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ABSTRACT

The low-intensity attack flows used by Crossfire attacks are hard to distinguish from legitimate flows. Traditional
methods to identify the malicious flows in Crossfire attacks are rerouting, which is based on statistics. In these
existing mechanisms, the identification of malicious flows depends on the IP address. However, the IP address is
easy to be changed by attacks. Compared with the IP address, the certificate is more challenging to be tampered with
or forged. Moreover, the traffic trend in the network is towards encryption. The certificates are popularly utilized
by IoT devices for authentication in encryption protocols. DTLShps proposed a new way to verify certificates for
resource-constrained IoT devices by using the SDN controller. Based on DTLShps, the SDN controller can collect
statistics on certificates. In this paper, we propose Certrust, a framework based on the trust of certificates, to mitigate
the Crossfire attack by using SDN for IoT. Our goal is threefold. First, the trust model is built based on the Bayesian
trust system with the statistics on the participation of certificates in each Crossfire attack. Moreover, the forgetting
curve is utilized instead of the traditional decay method in the Bayesian trust system for achieving a moderate
decay rate. Second, for detecting the Crossfire attack accurately, a method based on graph connectivity is proposed.
Third, several trust-based routing principles are proposed to mitigate the Crossfire attack. These principles can also
encourage users to use certificates in communication. The performance evaluation shows that Certrust is more
effective in mitigating the Crossfire attack than the traditional rerouting schemes. Moreover, our trust model has a
more appropriate decay rate than the traditional methods.
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1 Introduction

With the rapid development of the Internet of Things (IoT), the large volume, pervasiveness, and
high vulnerability of IoT devices have attracted many bad actors, particularly those orchestrating
distributed denial-of-service (DDoS) attacks [1]. The emergence of Software-Defined Networking
(SDN) offers several new advantages to defend against conventional DDoS attacks [2]. The global
network view and dynamic network policy update in SDN make the traffic characteristics analysis easy
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and the DDoS attack prevention timely. The improvement of the defense stimulates the evolution of the
attack. The attack traffic is inclined to mimic the legal traffic behaviors. Moreover, this mimicking leads
to the invalidation of the traffic characteristics analysis. The Crossfire attack is such a sophisticated and
powerful link-flooding attack. This attack cuts off network connections to a target area by flooding
low-intensity flows on the selected links around the target area [3]. These low-intensity flows are hard
to distinguish from legitimate flows.

Before flooding low-intensity flows to the target links, the attackers need to determine the target
links by traceroute. The moving target defense based on traceroute packets analysis can prevent the
attackers from finding out the target links [4]. Meanwhile, the traceroute is not only used by the
attackers but also utilized in network measurement. Thus, it is hard to distinguish between the legal
and malicious traceroute packets. The interference of legal traceroute packets may bring trouble to
the target link selection in the moving target defense. Hence, we do not choose the traceroute-based
methods.

Another kind of defensive approach is to identify and block the low-intensity flows flooded by the
attackers. Statistics-based methods are effective in identifying the sophisticated malicious flows of the
Crossfire attack. Traffic rerouting is a classical measure to conduct the repeated statistical experiments
[5–7]. After several traffic rerouting rounds, the malicious flows can be identified as the flows with their
source IP address always appearing in each attack round. Besides rerouting, the correlation analysis
based on IP addresses also can identify the malicious flows in the Crossfire attack [8].

The above identification mechanisms utilize the IP address to identify the malicious flows. Thus,
by merely modifying the IP address, an adversary can avoid the identifying mechanism. Even the IP
address is required to be changed in many normal scenarios, such as using IPv6 temporary address
[9], IP address mutation communications [10] and Mobile IP communications [11,12]. Therefore, the
IP-based identification mechanisms may no longer work well in these cases.

A certificate signed and issued by a certificate authority (CA) is much harder to be forged or
tampered with than the IP address. Moreover, the certificates are popularly utilized in IoT. On the one
hand, in the device-to-device communication scenario, most connected devices do not previously know
each other [13]. Thus, the IoT devices in such a situation usually depend on asymmetric encryption
techniques and mainly utilize certificates for identifying and authenticating entities [13]. On the other
hand, in the scenario of the IoT devices communicating with the cloud service providers, the traffic
trend on the Internet is towards encryption. For example, the percentage of web pages loaded by
Firefox using HTTPS has sustained growth in recent years [14]. This percentage has exceeded 80%
since 2020 for global users. The above example illustrates that service providers on the Internet are
inclined to provide encrypted connections. Thus, mimicking the legal traffic, the traffic of Crossfire
attacks will have the same trend towards encryption. Furthermore, the certificate is also widely utilized
by encryption protocols, such as TLS/DTLS and IPsec, for authenticating the IoT devices. Therefore,
we believe that the certificate is an excellent candidate to identify the malicious flows for the Crossfire
attack in the IoT scenario.

The certificate-based trust model depends on the statistics on the participation of the certificates
in each Crossfire attack. Thus, we need to detect the Crossfire attack accurately. The existing detection
methods are implemented by monitoring the congestion on pre-selected target links [6,7] or analyzing
the traffic correlation on every link [8]. Without a judgment on whether a separate target area exists,
the above detection measures fail to distinguish the Crossfire attack from other types of link-flooding
attacks.
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The heavy computational overhead of certificate verification makes it hard to implement the
certificates on resource-constrained IoT devices. DTLShps [15] provides a new thought to simplify
Datagram Transport Layer Security (DTLS) protocol for resource-constrained IoT devices by using
SDN. All the handshake messages of DTLShps sessions are sent to the SDN controller by the SDN
switch. The certificates will be verified in the controller instead of IoT devices. DTLShps can reduce
about 89% energy consumption and 77% computational overhead on an IoT device compared with
the traditional DTLS. For other security protocols, such as TLS and IPsec, the handshake messages
of these protocols also can be sent to the controller. Then, let the controller verify the certificates
contained in the handshake messages. Based on DTLShps, we can use the SDN controller to collect
statistics on certificates.

