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A B S T R A C T   

The implementation of Open Radio Access Network (O-RAN) architecture in Internet of Things (IoT) systems has 
garnered significant attention as a means to fulfill the stringent requirements of ultra-low latency and ultra-low 
energy consumption in future IoT systems. Although the traditional edge network architecture has been 
extensively employed, it continues to pose challenges in terms of synchronizing the integration of global and 
local information for the design of an optimal offloading strategy in edge servers, thus hindering the reduction of 
latency and energy consumption in IoT devices. In an effort to decrease the latency and energy consumption of 
IoT devices (IoTDs), we propose a computation offloading problem and employs the Successive Convex 
Approximation (SCA) algorithm to convert the non-convex problem into a convex problem. The proposed 
strategy aims to minimize the energy consumption of IoTDs while ensuring Quality of Service (QoS) re
quirements. The results of the experiment demonstrate that the average energy consumption of terminal devices 
can be reduced by 20%. Additionally, this strategy is found to be more effective in reducing IoTDs’ latency and 
energy consumption as compared to the traditional edge network architecture.   

1. Introduction 

Next-generation Internet of Things (IoT) communication networks 
require real-time connections, ultra-low latency, and massive capacity, 
and their performance requirements mainly include enhanced mobile 
broadband (eMBB), ultra-reliable and low-latency communications 
(uRLLC) and massive machine-type communications (mMTC) (Jones 
et al., 2020). However, existing wireless architectures lack sufficient 
flexibility and intelligence to handle these demands effectively. There
fore, it is imminent to transform the architecture to support service 
heterogeneity, coordination of multi-connection technologies, and 
on-demand service deployment (Singh et al., 2020). Open Radio Access 
Network (O-RAN) is an emerging technology that enables such transi
tions using concepts of virtualization, flexibility, and intelligence. The 
Operators amalgamated the Cloud Radio Access Network (C-RAN) alli
ance to form the Open Radio Access Network (O-RAN) alliance, which 
has the objective of virtualization and intelligence through the incor
poration of infrastructure and the integration of embedded Intelligence, 
as well as providing terminal devices with more expeditious services and 

improved functionality (O-ran, 2018). 
Due to the limited energy, computing, and storage resources of IoT 

devices in the IoT system, it is difficult for IoT devices (IoTDs) to handle 
latency-sensitive and computing-intensive applications (eg, smart 
transportation and smart cities). Therefore, offloading the computing 
tasks from IoTDs to the edge of the wireless access network, can meet the 
needs for fast interactive response and provide flexible computing ser
vices. It is considered to be an effective solution to make up for the 
insufficiency of terminal devices’ capabilities (Guo et al., 2018). Re
searchers often design multiple computation offloading strategies based 
on legacy RAN architectures (eg, C-RAN, Virtual RAN (V-RAN)) to 
ensure terminal tasks’ Quality of Service (QoS) and reduce terminal 
devices’ energy consumption (Muqing and Min, 2019), (Moreira et al., 
2021a), (Liang et al., 2021a). However, along with the increasing 
complexity of the next-generation wireless network, and the traditional 
RANs’ lack of sufficient flexibility and intelligence, the legacy compu
tation offloading strategies are not enough to meet the stringent service 
requirements in the future IoT systems (Niknam et al., 2020). 

In comparison to C-RAN and V-RAN, O-RAN emphasizes openness 
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and intelligence as its main aspects (Gavrilovska et al., 2020). First, it 
realizes the hierarchical management of multi-layer logic functions in 
RAN. All the logic functions are deployed as virtual functions, which 
could communicate openly with each other to provide services. Second, 
the decomposition of near-real-time and non-real-time RICs can support 
large-scale connectivity for scenarios with high throughput, large 
coverage, and low power consumption requirements. Finally, the 
involvement of Distributed Units (DUs) and Central Units (CUs) can 
provide low-latency support for applications, with high-speed data 
transmission and large-scale computing requirements. 

Therefore, more and more scholars are interested in applying O-RAN 
to IoT systems (Iturria-Rivera et al., 2022), (Kazemifard and 
Shah-Mansouri, 2021), (Wang et al., 2022), which aims to better reduce 
some limitations (eg, resource storage, computing performance, and 
energy efficiency). Specifically, when computational offloading needs to 
be performed in IoT devices, it means that the execution of certain tasks 
can be shifted from IoTDs to the DUs or cloud. The participation and 
collaboration of DUs and CUs can make precise decisions and optimize 
allocation. The traditional edge network architecture presents a diffi
culty in combining global and local information in the edge servers 
synchronously when performing computational offloading, which leads 
to legacy offloading strategies being sub-optimal in terms of reducing 
latency and energy consumption when considering the spatiotemporal 
in-homogeneity of task arrivals. The deployment of real-time and 
non-real-time RAN Intelligent Controllers (RICs) enables the collection 
of both global and local information, respectively, and facilitates 
communication between them, thus allowing for more precise decisions 
to be made, resulting in improved congestion reduction and resource 
conservation. Leveraging these advantages, we seek to enhance the 
energy efficiency of IoTDs by offloading computation in the Open 
RAN-based Internet of Things. 

In this paper, we endeavor to integrate the O-RAN architecture with 
the IoT system to render it more intelligent and flexible, wherein edge 
servers and cloud are established by O-RAN’s DUs and O-Cloud, 
respectively. Non-real-time and near-real-time RICs are deployed in 
Service Management and Orchestration (SMO) and CU for the joint 
collection of global and local information, respectively. Meanwhile, in 
the deployed ORAN based IoT system, a joint optimization computation 
offloading strategy is proposed to minimize the energy consumption of 
the IoTDs while meeting the delay requirements of the terminal tasks. 
The primary contributions of this paper can be divided into the 
following three points.  

