access to the communication channel between
target meter SMi and A would also fail to recover any useful
data as neither of the keys qit nor r

i
t are known. If such an

adversary attempt to modify Y it before it reaches A, send their
own Y it , or replay previously sent value of Y it , then A would
recognize that the received Y it is corrupted as the calculated
H (r it(verify)||Y

i
t−1) would fail to match with the one in Y it . In an

extreme case, S would collude with A or with N − 1 smart
meters to recover X it of a target SMi. In this case, S may
attempt to calculate X ′agg

t − (
∑

j∈N\i X
j
t − qjt(mask)), however,

this still would not equal to X it thanks to the differentially
private perturbation.

C. DIFFERENTIAL PRIVACY
Applying a differentially private noise to the power consump-
tion readings needs to be calibrated to match the given data.
This is done by choosing values for ϵ, the privacy budget,

1https://www.kaggle.com/jeanmidev/smart-meters-in-london
2https://ev.caltech.edu/dataset
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FIGURE 4. Clean and noisy readings of an individual meter 4a and 4d, clean and noisy readings of aggregate of N=70 4b and N=100 4e meters, and MSE
for different ϵ values 4c and 4f.

to change the scale of the noise distribution as described in
Equation 3.

The utility can be estimated by calculating the error in the
noisy readings. For a sample period of time tp, the mean
square error (MSE) is used in this work, where

MSE =
1
tp

tp∑
t=0

(X ′agg
t − Xaggt )2 (15)

Figure 4 shows the MSE for different values of ϵ

along with measurements examples from the two datasets.
Figures 4c and 4f show the MSE with respect to different
values of ϵ. The noisy and clean power readings of an
individual user is illustrated in Figure 4a for a period of 4 days
and in Figure 4d for 1 hour. Figure 4b shows an aggregate
of readings over a cluster of 70 meters and Figure 4e for a
cluster of 100 EV chargers’ meters. ϵ is chosen to be 3 in both
test cases. This values is chosen to provide a good balance
between the privacy budget and the added error as shown in
Figures 4c and 4f. It can be seen that the noise has much less
effect on the aggregated data than on an individual, which can
be considered good for individuals. Masking is then used as
described in Subsection IV-D to completely hide the readings
from the aggregator.

D. PERFORMANCE OVERHEAD
The performance of the system depends on several variables
and network conditions. To measure the overhead effect

of our protocol, the time measurements were done over
the operations described in Subsection IV-D. Formulas
for performance overhead of this protocol are given and
compared to two techniques in Table 3.

The performance of LPPDA is shown in Figure 5. Figure 5a
shows the time overhead with respect to the size of the
cluster N . The time is measured starting from getting the
readings from N meters and ending with the final decrypted
aggregate reading at the supplier S. Processing a single
reading from a single meter has an O(1) complexity and
takes about 0.08 milliseconds. This is because all operations
are done locally and independently regardless of the size
of the network. Aggregating all those readings, however,
requires summing all readings from meters which results to
anO(N ) time complexity. However, even with such overhead,
the plot in Figure 5a shows that a 1000 users cluster have
an overhead of around 3 milliseconds. Another performance
concern is the generation of hash chains and random values
after each m time slots. Measurements show that generating
long chains for 10,000 time slots can be done within around
10 milliseconds. Also, this process does not happen very
frequently. This means that it is suitable to run on different
entities of the system.

E. COMMUNICATION OVERHEAD
Additional data traffic is typically needed in such com-
munication systems. In LPPDA, all operations to encrypt
and perturb the consumption readings do not change
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FIGURE 5. Time performance overhead in 5a and Communication overhead in 5b.

TABLE 3. Performance overhead compared to previous work.

TABLE 4. Communication overhead, in KB, compared to previous work.

TABLE 5. Measured operations times for performance evaluation.

the size of data itself. The only overhead is the hash
H (r it(verify)||Y

i
t−1) sent from smart meters to the aggregator to

be used for verification for Y it . The value of this overhead
depend on the hashing algorithm used to implement the
protocol. Secure Hashing Algorithm (SHA256) is used in
the system implemented in this work. This adds a 256 bits
long hash with each reading. As shown in Figure 5b,
the communication overhead is reasonably small. Sending
readings from a cluster of size 1000 adds about 32KB of
traffic.

F. OVERHEAD COMPARED TO RELATED WORK
Protocols implemented in DPPDA and NHP3 function in a
distinct way to transmit smart meter readings to the supplier.
Having a blockchain as in DPPDA would require a more
powerful micro controller to be installed on each metering
device. This is especially important for a mining node as
it is responsible for mining the data and publishing it to
the blockchain. As for NHP3, the nature of operations

in the proposed cryptosystem can be computationally
expensive.

Table 3 describes the performance overhead in terms of
consumed time for the different parts of the grid. Table 4
shows the communication overhead from smart meters to
aggregators and from the aggregators to the suppliers. Note
that DPPDA does not have a normal aggregator. Instead, the
protocol uses a ‘‘mining node’’ to publish the data to the
blockchain. For this reason, the mining node is treated here
as an aggregator.

We use the general term Top to refer to the time required
for operation op. The terminology used to formalize those
equations is further described in Table 5, along with the
time required for each operation. Those measurements were
averaged over 1000 rounds for consistency. It is advised to
refer to the compared protocols in [9] and [11] for more
details related to the measured operations.

The performance overhead is presented in Figure 5a.
Logarithmic scaling is used here as plot figures and growth
rates vary widely. The plot shows that NHP3 has the
highest performance overhead. It takes about 700 ms to
process 1000 meters. DPPDA follows NHP3 with significant
performance gain processing the same number of meters
within around 67.8 ms. This is because DPPDA increases
complexity based on N only as a multiple of a few Paillier
multiplication operation, whereas NHP3 requires a multiple
of Paillier exponentiation as well. The figure shows that our
work has the least performance overhead. This matches the
equations listed in Table 3 where our protocol scales in time
with respect to basic hashing (TSHA256) and addition (TAdd )
operations.

The communication overhead is plotted in a similar fashion
in Figure 5b. In terms of communication, DPPDA has less
overhead than NHP3 as NHP3 needs to transmit more
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parameters and larger keys. Our work has the least overhead
in communications as well because the only added overhead
is the hashes used for verification.

VI. CONCLUSION
LPPDA presents a secure and privacy preserving protocol
for smart meters. The protocol achieves differential privacy
by adding distributed Laplacian noise locally on each smart
meter. Random keys are used to hide readings from the
aggregator and external adversaries while the aggregator
hides individuals’ data from the supplier. This combination
allows efficient local differential privacy while keeping the
protocol computationally minimal. Additionally, hash chains
are used to verify the integrity of readings and authenticate
each reading. This eliminates the need for a trusted third
party to manage public keys while the protocol is running.
Such third party is only needed once at the initialization
phase, when random key seeds are distributed. All of these
operations can be performed with minimal computational
and communication overheads. Experimental results on two
real-world datasets show that the performance of LPPDA
compares favorable with existing state-of-the-art privacy
preserving protocols. The proposed method can be applied
to other similar applications such as microgrid monitoring,
energy trading, and others for the sake of maintaining
privacy.
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