In this paper, as our major contribution, a trust framework (Certrust) is designed to mitigate the
link congestion during the Crossfire attack over SDN in the IoT scenario. The direct trust of certificates
is calculated through the Bayesian trust system, which is based on the statistics on the historical
behavior of certificates. The historical data in the Bayesian trust system is decayed by the forgetting
curve instead of the traditional decay method [16–18] for achieving a more moderate decay rate. The
recommendation trust of certificates is calculated depending on the reliability of the CA. For detecting
the attack accurately, we proposed a method based on graph connectivity to detect the Crossfire
attack from the link congestion events. For mitigating the Crossfire attack, several trust-based routing
principles, which can encourage users to use certificates in communication, are introduced. Then these
principles are implemented by the bandwidth configuration in the SDN switches. The performance
evaluation shows that Certrust is more effective in mitigating the link congestion in the Crossfire attack
than the rerouting schemes.

The remainder of this article is organized as follows. Section 2 briefly introduces the preliminary
and network scenario. Then, the motivation and the framework of Certrust is illustrated in Section 3.
Section 4 constructs the trust model of the certificate. The detection mechanism and the mitigation
mechanism for the Crossfire attack are provided in Section 5. Section 6 discusses the parameters in
the trust model and evaluates the performance of our framework before we conclude this article in
Section 7.

2 System Model
2.1 Network Model

The network model is shown in Fig. 1. The normal IoT devices, bots and decoy servers are
connected to the network through the SDN switch, which performs as an IoT broker. Several bots
can congest the target links by sending low-intensity traffic to different decoy servers. If the target
links are congested, the target server cannot be connected by any normal IoT devices. We assume that
the SDN switches and the controller are trusted, as our threat model is for the Crossfire attack. All the
handshake messages of communicational security protocols, such as DTLS, TLS and IPsec, are sent
to the controller by the SDN switch, as shown in DTLShps [15]. The certificates will be verified in the
controller instead of IoT devices. The Certrust service is deployed on the controller. The controller will
forward the processed handshake packets to the SDN switch that can deliver the handshake packets
to the destination directly. After the handshake phase, the encrypted traffic between the two hosts will
not pass through the controller any more.
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Figure 1: Network model

We study our framework in a simple SDN scenario, in which one controller exists in a single
SDN domain. The simple SDN scenario will facilitate the analysis and discussion of our framework.
Moreover, it is easy to extend one controller by multi-controllers for scalability in practice. The
extension for multi-controllers in a single SDN domain has been illustrated in [15]. The cooperation
between multiple SDN domains is shown in [19].

2.2 Threat Model
Our study focuses on the Crossfire attack, a sophisticated link flood attack. The Crossfire attack

can degrade and even cut off network connections to a variety of selected server targets by flooding
a few links in the network [3]. The server targets can be selected as the servers of an enterprise, a
city, a state, or a small country. A small set of bots directs low-intensity flows to a large number
of publicly accessible servers (decoy servers). The concentration of these flows floods a small set
of carefully chosen links and effectively disconnects selected target servers from the Internet. The
sources of the Crossfire attack are undetectable by any targeted servers since they no longer receive any
messages. Moreover, the low-intensity, individual flows of the Crossfire attack are indistinguishable
from legitimate flows by traditional traffic anomaly detection. The attack persistence can be extended
virtually indefinitely by changing bots, decoy servers, and target links while maintaining the same
disconnection targets.

2.3 Bayesian Trust System
The Bayesian trust system, which is also called the Beta reputation system, works based on the

beta probability density function (PDF) [20,21]. This PDF can represent probability distributions of
binary (i.e., positive or negative) events. The beta PDF is indexed by two parameters α and β. The beta
PDF denoted by f (x|α, β) can be expressed using the gamma function � as:

f (x|α, β) = �(α + β)

�(α)�(β)
xα−1(1 − x)

β−1, (1)

where 0 � x � 1, α > 0, β > 0, with the restriction that the probability variable x �= 0 if α < 1, and
x �= 1 if β < 1. The probability expectation value of the beta distribution is given by:
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E (x) = α

α + β
. (2)

Moreover, trust is a subjective expectation a subject has about another’s future behavior based on
the history of their encounters [22]. Therefore, the most natural is to define the trust value, which is
denoted by Tv, as E (x).

After observing r positive and s negative outcomes of the binary events, the a posteriori distribution
is the beta PDF with α = r + 1 and β = s + 1, where r, s > 0. Thus,

Tv = E (x) = r + 1
(r + 1) + (s + 1)

= r + 1
r + s + 2

. (3)

Let (T̂v − ε, T̂v + ε) be the confidence interval with the confidence degree γ of Tv, ε is the error
level. γ can be expressed as:

γ = P
(

T̂v − ε < Tv < T̂v + ε
)

=
∫ T̂v+ε

T̂v−ε
xr−1(1 − x)

s−1dx∫ 1

0
xr−1(1 − x)

s−1dx
= � (r) � (s)

� (r + s)

∫ T̂v+ε

T̂v−ε

xr−1(1 − x)
s−1dx. (4)

The accuracy of Tv can be improved by increasing the number of samples [23]. Let γ0 be the
threshold of confidence level. When the accuracy is at an acceptable level (i.e., γ � γ0), the Tv can be
evaluated with these samples at this time. The relationship between the number of samples n0, ε and
γ0 can be modeled as follows:

n0 � − 1
2ε2

ln
(

1 − γ0

2

)
. (5)

3 Design of the Certrust Framework
3.1 Motivation

Traditional measures to identify malicious flows against Crossfire attacks is to use the IP address
[5–8]. The IP address can be modified easily by an attacker. Thus, the detection mechanism of malicious
flows will fail. Moreover, in many scenarios, the IP address even is required to be changed frequently.

On the contrary, the certificate is much harder to be tampered compared with the IP address. The
certificate is based on asymmetric cryptography and signed by the secret key of a CA. A tampered
certificate can be detected by the verification with the public key of the CA. Furthermore, the traffic in
the network has a trend towards encryption and certificates are used widely by IoT devices. Therefore,
we propose a framework to utilize the certificate to identify the malicious flows effectively.

3.2 Framework of Certrust
The framework of Certrust is shown in Fig. 2. The modules of the framework are deployed

in the controller and divided into two types: packets handling and trust handling. There are two
packets handling modules: certificate verification and trust-based routing policy generation. The packets
handling modules are responsible for dealing with the packet-in messages sent from the SDN switches.
When a certificate is sent to the controller by an SDN switch, the certificate will be verified by
the certificate verification module firstly. After passing the verification, the trust-based routing policy
generation module will generate a routing policy depending on the trust level of the certificate. Then,
the routing policy will be sent to the relevant SDN switches.