1) We consider that local IoTDs, DUs at the edge, and remote O-Cloud 
can all process computing tasks of IoTDs, and non-real-time and 
near-real-time RICs deployed in the SMO and CU, respectively, can 
collect global and local information and communicate with each 
other through standardized specific interfaces.  

2) Based on the deployed ORAN-IoT system, a computation offloading 
model considering multi-objective costs (i.e. latency and energy 
consumption) is designed, which are important to trade-off whether 
the local task needs to be offloaded, done by DUs or O-cloud.  

3) In conjunction with the designed computation offloading model, a 
joint non-convex optimization problem is proposed to minimize the 
energy consumption of IoTDs by jointly optimizing local processing 
speed, offloading points, local offloading ratio, and transmission 
power. 

The remainder of the paper is organized as follows: Section 2 in
troduces preliminary knowledge and related work. Section 3 outlines 
the main system model. Section 4 defines and analyzes the designed 
optimization problem. Section 5 presents the simulation results. Section 
6 provides a conclusion for the paper. 

2. Preliminary knowledge and related work 

2.1. Preliminary 

With the rapid development of the software-defined networking 
(SDN), the network function virtualization (NFV), the decomposition of 
dynamic functions, the large-capacity data centers, and cloud 
computing (Pradhan and Priyanka, 2021), the traditional network ar
chitectures have been unable to support various functions and service 
requirements due to single function and lack of sufficient flexibility. 
Therefore, the O-RAN comes into being based on the original C-RAN and 
V-RAN (Cama-Pinto et al., 2021). The C-RAN has been regarded as one 
of the potential technologies to meet the underlying wireless access 
requirements in 5 G, which mainly uses the baseband units (BBU) pool 
for sharing network resources to perform flexible scheduling for effi
ciency improvements (Mondal and Ruffini, 2022). Owing to the C-RAN 
supports to software definition and function virtualization, the V-RAN 
has been gradually developed (Frauendorf and de Souza, É, 2022). The 
V-RAN increases the scalability and flexibility of the wireless systems on 
the basis of the C-RAN, and overcomes some drawbacks related to 
wireless interference and functions. Many great achievements have been 
made on the C-RAN systems and the V-RAN systems. However, facing 
the increasing demands and complexities of the wireless networks, the 
research works on the C-RAN and V-RAN network architectures have 
gradually shown some limitations. 

The features of openness and intelligence have become the theme of 
the next-generation wireless access networks. And they are also the 
necessary conditions for the deployment and operation of the next- 
generation wireless networks (Lagén et al., 2021). Therefore, the 
O-RANs emerge due to their openness and the intelligence features. 
Firstly, the O-RAN virtualizes the base stations (BSs) function into 
network functions, which are further divided into multiple network 
nodes. The multiple network nodes are the CUs, the DUs, and the RUs, 
which help to increase the efficiency by executing different network 
processes. The higher layer of the CUs handles the operations with larger 
time granularities to implement functions, while the lower layer of the 
DUs handles time-critical operations, and the RUs manage radio fre
quency (RF) components and the physical (PHY) layer components 
(Ranjbar et al., 2022). Secondly, the O-RAN technology separates soft
ware, hardware and vendors, who define the open interfaces of the CUs, 
the DUs, and the RUs by the functions of hardware and software, to 
improve reliability and availability by modularization and 
software-based capacity management. Then, the O-RANs can be 
designed concisely and quickly by extending software, which can reduce 
the construction cost of the RANs and improve the flexibility of the 
RANs. Next, the O-RANs can also embed intelligence and extended SDNs 
to optimize the performance and reduce operational complexity. Finally, 
the O-RANs divide the CUs into a control plane and a user plane, which 
can achieve more efficient control and management. The O-RANs 
introduce RICs including the non-real-time and near-real-time RICs, 
which allow operators to customize the implementation and deployment 
of the control plane functions to make better use of resources according 
to the requirements of operators (Garcia-Saavedra and Costa-Perez, 
2021). Until 2021, Japan’s Rakuten has deployed a distributed data 
center for the O-RANs with the units and center functions (Lin, 2021). In 
addition, some US operators such as Sprint, T-Mobile, Etisalat etc, have 
also tested and worked on the O-RAN architecture. In the future, more 
and more suppliers, system integrators and operators will focus on the 
development of the O-RANs. 

2.2. Related work of computation offloading 

Recently, computation offloading in different network architectures 
has received more and more attention, and lots of research work on 
computation offloading with different network architectures have been 
carried out (Guglielmi et al., 2018), (Jian et al., 2019), (Moreira et al., 
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2021b), etc. In these studies, some researches focused on designing 
computing offloading strategy in C-RAN, V-RAN, and MEC, etc, in which 
effective computation offloading problems are solved together with 
offloading ratio, computation resource allocation, or radio resource 
allocation. The authors of (Guglielmi et al., 2018) propose a 
game-theoretic framework for distributed decision-making when mobile 
users share the same network resources and no prior information in the 
wireless link to manage the three-layered computation offloading 
including mobile devices, edge, and cloud. The authors of (Jian et al., 
2019) proposed a joint optimization scheme for offloading and resource 
allocation in C-RAN based on spectrum efficiency to maximize resource 
profits. The authors of (Moreira et al., 2021b) proposed a hierarchical 
software-defined task allocation framework based on V-RAN to effec
tively determine task offloading strategies while minimizing the trans
mission time of parallel task execution scheduling. The authors of (Liang 
et al., 2021b) studied multi-user partial offloading and computing 
resource management problems in the MEC, who minimized the energy 
consumption by jointly optimizing transmission delay, local and edge 
computing capacity allocation, bandwidth allocation and data parti
tioning. All of the above works are designed to devise different strategies 
or schemes in the traditional closed or rigid Mobile Edge Computing 
(MEC) network architecture, however, due to the architectural limita
tions, this may lead to energy consumption being a bottleneck. 