2142 CMES, 2023, vol.134, no.3

Controller

 SDN Switch
SDN Switch

Attack Detection Attack Mitigation

Trust-based 
Bandwidth 

Configuration 

Trust Evaluation

Trust Value Update

Certificate 
Verification

Trust-based 
Routing Policy 

Generation

Packets Handling Modules

Trust Handling Modules

Network Behaviour 
Counting

 SDN Switch

Data Plane

Control Plane

IoT deviceIoT device

Figure 2: Framework of certrust

Moreover, three trust handling modules provide the trust-related data required by the packets
handling modules: network behavior counting, trust value update, and trust-based bandwidth configu-
ration. The network behavior counting module is designed to detect the Crossfire attacks and record
the network behaviors of the certificates during the Crossfire attacks. The trust value update module
maintains the trust model based on the statistics on the network behaviors of the certificates. The
trust-based bandwidth configuration module is responsible for grading the certificates according to their
trust value and configuring the bandwidths of each trust level on the SDN switches for mitigating the
Crossfire attack.

3.2.1 Certificate Verification Module

This module is implemented by the certificate verification mechanism proposed in [15]. It is easy
to extend this progress to other security protocols. The handshake process in [15] is shown in Fig. 3.
The IoT device that initiates the session performs as a client, and the IoT device that responds to the
session performs as a server. The client and server send their certificate chain to the controller by the
Certificate message. After the controller has completed the certificate verification, the controller sends
the identity information in the certificate to the corresponding end by the Identity message.

To deploy certificate-based authentication on resource-constrained IoT devices, it is common
to shift the certificate verification to a trusted third party, such as a delegation server [24–26]. The
controller performs as the trusted third party in our framework. Moreover, the controller needs to
encourage the client to use the certificate, as our framework is based on the trust model of certificates.
Thus, we make some modifications to the above handshake process. The controller will always send
the CertificateRequest message to request the client’s certificate, regardless of whether the server has
sent the CertificateRequest message to the controller. If the server has not sent the CertificateRequest
message to the controller, the controller will not send the Identity message to the server to inform the
client’s identity. Otherwise, the controller will send. If the client refuses to send its certificate, the client
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will send a Certificate message with no certificate to the controller. Then the controller will send an
Identity message with no information to the server if the server has sent the CertificateRequest message
to the controller.
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Figure 3: Flow diagram of handshake in DTLShps

The user, who wants to be anonymous, can use the anonymous certificate, as presented in [27].
The anonymous certificate is a syntactically valid X.509 certificate, in which the Subject field contains
a pseudonym. The anonymous certificate also can accumulate trust in our framework.

3.2.2 Trust-Based Routing Policy Generation Module

After verifying a certificate, the controller will inquire about the trust level of the certificate. The
trust level of certificates is recorded in the controller by the trust-based bandwidth configuration module
and obtained by searching the records. The controller will generate and issue the routing policy to the
relevant SDN switches depending on the trust level of the certificate. Several queues have been created
on each egress port of the SDN switches. Each queue corresponds to a trust level. Different queues
have been configured with different bandwidths by the trust-based bandwidth configuration module.
The routing policy issued from the controller will make the traffic from different trust levels handled
by the corresponding queue on the SDN switches. This module is also responsible for recording the
mapping between the certificate and the flow in the log file.
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3.2.3 Network Behavior Counting Module

This module firstly uses the detection mechanism proposed in [6] to detect link congestion. The
available bandwidth of the links over the whole network is monitored by the SDN controller. If the
available bandwidth of a link is exhausted, link congestion occurs. The controller will record the
period when the congestion lasted and the locations (SDN switches) where the congestion happened.
Secondly, this module collects the information of the flows and certificates participating in the link
congestion from the log files recorded by the trust-based routing policy generation module. Thirdly,
the Crossfire attack is detected from the link congestion events by a method based on the graph
connectivity. Finally, if a Crossfire attack is detected, the count of the network behaviors of relevant
certificates is updated.

3.2.4 Trust Value Update Module

This module updates the trust value of the certificate based on the network behavior and activity
of the certificate. The statistics for network behavior is made by the network behavior counting module.
Moreover, the activity can be calculated through the log files recorded by the trust-based routing policy
generation module.

3.2.5 Trust-Based Bandwidth Configuration Module

The trust level is graded depending on the trust values maintained by the trust value update module.
Different maximum and minimum available bandwidths of the queues on the SDN switches are set
according to different trust levels for providing differentiated services.

4 Trust Model of Certificates

The trust of a user’s certificate is an expectation about the certificate owner will act as a benign
user. The user’s certificate trust TC is comprised of the direct trust TC−d and the recommendation trust
TC−r. TC−d depends on the network behavior of the certificate’s owner. Considering that the authenticity
of a certificate is guaranteed by the signature of its CA, TC−r is based on the trust of the CA issued that
certificate. Thus, TC is modeled as follows:

TC = ω1 × TC−d + (1 − ω1) × TC−r, (6)

where ω1 is the weight of the direct trust of the user’s certificate, ω1 ∈ [0, 1].

4.1 The Direct Trust of a User’s Certificate
The calculation of TC−d is based on the Bayesian trust system. The historical data on network

behavior of all active users will be counted whenever a Crossfire attack is reported. The active user is
defined as the user who transmitted data through the network in several minutes or hours around the
point that the Crossfire attack occurred. The granularity of time can be set according to the different
security levels. If the traffic from one user’s certificate participated in the link congestion of a Crossfire
attack, the count of suspicious actions of that certificate v is added by one. If the traffic from one user’s
certificate did not participate in the link congestion of a Crossfire attack, the count of legal actions of
that certificate u is added by one. Hence, after the Crossfire attack has happened u+v times, according
to (3), TC−d can be expressed as

TC−d = u + 1
u + v + 1

. (7)
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It is reasonable to suspect the owner of a certificate, whose traffic often attended the link
congestion caused by the Crossfire attacks, is an attacker.

We further consider the factor of time in our model. The more recent the historical data on network
behavior is, the more valuable it is to evaluate the trust level of certificates. Time is divided into time
slots according to a fixed period T . T can be several hours or days. A weight η is utilized to decay the
historical data in each time slot. Thus, after the nth time slot, the total count of legal actions u(n) and
suspicious actions v(n) for a certificate can be expressed as follows:

u (n) =
n∑

i=1

ui × ηi, (8)

v (n) =
n∑

i=1

vi × ηi, (9)

where

ui is the count of legal actions in the ith time slot,

vi is the count of suspicious actions in the ith time slot,

ηi is the decay weight of the ith time slot,

n is the sequence number of the current time slot,

“1” is the sequence number of the initial time slot.

Moreover, a forgetting curve shows the nonlinear decreasing law of human memory retention
[28,29]. We use human memory to simulate the historical data. Thus, the forgetting curve can be
applied to obtain the decay weight η. An exponential function with base e is chosen to model the
forgetting curve. Therefore, the weight ηi is expressed as follows:

ηi = e− 	t
λ1 , (10)

where 	t is the period from the ith time slot to the current time slot, λ1 is the decay rate parameter.
Thus, (8) and (9) can be updated as

u (n) =
n∑

i=1

ui × e− 	t
λ1 =

n∑
i=1

ui × e− n−i
λ1 , (11)

v (n) =
n∑

i=1

vi × e− 	t
λ1 =

n∑
i=1

vi × e− n−i
λ1 , (12)

Consequently, (7) can be updated as follows:

TC−d = u (n) + 1
u (n) + v (n) + 2

=

n∑
i=1

ui × e− n−i
λ1 + 1

n∑
i=1

ui × e− n−i
λ1 +

n∑
i=1

vi × e− n−i
λ1 + 2

. (13)

Only if the number of samples is equal to or greater than the threshold in (5), the direct trust of
the user’s certificate can be calculated by (13). If the number of samples is less than the threshold, TC

is directly equal to TC−r. This measure can encourage users to choose a CA with a good reputation, as
TC−r is based on the trust of the CA’s certificate.
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4.2 The Recommendation Trust of a User’s Certificate
When a CA signs a certificate with its private key, it means that the CA uses its reputation to

guarantee that the public key in the certificate belongs to the certificate owner. Thus, the recommen-
dation trust of a certificate is related to its CA’s reputation. A user’s certificate is generally contained
in a certificate chain, as shown in Fig. 4. The owner’s identity and public key in a user’s certificate
are signed by the private key of its issuer (CA1). The public key of CA1, which is contained in CA1’s
certificate, can be used to verify that the certificate issued by CA1 is trustworthy. Furthermore,
CA1’s certificate is also needed to be verified by the public key of its issuer (CA2), which is contained in
CA2’s certificate. This verification cycle continues until the root CA, which self-signs its public key with
its private key. These certificates from the user’s certificate to the root certificate constitute a certificate
chain.

User’s 
certificate

CA1’s
certificate

CA2’s
certificate

root CA’s
certificate…

Figure 4: The schematic diagram of a certificate chain

The closer a CA’s certificate is to the user’s certificate in a certificate chain, the tighter the
correlation between them is. Therefore, TC−r is calculated based on the trust of all the CA’s certificates
in the certificate chain. We assume that there are m CA’s certificates in a certificate chain, and the
sequence number of the root CA’s certificate is m. Thus, TC−r is modeled as

TC−r =

m∑
i=1

ξi × TCAi

m∑
i=1

ξi

, (14)

where TCAi is the trust of the ith CA’s certificate in the certificate chain, TCAi ∈ [0, 1]; ξi is the weight of
the trust of the ith CA’s certificate in the certificate chain, ξi ∈ [0, 1]. Moreover, ξi can be calculated as⎧⎨
⎩

ξ1 = 1,
ξi+1 = ξi − 	, if ξi − 	 � 0
ξi+1 = 0, if ξi − 	 < 0

(15)

where 	 is the decay factor for attenuating the ξi, 	 ∈ (0, 1). If there are too many CA’s certificates in a
certificate chain, the trust of those CA’s certificates, which are too far away from the user’s certificate,
can be ignored. For example, when 	 = 0.1, ξ11 = ξ10 − 0.1 = 0. Thus, the trust of all the CA’s
certificates whose sequence number greater than ten will be ignored.

4.3 The Trust of a CA’s Certificate
The trust of a CA’s certificate TCA is also comprised of the direct trust TCA−d and the recommen-

dation trust TCA−r, like the trust of a user’s certificate. Thus, TCA is modeled as

TCA = ω2 × TCA−d + (1 − ω2) × TCA−r, (16)

where ω2 is the weight of the direct trust of the CA’s certificate, ω2 ∈ [0, 1].
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TCA−d hinges on the average trust value of all the certificates issued by this CA. Assuming one CA
has issued k certificates, TCA−d is modeled as follows:

TCA−d =

k∑
i=1

TC−di

k
. (17)

where TC−di is the direct trust value of the ith certificate issued by the CA.

TCA−r rests on the evaluation of the CA coming from some credible websites, for example, the
PageRank value PR of a CA’s website from Google. The PageRank value is between 0 and 10. Thus,
TCA−r can be expressed as

TCA−r = PR
10

. (18)

Before the first certificate issued by a CA appears in the network, TCA is directly equal to TCA−r. If
a CA is brand new so that there is on recommendation trust of the CA’s certificate, the trust value of
this CA’s certificate is set to a medium value of 0.5.

4.4 Parameter Analysis
4.4.1 ω1

ω1, which is the weight of TC−d, is calculated based on the degree of the user activity, for TC−d

depends on the user’s behavior. The higher the degree of the user activity is, the more proportion TC−d

will take in the calculation of TC. The user activity is defined as the sum of a certificate’s active counts
in the last n′ time slots. The period of one time slots is set as a fixed value T′. For example, the active
count in every time slot can be the number of active days in every month or the number of active hours
in every day.