Therefore, the introduction of O-RAN into IoT systems has become a 
feasible solution for minimizing energy consumption (Pamuklu et al., 
2021). In (Pamuklu et al., 2021), the authors have designed a strategy to 
jointly optimize resource allocation and DUs selection in the O-RAN to 
reduce network energy consumption and guarantee lower user latency. 
The works focuses on resource allocation between DUs and CUs, while 
there is still a lack of relevant research on the cooperation between 
distributed servers and the cloud in the O-RAN to minimize the energy 
consumption of IoTDs by making full use of O-RAN characteristics. 

3. System model 

The designed O-RAN based IoT (ORAN-IoT) system, as depicted in 
Fig. 1(a), leverages the inherent characteristics of the O-RAN architec
ture. The IoTDs can transmit task requests to the convergence node RUs, 
which then forward the requests to the edge servers maintained by the 
DUs. The majority of physical layer operations are performed by RUs, 
while high-level protocols are managed by the CUs. The CUs serve as the 
central point of control for the communication and operation between 
RUs and DUs, which are connected through high-capacity front-haul 
links. The CUs have separate data and control planes that are 

interconnected with the DUs through the F1-U and F1-C interfaces, 
respectively, in order to optimize hierarchical control and management. 
The SMO and CU deploy non-real-time and near-real-time RICs, 
respectively, which collect global and local information through stan
dardized specific interfaces O1 and O2 and communicate through 
standardized specific interfaces A1 to manage resource allocation and 
make decisions. The collected global information mainly comprises in
formation regarding the task count, service quality, and DU server 
availability, which is transmitted to the RICs in the CU for joint analysis 
and decision-making. 

The process of tasks computation offloading is shown in Fig. 1(b). It 
is assumed that each IoTD has computationally intensive tasks to be 
completed such as autonomous driving, and collaborative computing. 
Different tasks have different request quantities, service quality, data 
size, and computing power requirements. For example, an autonomous 
driving task has high requirements for service quality and a large 
number of requests. And a cooperative computing task requires high 
computing resources because of large amounts of tasks arriving. 
Although computation offloading can reduce energy consumption and 
meet the delay requirements of IoTDs, considering the heterogeneity of 
tasks and the limited resources of the DUs, the design of an optimal 
computation offloading strategy is a challenging issue. In order to 
minimize the energy consumption of the IoTDs in the ORAN-IOT system 
to meet the delay requirement of each task, first of all, the IoTDs request 
the computation tasks to be offloaded to the O-RAN. Secondly, the non- 
real-time RICs collect the number of IoTDs, the offloading strategy in
formation, the management information of the CUs, the distance and 
abilities of the O-cloud, and the available computing resources of the 
DUs from the RAN and the application servers, which make use of the 
collecting information to analysis data, manage the non-real-time 
intelligent wireless resource and optimize the strategy that be 
deployed on the non-real-time RICs. Then, the non-real-time RICs 
download the results of analysis, management, and optimization. The 
near-real-time RICs mainly collect and analyze the real-time variety of 
the tasks arriving, the requested quantity, the tasks’ service quality re
quirements, and the RAN’s resources. Later, the near real-time RICs 
combine the global information and the optimization strategy provided 
by the non-real-time RICs to real-time monitor the IoTDs’ dynamic 
changes and make adjustments and decisions by the proposed energy- 
conserved computation offloading strategy (ECO), which consists of 
the offloading ratio, the local processing speed and the transmission 
power of IoTDs, and the decision on the tasks offloaded to the DUs or to 
the O-cloud to reduce the energy consumption. Finally, only the 
execution results will be sent back to the IoTDs over the downlink 

Fig. 1. (a) O-RAN based IoT system model. (b) Computation offloading based ORAN-IoT system.  

L. Wang et al.                                                                                                                                                                                                                                   



Energy Reports 9 (2023) 379–388

382

channel for reducing congestion. 

3.1. Channel model 

In this ORAN-IoT system design, it is postulated that there exist 
m(m ∈ {1,2, ...,M}) IoT terminal devices. These devices are capable of 
sending task requests to RUs through wireless transmission. In light of 
this, the issue of inter-RU interference must be taken into account, as we 
are contemplating the multiplexing of the full frequency spectrum, 
which is overlaid by different RUs. Conversely, the issue of intra-RU 
interference can be disregarded, as the spectrum is orthogonally allo
cated to IoT devices when accessing the same RU. It is further assumed 
that all downlink connections between RUs and IoT devices possess 
complete Channel State Information (CSI). As a result, the Signal to 
Interference to Noise Ratio (SINR) transmitted by RU r to IoT device m 
can be evaluated. 

SINRm,r =
pmgm,r

σ2 +
∑R

j=1,j∕=r

pmgm,j

, #
(1)  

where the channel gain of the transmission from RU r to IoT device m is 
represented by gm,r, and the transmitting power of IoT device m is 
denoted by pm. The presence of Additive Gaussian White Noise (AGWN) 
is characterized by the power represented by σ2, which follows a 
Gaussian distribution. Consequently, the propagation rate of RU r to IoT 
device m can be described by the Shannon formula as 

Vm,r = Blog2

⎛

⎜
⎜
⎜
⎝

1 +
pmgm,r

σ2 +
∑R

j=1,j∕=r

pmgm,j

⎞

⎟
⎟
⎟
⎠
, # (2)  

where the total bandwidth is denoted by B. 