The time factor is also considered in the model of ω1. The more recent the data of the active count
is, the more valuable it is to calculate the degree of the user activity. Similar to TC−d, a forgetting curve,
which is also modeled by an exponential function with base e, is utilized to decay the active count in
different time slots. The decay weight ϕi of the ith time slot can be expressed as

ϕi = e− 	t
λ2 , (19)

where 	t is the period from the ith time slot to the current time slot, λ2 is the decay rate parameter.
Therefore, ω1 is modeled as follows:

ω1 =

n′∑
i=1

Ai × ϕi

n′ × max (Ai)
=

n′∑
i=1

Ai × e− 	t
λ2

n′ × max (Ai)
=

n′∑
i=1

Ai × e− n′−i
λ2

n′ × max (Ai)
, (20)

where

Ai is the active count of the user’s certificate in the ith time slot,

n′ is the sequence number of the current time slot,

“1” is the sequence number of the initial time slot.

Moreover, the parameter λ2 can be defined as

λ2 = t0

ln 2
, (21)
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where t0 is the half-life of the active count, after which the active count will be attenuated by half [30],
t0 > 0.

4.4.2 ω2

The calculation of ω2, which is the weight of TCA−d, depends on the activity of the CA. The activity
of a CA is defined as the average user activity of all the certificates issued by the CA. Assuming a CA
has issued k certificates, the active count of the CA’s certificate in the ith time slot ACAi is modeled as
follows:

ACAi =

k∑
j=1

Aij

k
, (22)

where Aij is the active count of the jth certificate issued by the CA in the ith time slot. Thus, the activity
of the CA can be calculated as the sum of active counts of the CA’s certificate in the last n′ time slots.

The model of ω2 is similar to that of ω1. The forgetting curve, which is modeled by the same
exponential function as in (19), is also utilized to decay the active count of the CA’s certificate in each
time slot. Therefore, ω2 is modeled as follows:

ω2 =

n′∑
i=1

ACAi × ϕi

n′ × max (ACAi)
=

n′∑
i=1

k∑
j=1

Aij

k
× e− 	t

λ2

n′ × max (ACAi)
=

n′∑
i=1

k∑
j=1

Aij × e− n′−i
λ2

n′ × k × max (ACAi)
, (23)

where the definitions of n′ and “1” are the same as those in (20).

4.5 Trust Value Update
The trust value in the trust model is updated at the end of each time slot. Meanwhile, the period

of a single time slot can be different for counting the network behavior and user activity. Thus, TC−d is
updated at a frequency of 1/T , while ω1 and ω2 are updated at a frequency of 1/T ′. The update of any
of TC−d, ω1 or ω2 will result in the update of TC−r, TCA and TC. The updated trust value will be recorded
in the controller.

The count of network behaviors is updated by the network behavior counting module, as shown
in Section 5.2. The user activity can be calculated through the log files recorded by the trust-based
routing policy generation module, as illustrated in Section 3.2.2. For example, if a certificate occurred
in the record of a specific day, the certificate can be counted as active on this day. Alternatively, if the
number of occurrences of a certificate exceeded a certain threshold in one day, the certificate also can
be counted as active on this day.

4.6 Time Complexity Analysis
The number of cycles of calculating ω2 is n′ × k, TCA−d is k, and TCA−r is 1. Thus, the maximum

number of cycles of calculating TCA is n′ × k according to (16), and TC−r is m × n′ × k derived from
(14). Moreover, the maximum number of cycles of calculating TC−d is n, and ω1 is n′. Therefore, the
time complexity of the calculation of TC is O(m × n′ × k + n) according to (6).
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5 Attack Detection and Mitigation
5.1 The Crossfire Attack Detection

The Crossfire attack works through the link congestion. Thus, firstly it is required to record the
link congestion events that occurred in the network. Secondly, the Crossfire attack is required to be
detected from the link congestion events.

The link congestion in SDN can be detected by exploiting the Floodlight controller’s statistics
measurement APIs [6]. The link congestion can be identified by a decrease in the available bandwidth.
The threshold for the available bandwidth is 10% of the total bandwidth, as set in [6]. After congestion
is detected, the controller will record the period when the congestion lasted and the location (SDN
switches) where the congestion happened.

We propose a method based on graph connectivity to detect the Crossfire attack from the link
congestion events. A striking feature of the Crossfire attack is that all the network connections to a
target area are cut off during the attack [3]. As shown in Fig. 5, after all the hollow links are congested,
the network inside the broken circle loses the connection from outside during a Crossfire attack. If no
area has been disconnected, the attack should be counted as a normal link-flooding attack. Otherwise,
if just one link was congested, the attack should be counted as a Coremelt attack [31].

- Target area

- SDN switch

- Congested link
- Link

Figure 5: A demonstration of the link congestion constructing a crossfire attack

The routing topology as an undirected graph must be connected, because the unreachable routers
will not present on the routing topology. The routing topology is stored in the controller. Then, the
congested links in the same period are removed from the routing topology. If the rest of the routing
topology is not a connected graph, there must be a certain area disconnected. Otherwise, there is no
area disconnected.

The steps for detecting the Crossfire attack from the link congestion events are illustrated in
Algorithm 1. The graph of routing topology G = (S, L), which constructed by the switches set S and
links set L, and the set of congested links in the same period Lc are taken as the input of Algorithm 1.
Initially, the set Lc are removed from G. Secondly, the graph traversal algorithm breadth-first search
(BFS) [32] or depth-first search (DFS) [32] is run on G and started with an arbitrary s in the set S. If
every s in the set S has been explored by the graph traversal algorithm, G is connected. Thus, Algorithm
1 terminates returning the link-flooding attack type “Normal”. Otherwise, if |Lc|, the cardinality of
the set Lc, equals one, there is only one link congested. Therefore, Algorithm 1 ends with reporting
the link-flooding attack type “Coremelt”. In addition to the above two cases, the link-flooding attack
type “Crossfire” is returned.
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The time complexity of Algorithm 1 is the same as that of the BFS or DFS algorithm. The time
complexity of the BFS and DFS algorithm both are O(|S| + |L − Lc|), where

|S| is the number of switches in the topological graph,

|L − Lc| is the number of uncongested links in the topological graph.

Algorithm 1: Detecting the Crossfire attack from the congestion events
Input: Switches set S, links set L, graph G = (S,L), congested links set Lc ⊆ L
Ouput: The attack type “Crossfire”, “Coremelt” or “Normal”
1: Let L ← L − Lc
2: Run BFS or DFS algorithm on G, start from ∀s ∈ S
3: if every s ∈ S has been marked as “Explored” then
4: return “Normal”
5: else if |Lc| = 1 then
6: return “Coremelt”
7: endif
8: return “Crossfire”

5.2 Network Behavior Counting
The network behavior counting of the certificates is based on the detection of the Crossfire attack.