3.2. Delay model 

In the present system, the predominant sources of latency are 
comprised of queuing, processing, and transmission delays. The queuing 
latency at the edge DUs is represented by QD

m, while the queuing latency 
at the remote O-cloud is not considered as it boasts ample computing 
resources and therefore does not necessitate queuing. The transmission 
latency, which primarily involves the delay incurred during the trans
mission of terminal tasks to either the O-cloud or DUs, is denoted by tC

m,off 

and tD
m,off , respectively. The processing latency, resulting from the pro

cessing of tasks in the DUs, O-cloud, and local IoT device, is expressed as 
tD
m,exe, tOm,exe, and tLm,exe, respectively. Subsequently, a modeling approach 

for these three types of delays will be proposed. 

3.2.1. The queuing latency 
As previously stated, the consideration of queuing delays is limited to 

the distribution units DUs. To model the queuing latency for each DU, 
we adopt the M/M queueing model with one DU server. The arrival of 
terminal tasks is assumed to follow a Poisson distribution, represented 
by the first ‘M′, while the rate of service is assumed to be exponentially 
negatively distributed, represented by the second ‘M′. Thus, the queuing 
delay at the DU can be expressed as follows 

QD
m =

1
Yd − Xd

.# (3) 

The average rate of task arrival at the DU is represented by Yd, while 
the average rate of task servicing at the DU is denoted by Xd. 

3.2.2. The processing latency 
The computing capabilities assigned to tasks from the O-cloud, DUs, 

and local IoT devices are represented by fC
m, fD

m, and fL
m, respectively. 

Consequently, the processing latency for each of these entities can be 
expressed as follows: 

tC
m,exe =

(1 − λm)Dm

f C
m

, # (4)  

tD
m,exe =

(1 − λm)Dm

f D
m

, # (5)  

tL
m,exe =

(1 − λm)Dm

f L
m

, # (6)  

3.2.3. The transmitting latency 
It is assumed that the task data generated by the mth local IoT device, 

denoted by Dm, is of a certain size, and the proportion of processing that 
takes place in the local IoT device is represented by λm, with the 
constraint 0 < λm < 1. As a result, the task data that is offloaded to the 
O-cloud or DUs is calculated as (1 − λm)Dm. Furthermore, it is assumed 
that the transmission capacity of the high-capacity front-haul link be
tween the RU r and DU d is represented by Vr,d. Based on these as
sumptions, the varying transmission delays can be mathematically 
expressed as 

tC
m,off =

(1 − λm)Dm

Vm,r
+ dm, # (7)  

tD
m,off =

(1 − λm)Dm

Vm,r
+
(1 − λm)Dm

Vr,d
, # (8)  

where the transmitting latency of wired transmission from DUs to the O- 
cloud is denoted by dm. 

3.3. Energy model 

In this system, the primary energy consumption, represented by em, 
encompasses the energy consumption incurred during both processing 
and transmitting. The processing energy consumption is restricted to the 
local IoT devices and can be represented by eL

m. The transmission energy 
consumption, on the other hand, encompasses the tasks transmitted to 
the DUs and O-cloud, which are denoted by eD

m and eC
m, respectively. 

Thus, the various energy consumption values, eL
m, eD

m, and eC
m, can be 

calculated as follows 

eD
m = pmtD

m,off + rm, # (9)  

eC
m = pmtC

m,off + rm, # (10)  

eL
m = ελmDmf L

m
2
, # (11)  

where the energy consumption consumed by the channel after the task 
transmitted is expressed as rm, and the hardware factor is denoted by ε. 

3.4. Offloading model 

In this section, two cost indicators are proposed to balance the trade- 
off between delay and energy consumption when offloading the tasks of 
IoT devices to the O-cloud and DUs. The cost indicators correspond to 
the energy consumption and delay costs associated with offloading to 
the O-cloud and DUs, respectively. For IoT device m, the offloading se
lection is formulated as a binary variable, denoted by am, such that if the 
cost of offloading to the DUs is lower, am is equal to 0; otherwise, if the 
cost of offloading to the O-cloud is lower, am is equal to 1. The total delay 
experienced by IoT device m when offloaded to the DUs and O-cloud can 
be obtained as tD

m and tC
m, respectively. 
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tD
m = tD

m,off + tD
m,exe + QD

m, # (12)  

tC
m = tC

m,off + tC
m,exe, # (13) 

Consequently, the cost associated with the delay and energy con
sumption of offloading to the O-cloud and DU, represented by LC

m and LD
m, 

respectively, can be determined through the following expressions. 

LD
m = γe

meD
m + γt

mtD
m, # (14)  

LC
m = γe

meC
m + γt

mtC
m, # (15)  

where, γe
m，γt

m ∈ [0, 1], which means that the weight of energy con
sumption and delay can be adjusted according to the task and device 
requirements. 

Based on the formulation described above, when the cost corre
sponding to the delay and energy consumption of offloading to the O- 
cloud and DU are equal, i.e., LC

m = LD
m, a threshold dthr associated with dm 

can be computed using a simplified expression as follows 

dthr =
Dm

(
f C

m − f D
m

)

(

1 +
pmγe

m

γt
m

)

f C
mf D

m

.# (16)  

When am = 1, which indicates dm < dthr, and am = 0, which indicates 
dm > dthr. 