Whenever link congestion is detected, the controller will record the period and location of the link
congestion, as shown in Section 5.1. The flows participating in the congestion can be obtained by
searching the log files of the SDN switches with the period and location recorded previously. The log
files can be collected by the controller from the SDN switches regularly. As controlling all the SDN
switches in the network, the controller can obtain the link congestion records of the whole network.
The certificates associated with the flows participating in the link congestion and active certificates
in the same period can be found in the log files recorded by the trust-based routing policy generation
module. Thus, if a Crossfire attack is detected from the link congestion events through Algorithm 1,
the network behavior count of the certificates can be updated.

5.3 The Crossfire Attack Mitigation
The network provides differentiated services of routing according to different trust levels of

certificates to mitigate the link congestion caused by the Crossfire attack. According to the trust value
of the certificates, the certificates can be divided into several high levels, several low levels and one
medium level. The traffic from the certificates in the high trust levels can be regarded as benign traffic.
The traffic from the certificates in the low trust levels can be considered to be malicious traffic. The
traffic from certificates in the medium trust level can be treated as unidentified traffic, as the application
of the trust model requires accumulating a certain number of samples.

When link congestion occurs, the principles for differentiated routing services are as follows:

1. The traffic from certificates in the high trust levels is guaranteed to receive preferential routing.

2. The traffic from certificates in the low trust levels is restrained.

3. The traffic from certificates in the medium trust level or without a certificate is provided with
a relatively fair routing service.

4. The higher trust level a certificate is in, the higher quality of network service the traffic from
this certificate will enjoy in the link congestion.
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These principles can encourage users to use certificates in communication. It also can encourage
users to keep their certificate in the high trust levels and stimulate users to upgrade the trust level of
their certificate. The user with a higher trust level certificate will enjoy a higher-quality network service
in the link congestion. The finer the granularity of the trust level division is, the more influential the
stimulation for users will be; meanwhile, the more complex the implementation will be. Thus, it needs
balance. For the coarsest granularity, there should be one high trust level and one low trust level.

If the attacker does not use certificates to launch a Crossfire attack, the attack traffic will be
treated as in the medium trust level. The attack traffic is restrained compared with the traffic from the
certificate in the high trust levels. Moreover, the service quality of the traffic from certificates in the
high trust levels still will be guaranteed under the attack. If the attacker uses the certificate to launch
a Crossfire attack, the attack traffic will be distinguished by our trust model.

There are many other kinds of network attacks also conducted by massive traffic, such as Coremelt
attacks, scanning attacks, the traditional DDoS attacks targeting a specified server and any other kinds
of DDoS attacks. Most of these attacks do not use certificates. Thus, the traffic from these attacks will
also be restrained as the traffic from certificates in the medium trust level. The traffic from certificates
in the high trust levels can still receive a guaranteed routing service under these kinds of attacks.

We give an implementation of the trust-based routing principles based on bandwidth configura-
tion. We take the coarsest granularity of the trust levels (just three trust levels: high, medium and low) as
an example for a concise and explicit illustration. Three queues are created on each egress port of the
SDN switches corresponding to the three trust levels. The queue’s maximum and minimum available
bandwidth are set according to different trust levels for providing differentiated services. For fairness,
the bandwidth of each trust level is configured based on the number of certificates contained in the
corresponding trust level. The routing policy issued by the routing policy generation module will make
the traffic from different trust levels handled by the corresponding queue on the egress port of the
SDN switches.

When link congestion occurs, the traffic is transmitted by the minimum available bandwidth.
When the link is idle, the traffic could reach the maximum available bandwidth. The setting of the
maximum available bandwidth is to encourage the users to upgrade the trust level of their certificate.

The maximum and minimum available bandwidth of each queue can be configured as the max-
rate and min-rate in the SDN switch, respectively. The max-rate and min-rate for each trust level can be
set according to the number of certificates in each trust level. The calculating process of the max-rate
and min-rate of each trust level is shown in Algorithm 2. The inputs of Algorithm 2 are the bandwidth
of an egress port of an SDN switch BW and the number of certificates in the high, medium and low
trust level: NUMh, NUMm and NUMl. The goal of Algorithm 2 is to figure out the max-rate and min-
rate of the high, medium and low trust levels: MaxRateh, MinRateh, MaxRatem, MinRatem, MaxRatel

and MinRatel. Firstly, the number of certificates in the three trust levels are added up as SUM. Then,
the MaxRateh is equal to BW , and MinRatel is equal to 0. Afterwards, the MaxRatel depends on
the ratio of NUMl to SUM. As the MaxRatem is required to greater than MaxRatel, the MaxRatem

depends on the ratio of (NUMl + NUMm) to SUM. For the same reason, MinRatem depends on the
ratio of NUMm to (NUMh + 2 × NUMm), and MinRateh depends on the ratio of (NUMm + NUMh)

to (NUMh + 2 × NUMm). The time complexity of Algorithm 2 is O(1).
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Algorithm 2: Bandwidth configuration for the Crossfire attack mitigation
Input: The bandwidth of an egress port of an SDN switch BW , the number of certificates in the high,
medium and low trust level NUMh, NUMm and NUMl

Output: The maximum and minimum bandwidth thresholds of the high, medium and low trust levels
MaxRateh, MinRateh, MaxRatem, MinRatem, MaxRatel and MinRatel

1: Let SUM ← NUMh + NUMm + NUMl

2: Let MaxRateh ← BW , MinRatel ← 0

3: Let MaxRatel ← NUMl

SUM
× BW

4: Let MaxRatem ← NUMm + NUMl

SUM
× BW

5: Let MinRatem ← NUMm

NUMh + 2 × NUMm

× BW

6: Let MinRateh ← NUMh + NUMm

NUMh + 2 × NUMm

× BW

7: return MaxRateh, MaxRatem, MaxRatel, MinRateh, MinRatem and MinRatel

6 Performance Evaluation
6.1 Discussion of the Parameters Selection in the Trust Model
6.1.1 λ1

λ1 is the decay rate factor of the certificate’s action count for calculating TC−d. The number of
samples n0 is required to no less than a threshold, which is shown in (5). Applying γ0 = 0.95 and ε = 0.1
to (5), we can obtain n0 � 185. Thus, we set a user’s certificate has historical data of ten time-slots.
In every time slot, the certificate has twenty legal actions and zero suspicious actions. Consequently,
there are two hundred samples in the historical data. The ten historical time slots are numbered from
the −9th time slot to the 0th time slot. After the 0th time slot, the certificate will have zero legal actions
and twenty suspicious actions in each time slot. TC−d in each time slot will calculate based on the data
of all historical time slots.