4. Efficient energy consumption for computation offloading 

In this section, the various models described above are integrated to 
formulate a joint non-convex optimization problem aimed at minimizing 
the energy consumption of IoT devices. The optimization problem 
considers the joint optimization of local processing speed, offloading 
points, local offloading ratio, and transmission power. To effectively 
address the non-convex nature of the problem, the original problem is 
transformed into a convex problem through a mathematical trans
formation, thereby enabling the realization of an energy-efficient 
computation offloading strategy. 

4.1. Problem formulation 

According to the modeled delay and energy consumption model, for 
the mth device, the total delay and energy consumption can be calculated 
as follows, respectively. 

em = eL
m + ameC

m + (1 − am)eD
m, # (17)  

tm = max
{

tL
m,exe, amtC

m + (1 − am)tD
m

}
.# (18) 

Our objective is to minimize the energy consumption of IoT devices 
by jointly considering the offloading selection A = (am)∀m, the local 
IoTDs’ computation speed FL =

(
fL

m
)
∀m, the offloading ratio λ = (λm)∀m, 

and the offloading transmission power P = (pm)∀m. The energy con
sumption of all IoTDs, 

∑M
m=1ωem, is balanced through a weighted sum

mation of the energy consumption based on the task and device 
requirements. Hence, the computation offloading problem that takes 
into account A, λ, fL, and P, can be formulated as follows: 

:min
P1fL、A、P、λ

∑M
m=1ωem 

s.t: 
C1 : 0 ≤ pm ≤ PMAX,∀m 
C2 : 0 ≤ fL

m ≤ FL,∀m 
C3 : 0 ≤ tm ≤ TMAX,∀m 
C4 : 0 ≤ λm ≤ 1,∀m 
C5 : am ∈ [0,1],∀m 
Subject to the constraints C1, C2, C3, C4, and C5, which specify the 

offloading transmitting power constraint of IoTD m’s task, the maximum 

local computation speed constraint, the maximum latency constraint of 
IoTD m’s task, the offloading ratio constraint of IoTD m’s task, and the 
offloading selection constraints, respectively. The problem, represented 
as P1, is non-convex in nature and hence, difficult to solve directly. 
However, the complexity of the original problem is reduced by first 
decoupling it into two sub-problems and then using the Successive 
Convex Approximation (SCA) algorithm to approximate it to a convex 
problem, ensuring that the original problem P1 can be solved iteratively 
through iteration over the two sub-problems. 

4.2. Problem analysis 

In order to minimize the complexity of Problem P1, a reduction in the 
dimensionality of the problem is necessary. In regard to the local 
computation speed, fL, it is evident that it has a proportional relation
ship with the local processing energy consumption, as demonstrated in 
Eq. (11). Thus, fL can be transformed into equations related to λm and 
TMAX by maximizing the local task latency constraint, as represented in 
the following transformation. 

λmDm

TMAX
≤ f L

m, # (19)  

and 

0 ≤ λm ≤ min
{

1,
FLTMAX

Dm

}

.# (20) 

In this paper, the computation offloading model employs two met
rics, energy consumption and delay, to determine the offloading desti
nation of the tasks executed by IoTD m. To simplify the complexity of the 
original problem P1, we decouple the solution of the variable A into a 
separate problem, designated as P2. As indicated by Eq. (16), the vari
ables Dm and pm are related to the value of A. Therefore, given fixed 
values of Dm and pm, the value of A can be determined by considering the 
known variables fC

m, fD
m, and fL

m. The formulation of P2 can be represented 
as follows: 

P2 : search
f L

m ,f
D
m ,f

C
m ,D∗ ,p∗ A 

s.t: C3,C5 

C6 :
λmDm

TMAX
≤ f L

m ≤ FL,∀m  

C7 : 0 ≤ f D
m ≤ FD,∀m  

C8 : 0 ≤ f C
m ≤ FC, ∀m  

C9 : D∗ ≤ Dm,∀m  

C10 : p∗ ≤ PMAX ,∀m  

where C6 is obtained from C2 and (19), C7 is the maximum DUs pro
cessing speed constraints, C8 is the maximum O-cloud processing speed 
constraints, C9 and C10 are the maximum number of task of IoTD m and 
the maximum transmit power constraints, respectively. Then, search for 
the value of A according to P2 which can be fixed as a∗

m. Thus, Problem 
P3 can be transformed by combining problem P1 and P2, which is 
expressed as: 

P3 : min
P,λ

∑M
m=1ωem 

s.t: C1. 
C11 : 0 ≤ max{max{tLm,exe,a∗

mtCm + (1 − a∗
m)tD

m}} ≤ TMAX,∀m 

C12 : 0 ≤ λm ≤ min{1, FLTMAX
Dm

},∀m 
The constraints C11 and C12 are obtained from the transformation of 

C3 and C4, respectively, representing the delay constraint and the off
loading ratio constraint after the reduction of variables A and fL. When 
the value of am is fixed at a∗

m, indicating that the offloading selection is 
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established, the processing delay at the DUs and O-cloud, as well as the 
queuing delay at the DUs, can be fixed to t∗m. As a result, C13 can be re- 
expressed as follows: 

hm(pm, λm) :
(1 − λm)Dm

Blog2

⎛

⎜
⎜
⎜
⎝

1 +
pmgm,r

σ2 +
∑R

j=1,j∕=r

pmgm,j

⎞

⎟
⎟
⎟
⎠

− TMAX + t∗m ≤ 0.#

(21) 

The Eq. (21) presents a challenge in terms of its non-convex nature, 
making it difficult to solve. To overcome this difficulty, the non-convex 
portion can be separated from Eq. (21) and addressed in subsequent 
steps. Thus, Eq. (21) can be split into Eqs. (22) and (23), based on their 
convexity and non-convexity, respectively. 