Our trust model is compared with that in [16–18]. In these previous researches, an exponential
function with base μ1 has been utilized to decay the positive and negative counts in the Bayesian trust
system. The exponential function can be expressed as below:

η = μ	t
1 , (24)

where μ1 is the decay factor of the positive or negative count, μ1 ∈ [0, 1], 	t is the period from the time
slot when the positive or negative count recorded to the current time slot. The comparison between
using our forgetting curve and the exponential function with base μ to calculate TC−d is presented in
Fig. 6.

Fig. 6a shows TC−d calculated by our trust model, in which the decay function is the exponential
function with base e, in different time slots. λ1 is set to 34, 13 and 6 separately. The situation without
time decay is also compared. TC−d decreases with time. The decay function makes TC−d declined faster
than the situation without time decay. The smaller λ1 is, the faster the decay rate of TC−d will be.
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Figure 6: A comparison of using two decay functions to calculate TC−d when λ1 and μ1 take different
values

In the 10th time slot, the count of legal and suspicious actions are equal, which is two hundred.
Without time decay, TC−d is 0.5 in this time slot. The choice of λ1 depends on how fast TC−d is excepted
to decay. For example, we assume that a certificate with suspicious actions no less than half is defined
as in the low trust level. Thus, TC−d should be less than the upper bound of the low trust level beginning
from the 10th time slot. If the upper bound of the low trust level is 0.43. TC−d is 0.4275 when λ1 = 34,
which is the maximal integer that makes TC−d less than 0.43 in the 10th time slot. Thus, λ1 is suggested
to be 34.

Fig. 6b illustrates TC−d calculated by the decay function, which is the exponential function with
base μ1, proposed in previous researches in different time slots. μ1 is set to 0.9, 0.8 and 0.6 separately.
The situation without time decay is also compared. TC−d declines with time. The decay function makes
TC−d dropped faster than the situation without time decay. The smaller μ1 is, the faster the decay rate
of TC−d will be. When μ1 = 0.9, TC−d is 0.2613 in the 10th time slot. When μ1 = 0.8, TC−d is 0.1 in the
10th time slot. Moreover, when μ1 = 0.6, TC−d attenuated to 0.1 in the 5th time slot. The decay rate of
the exponential function with base μ1 is too fast. A tiny decrease in μ1 will lead to a huge drop in the
decay rate. Taking the same example as in our scheme, if the upper bound of the low trust level is 0.43,
μ1 should be greater than 0.9 and less than 1. The choice scope of μ1 is very narrow. Hence, the decay
rate in our scheme is more appropriate.

6.1.2 λ2

λ2 is the decay rate factor of the active count of user’s or CA’s certificate for calculating ω1 and
ω2. We choose the active days in the recent six months to calculate the user activity. One time slot is
set as a month. The maximal active count of a time slot is 31 days. The maximal count of user activity
is defined as 30 active days in each of the three months and 31 active days in each of the other three
months. ω1 for the maximal count of user activity is calculated for selecting λ2. The half-life of the
active count, t0, is also calculated for comparison. According to (21), t0 can be calculated as follows:

t0 = λ2 × ln 2. (25)
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The forgetting curve in our trust model is also compared with an exponential function with base
μ2. The exponential function is modeled as follows:

ϕ = μ2
	t, (26)

where μ2 is the decay factor of the active count of the user’s or CA’s certificate, μ2 ∈ [0, 1], 	t is the
period from the time slot when the active count recorded to the current time slot. ω1 of the certificate
with the maximal count of user activity and t0 when λ2 and μ2 take different values are depicted in
Fig. 7.

Figure 7: A comparison of using two decay functions to calculate ω1 and t0 when λ2 and μ2 take different
values

Fig. 7a demonstrates ω1 for the maximal count of user activity and t0 calculated by our trust model
when λ2 takes different values. The exponential function with base e is utilized as the decay function.
ω1 for the maximal count of user activity and t0 both raise when λ2 increases. The rising rate of ω1 is
slower and slower, while t0 has linear growth.

The enhancement of ω1 is at the cost of the extension of t0. t0 should not be far greater than
the period used to calculate user activity, which is six months in this experiment. If t0 is too big, the
attenuated effect of the decay function for the active count is too faint. Meanwhile, ω1 for the maximal
count of user activity should be as large as possible. Therefore, it should make a balance between ω1

and t0. When λ2 enhances from 12 to 30, t0 increases 12.5 (from 8.3 to 20.8); meanwhile, ω1 rises just
0.1 (from 0.8 to 0.9). The rising rate of ω1 is too slow, and the cost of t0 is too expensive when ω1 is
greater than 0.8. Thus, λ2 is suggested to be 12 as ω1 for the maximal count of user activity is 0.8, and
t0 is 8.3.

Fig. 7b presents ω1 for the maximal count of user activity and t0 calculated by the decay function
proposed in previous researches. The exponential function with base μ2 is applied as the decay
function. t0 and ω1 for the maximal count of user activity both increase as μ2 grows, and the rising
rates both are faster and faster. When μ2 = 0.9 (the point between 13/15 and 14/15), ω1 for the
maximal count of user activity is 0.77, and t0 is 6.58. As mentioned above, t0 should be a bit more than
six, and ω1 for the maximal count of user activity should be as large as possible. Thus, μ2 should be
larger than 0.9. However, the growth rate of t0 and ω1 is too fast when μ2 is greater than 0.9. Therefore,
a tiny growth in μ2 will lead to a huge rise in t0 and ω1. For example, when μ2 = 14/15 ≈ 0.933, ω1 for
the maximal count of user activity is 0.83, and t0 is 10.05. This value of t0 is too large as the period for
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calculating user activity is six months. Thus, the appropriate value of μ2 is in (0.9, 0.933). The scope
for choosing μ2 is also very narrow. Hence, it is harder to find an appropriate value of μ2 to balance
the value of t0 and ω1 compared with our scheme.