Convex：h′
m(λm) =

Bm
(
t∗m − TMAX

)

(1 − λm)Dm
.# (22)  

non − convex：h′
m(pm) = − log2

⎛

⎜
⎜
⎜
⎝

1 +
pmgm,r

σ2 +
∑R

j=1,j∕=r

pmgm,j

⎞

⎟
⎟
⎟
⎠
.# (23) 

For the non-convex component of formula (23), we resort to the 
successive convex approximation (SCA) technique to solve a sequence of 
convex substitution functions of the original problem and eventually 
converge towards the stationary solution of the original problem (Marks 
and Wright, 1978). The central idea behind SCA is to approximate the 
non-convex problem and by iteratively finding a sub-optimal solution 
that is closely approximated to the optimal solution. Thus, we assume 
that pm = 2qm , and formula (23) can be re-expressed as 

h′
m(qm) = − log2

⎛

⎜
⎜
⎜
⎝

1 +
qmgm,r

σ2 +
∑R

j=1,j∕=r

qmgm,j

⎞

⎟
⎟
⎟
⎠
.# (24) 

In the successive convex approximation (SCA) process, each convex 
approximation of h′

m
(
qk

m
)

must abide by the following three properties, 
as demonstrated below: 

h′
m

(
q(k)

m

)
≤

̃
hm

′
(
q(k)

m ; q(k− 1)
m

)
, ∀m, k# (25)  

h′
m

(
q(k− 1)

m

)
=

̃
hm

′
(
q(k− 1)

m ; q(k− 1)
m

)
, ∀m# (26)  

∇h′
m

(
q(k)

m

)
= ∇

̃
hm

′
(
q(k− 1)

m ; q(k− 1)
m

)
,∀m# (27)  

where ̃hm
′(q(k)

m ; q(k− 1)
m ) indicates h′

m(qm) at the kth sequence of con
vexification. 

The kth iteration point is q(k)
m , by which a surrogate function of h′

m(qm)

can be constructed. As the kth sequence of convexification retains the 
geometric features of h′

m(qm) locally in q(k)
m , and are strongly convex, 

which can be expressed as 

̃
hm

′(q(k)
m ;q(k− 1)

m )≜− φ(k− 1)
m log2(gm)+q(k)

m − log2(σ2+
∑R

j=1,j∕=r

qmgm,j))− β(k− 1)
m ,∀m#

(28) 

The formulation (25) means that h′
m(q(k)

m ) does not need to be its own 
upper bound at any feasible point, so we have 

h′
m(q

(k)
m ) ≤ − φ(k− 1)

m log2(gm) + q(k)
m − log2(σ2 +

∑R

j=1,j∕=r

qmgm,j)) − β(k− 1)
m ,∀m#

(29)  

φ(k− 1)
m ≜

S (k− 1)
m

1 + S (k− 1)
m

# (30)  

β(k− 1)
m ≜log2

(
1 + S (k− 1)

m

)
−

S (k− 1)
m

1 + S (k− 1)
m

log2
(
S (k− 1)

m

)
, # (31)  

S (k− 1)
m ≜

2q(k− 1)
m gm,r

σ2 +
∑R

j=1,j∕=r

2q(t− 1)
m gm,j

,∀m#
(32) 

Therefore, 

hm
(
q(k)

m , λ(k)m

)
≤ − φ(k− 1)

m

(
Гm + qm

(k) ) − βm
(k− 1) +

B
(
t∗m − TMAX

)

(
1 − λ(k)m

)
Dm

≤ 0, ∀m#

(33)  

where 

Гm≜log2(gm) − log2(σ2 +
∑R

j=1,j∕=r

2q(t− 1)
m gm,j)).∀m# (34) 

After the kth sequence of convexification, a suitable approximation 
for h′

m(qm) could be found. We can convert P3 to P4, which can be 
expressed as follows: 

P4 : min
q,λ

∑M

m=1
ωem  

s.t: 

C13 : − φm(Гm + qm) − βm +
Bm(t∗m − TMAX)

(1 − λm)Dm
≤ 0, ∀m  

C14 : λm − 1 ≤ 0,∀m 

C13 is transformed by (33), and C14 is similar to C4. Subsequently, the 
convex problem is solved utilizing the Lagrange multiplier method, in 
order to derive a closed-form expression in the Karush-Kuhn-Tucker 
(KKT) condition. The KKT condition is presented as follows  

and 

∂L
qm

= (log2)2qm − ϑmφm = 0, # (36)  

∂L
λm

=
−
(
t∗m − TMAX

)

(1 − λm)
2Dm

+ μ = 0.# (37) 

L(qm, λm,ϑm, μ) = ωem +
∑M

m=1
ϑm[− φm(Гm + qm) − βm +

B
(
t∗m − TMAX

)

(1 − λm)Dm
] +

∑M

m=1
μ(λm − 1), # (35)   
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Therefore, based on the above solution, equations can be established 
for the offloading transmission power, pm, and the offloading ratio, λm. 
Subsequently, the optimal offloading ratio, λm, and transmit power, pm, 
for IoTD m can be determined and expressed as follows: 

λm = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
t∗m − TMAX

μDm

√

.# (38)  

pm = 2

[

1
φm

(

− βm+
B(t∗m − TMAX )
(1− λm )Dm

)

− Гm

]

.#
(39)  

Algorithm 1. Joint energy computation offloading algorithm to solve 
P1. 

4.3. Overall algorithm 

The overall design of the proposed optimization scheme is divided 
into two parts including the search for the solution offloading point am 
and the allocation of the transmit power pm with the offloading ratio λm 
based on the predetermined offloading point, and finally minimize 
IoTDs’ energy consumption by iterating the two portions. Specifically, 
the IoTD m accesses the RU r, with the initialization of the offloading 
ratio λ(0)m and transmit power p(0)m . At the beginning of each iteration, the 
value of the offloading option am is searched with an initial offloading 
ratio and a transmit power. Then, according to the value of A, the off
loading ratio and the transmit power will be updated alternately and 
iteratively by solving Eq. (21). Finally, the corresponding value of A, 
transmit power pm and offloading ratio λm will be obtained. The energy 
consumption will be also obtained at the same time. When the energy 
consumption is no longer reduced and the constraint C12 is satisfied, 
then the algorithm ends. 

Using the convex approximation and the Lagrange multiplier 
method, the offloading ratio and transmit power allocation problems are 
jointly solved by P4. First, the value of A is updated according to the 
initialized offloading ratio λ(0)m and transmit power p(0)m . To satisfy the 
establishment of the loop condition, the time frequency is N + 1. Then, 
the formula (21) is solved convexly by nested loop as shown in Algo
rithm 1, because the loop body is only executed N times, the time fre
quency is N(N+1) and the time frequency of the nested loop body is N2. 
Finally, the transmit power pm and offloading ratio λm are updated ac
cording to the convexization results. Therefore, according to the sum of 
the time frequency is 2N2 + 2N + 1, which can be concluded that the 

time complexity of the whole algorithm is O(N2) and the computational 
complexity is relatively low. 

5. Simulation results 

In this section, Matlab is used to implement a simulation experiment 
for the computation offloading procedure in the ORAN-IoT system by 
adopting numerical simulation, to show the effectiveness of the pro
posed ECO strategy. We randomly deploy 30 IoTDs and 3 DUs. All the 
IoTDs are wirelessly connected to their adjacent DUs, which are wired 
connected to each other and connected to the O-cloud. The partial 
simulation parameters are summarized as follows in Table 1. 

Our proposed ECO strategy is evaluated by comparing its average 
energy consumption with that of four alternative strategies (Guglielmi 

et al., 2018; Liang et al., 2021b; Sun et al., 2019; Alahmadi et al., 2020). 
The energy consumption is analyzed in terms of the energy used for 
processing within IoT devices and the energy consumed during off
loading tasks from these devices. The first strategy, without offloading 
(WOO), involves solely local computation of IoT tasks. The second 
strategy, without leaving offloading (WLO), balances local computation 
and offloading through weighing in between minimizing energy con
sumption and latency. The third strategy, the legacy-offloading (LO), 
implements legacy offloading by jointly considering the energy con
sumption, latency, and the amount of the data. The fourth and final 
strategy, ECO, which is the strategy proposed in this study, considers 
various factors including local processing speed, offloading points, local 
offloading ratio, and transmission power in order to optimize the energy 
conservation during offloading. 

As shown in Fig. 2(a), it is clear that the offload-based LO, WLO, and 
ECO strategies of average energy consumption outperform the local 
execution-based WOO strategy. The reason is that all the tasks of the 
WOO strategy are executed on the IoTDs, although there is no offload 

Table 1 
Partial Parameters.  

Parameter Typical Value 

σ2 2*10− 13 

Cr,d 100 MHZ 
γe

m 
γt

m 
PMAX 

TMAX 

FL 

0.5 
0.5 
0.1 W 
1 s 
0.5 GHz  
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energy consumption, the amount of local processing tasks is too large, 
resulting in extremely high local processing energy consumption. And 
for the offloading-based strategy, the local executing and transmitting 
energy consumption can be better balanced by offloading tasks, thereby 
reducing the total energy consumption. At the same time, as the number 
of tasks increases, the average energy consumption of the ECO strategy 

is the lowest compared with the WLO strategy and the LO strategy. The 
reason is that the WLO strategy only considers the trade-off between 
local computation and task offloading, and to satisfy the task’s 
maximum delay constraint, a larger local computation speed and higher 
transmit power are required, which will lead to the local and transmit 
energy consumption increase. For the LO strategy, the tasks are 

Fig. 2. (a) The average energy consumption comparison with the number of tasks under four strategies; (b) Delay comparison with the same energy consumption 
under different strategy. 

Fig. 3. (a) The average energy consumption comparison with different delay constraints; (b) The average energy consumption comparison with different local 
processing speed. 

Fig. 4. The various of local processing speed, transmission power, and offloading ratio.  
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offloaded based on a designed offloading model that jointly considers 
energy consumption and delay. Although local processing and task off
loading can be better balanced, local computing power is not fully uti
lized due to the inflexible adjustment of local speed, which leads to local 
energy consumption cannot be better reduced. The proposed ECO 
strategy that based on the designed offloading model considering energy 
consumption and delays cost, which can flexibly coordinate local pro
cessing speed, offload rate, and transmit power, and can better optimize 
local processing and transmission under the premise of satisfying delay 
constraints to reduce the average energy consumption. Therefore, it is 
obvious that the designed ECO strategy is the most effective of the four 
strategies in energy saving, which is 26% and 12% lower than that of the 
WLO strategy and the LO strategy, respectively. 

Since latency is one of the most important optimizable indicators in 
computation offloading problems, we compare the propagation delays 
of the three strategies executed under the same energy consumption 
conditions as shown in Fig. 2(b). The reason why the transmission delay 
of the WOO strategy is not compared is that the WOO strategy is only 
processed locally, which means that the transmission delay is not 
involved in the WOO strategy. It can conclude from Fig. 2(a) that if an 
equal number of tasks arriving, the increase in energy consumption can 
reduce the latency of the three offloading strategies. And the increase in 
energy consumption means that the local device can have a higher 
processing speed or higher transmit power, which means that more tasks 
can be processed locally to avoid being offloaded or can have higher 
transmit power to transmit, to reduce the transmitting delay effectively. 
Therefore, the ECO strategy can flexibly coordinate local processing 
speed, offloading rate, and transmission power, under the same energy 
consumption, the transmission delay consumed by the ECO strategy is 
always the lowest among the three strategies. 

Another experiment has the goal to minimize the average energy 
consumption by meeting the requirement of the maximum delay. 
Therefore, Fig. 3(a) shows the average energy consumption under the 
maximum delay constraints TMAX with the increase of the number of 
tasks arriving. It is obviously that the average energy consumption of the 
lower delay constraint is higher than that of the higher delay constraint 
and the average energy consumption of the larger the number of tasks 
arriving is also higher. The reason is that the smaller the TMAX, the 
stricter the delay constraint, which indicates that fewer IoTDs are suit
able for offloading tasks to the DUs or to the O-cloud. So as to meet the 
requirements of delay when the number of tasking arriving, more IoTDs 
are needed to improve the local speeding and to increase the trans
mission power and the energy consumption of the IoTDs. In addition, 
when the maximum delay constraints are small, there will be more 
delay-sensitive IoTDs. For the delay-sensitive IoTDs, the allocation of a 
large number of wireless resources during the offloading process makes 
the co-channel interference based on the reuse frequency will be more 
serious, and will also increase the energy consumption. At the same 
time, Fig. 3(a) demonstrates that the effectiveness of the ECO strategy to 
reduce the energy consumption by adjusting the offloading ratio, local 
speed and transmission power. 

The ECO strategy calculates the local processing speed by consid
ering the local number of tasks and the maximum task delay constraints. 
The local computation speeding is usually determined by the hardware 
devices. According to the formulation (11), it is clear that the local speed 
is directly proportional to the energy consumption of the IoTDs. The 
higher the local speeding, the higher the energy consumption. According 
to formulation (19), it is clear to see that the greater the local speed, the 
lower the latency of processing tasks. Therefore, in order to reduce the 
energy consumption under the condition to meet the task delay re
quirements, for the non-computationally intensive IoTDs tasks, they are 
more inclined to process tasks at the local devices, which needs to 
minimize the local speed to reduce the energy consumption. For the 
intensive IoTDs tasks, due to the limited local speeding, if the tasks are 
processed at the local devices, the processing delay will increase. With 
the aim to meet the delay requirements, the tasks have to be offloaded to 

the DUs or to the O-cloud to make the energy consumption minimized by 
adjusting the local speed, the offloading ratio and the transmission 
power by the ECO strategy. Thence, in Fig. 3(b), we compare the average 
energy consumption with the increase of the number of tasks arriving at 
the different local processing speed. It is assumed that the tasks arriving 
is intensive, which implies that the tasks have to be offloaded. It can be 
seen that at the same number of tasks arriving, with the local speeding 
increases, the energy consumption will increase. At the same local 
speed, with the number of tasks arriving increase, the energy con
sumption will increase. In addition, the energy consumption gap among 
the three different local speeds verifies the impact of the offloading 
decision and performance by adjusting the local processing speed. 

We mentioned earlier that the energy consumption is directly related 
to the local processing speed, the transmission power, and the offloading 
rate. Therefore, Fig. 4 shows the changes of the local processing speed, 
the transmission power and the offloading ratio during the offloading 
process, respectively. As the number of task arriving increases, the local 
processing speed and the transmission power will gradually increase, the 
offloading ratio λ will gradually decrease, which means that the 1 − λ 
will gradually increase and more larger ratio of task is offloaded. It 
shows that the IoTDs are willing to offload more tasks to reduce the 
energy consumption. The local speed is relevant to the maximum delay 
TMAX of the task and the 1 − λ, which illustrates that the tasks need to be 
processed at the local devices, which shows an increasing trend due to 
the reason that the local processing speed will gradually increase. In 
order to improve the transmission rate to meet delay requirement, the 
transmission power will increase with the number of tasks offloaded 
increase. However, due to the limitation of the maximum power, it will 
gradually approach 0.1w and will not exceed the value. Owing to the 
limitation of the delay of the tasks and the local processing speed, the 
offloading ratio λ will be decreased and the 1 − λ will increase, which 
indicates that the proportion of being processed locally is gradually 
reduced, and more and more tasks prefer to be offloaded to the O-cloud 
or DUs. 

6. Conclusion 

The integration of the O-RAN architecture within the IoT system has 
garnered significant attention as a research hotspot, given the potential 
to address performance limitations such as energy consumption, delay, 
and resource utilization in traditional IoT systems. In this paper, we 
present a flexible offloading strategy for deployed IoT systems and 
formulate a non-convex optimization problem with the objective of 
minimizing energy consumption while ensuring task delay requirements 
are met. To tackle the non-convex nature of the problem, the SCA al
gorithm is employed, allowing for its approximate conversion into a 
solvable convex problem. Results from simulations demonstrate that the 
proposed offloading strategy significantly reduces the energy con
sumption of IoT devices. In the future, the O-RAN architecture will be 
leveraged to intelligently manage communication and computing re
sources, contributing to the enhancement of the overall performance of 
the IoT system and meeting evolving requirements. 
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