6.2 The Accuracy of Detection
Our link congestion detection utilizes the method proposed in [6]. The detection accuracy of link

congestion is 100%, as shown in [6]. Moreover, the Crossfire attack identification depends on the
judgment of the connectivity of the graph constructed by uncongested links. The connectivity of a
given graph is determinate. Therefore, the accuracy of the Crossfire attack identification is also 100%.

6.3 The Effectiveness of Congestion Mitigation
Assuming a trust model has been given, we illustrate how the distribution of the certificates in

each trust level affects the link congestion mitigation in this section. We evaluate two contrasting
distribution of the certificates. The two distributions are shown as follows:

1) The number of certificates in each trust level is imbalanced, denoted as distribution1.

2) The number of certificates in each trust level is equal, denoted as distribution2.

In distribution1, the most common case is that the certificates are concentrated at the medium
level. Thus, we choose the normal distribution as an example. We assume the trust values of the
certificates obey the normal distribution N(1/2, (1/6)2). In a normal distribution, about 68.2% of
values are within one standard deviation away from the mean; about 95.5% of the values lie within
two standard deviations; about 99.7% are within three standard deviations. Therefore, 99.7% of the
trust value are within (0, 1) in N(1/2, (1/6)2). Dividing (0, 1) into three intervals equally, about 68.2%
of the certificates are in the medium trust level. And the high and low trust level each account for about
15.9%. Inputting the following values (27) into Algorithm 2, we can obtain the bandwidth threshold
for the queues of different trust levels in distribution1, as shown in Table 1.⎧⎨
⎩

BW = 5 Mbps,
NUMh = NUMl = 15.9%,
NUMm = 68.2%,

(27)

Table 1: Bandwidth threshold for the queues of different trust levels in distribution1

The trust level of the queue Max-rate Min-rate

High 5 Mbps 2.76 Mbps
Medium 4.21 Mbps 2.24 Mbps
Low 0.8 Mbps 0

In distribution2, about 33.33% of the certificates are in each trust level. Thus, the bandwidth
threshold for the queues of different trust levels in distribution2, as depicted in Table 2, can be derived
by taking the following values (28) into Algorithm 2 as input.{

BW = 5 Mbps,
Numh = Numm = Numl = 33.33%, (28)

We use Mininet to simulate an SDN system. Mininet is run on a laptop with Intel Core i7-7600U
2.8 GHz CPU and 16 GB memory. A Floodlight OpenFlow controller is run on the same laptop. The
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network topology in Mininet is shown in Fig. 8. The seven OpenFlow switches are all managed by the
Floodlight controller. The traffic from three trust levels is sent from the IoT devices Host1, Host2 and
Host3, and received by the decoy servers Decoy1, Decoy2 and Decoy3. The traffic is generated and
received by the software D-ITG [33]. The target links are the link between the SDN switch s1 and s7
and between s7 and s2. The target switch is s7. The network behind s7 is the target area. The bypass
switch s6 is only used for rerouting in the comparison experiment. The bandwidth of the target link
and rerouting link is both five megabits per second (Mbps).

Table 2: Bandwidth threshold for the queues of different trust levels in distribution2

The trust level of the queue Max-rate Min-rate

High 5 Mbps 3.33 Mbps
Medium 3.33 Mbps 1.67 Mbps
Low 1.67 Mbps 0
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Figure 8: The network topology in the simulation

Our framework is compared with the rerouting mechanism proposed in [6,34]. Optimized Packet
Distributor (OPD) [34] is the most recent SDN-based rerouting scheme for mitigating the Crossfire
attack. OPD uses the same attack detection mechanism as [6]. After the attack has been detected, the
traffic is rerouted by a load balance algorithm. However, OPD has not identified the malicious traffic
and just mitigated the link congestion. To evaluate our scheme in the worst condition, we ignore the
run time of the load balance algorithm in [34]. Thus, Al Farooq et al. [34] have the same rerouting
performance as [6].

We evaluate the effectiveness of differentiated services through the following parameters: through-
put, delay and jitter. The performance evaluation of distribution1 and distribution2 is presented in
Figs. 9 and 10, respectively. Figs. 9a and 10a show the sending rates of the traffic from the three
trust levels over time in the two distributions, respectively. The settings of traffic sending in the two
distributions of the certificates are the same. After the 5th second, the sending rates of the traffic from
the three trust levels are around 5 Mbps, which is the bandwidth of the target link, to ensure the target
link is congested. The traffic from each trust level lasts for 30 s. The data in the first 20 s are presented.
Moreover, the traffic from the three trust levels is sent successively at intervals of one second in the
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beginning. The traffic from the high trust level began first, then the medium trust level and the low trust
level last.

Figure 9: The performance evaluation of distribution1

Figure 10: The performance evaluation of distribution2

The receiving rates of the traffic from the three trust levels over time in the two distributions are
illustrated in Figs. 9b and 10b, respectively. In Fig. 9b, the receiving rate of the traffic from the high
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trust level is around 2.5 Mbps, from the medium trust level is around 2 Mbps, from the low trust level is
almost zero. In Fig. 10b, the receiving rate of the traffic from the high trust level is around 3 Mbps, from
the medium trust level is around 1.5 Mbps, from the low trust level is almost zero. The receiving rate
of the traffic from every trust level is restrained below the corresponding min-rate shown in Tables 1
and 2.

The congestion on the traffic from the high trust level obtains the most mitigation. In contrast, the
traffic from the low trust level receives the most restraint. Meanwhile, relatively fair routing services are
provided to the traffic from the medium trust level. The number of the medium trust level certificates in
distribution1 (account for 68.2%) is more than that in distribution2 (account for 33.33%). The receiving
rate of the traffic from the medium trust level in Fig. 9b is higher than that in Fig. 10b. In other words,
as the ratio of certificates in the high trust level increases, the restraining of the traffic from the other
two trust levels will also enhance.

Figs. 9c and 10c depict the delay of the traffic from the three trust levels over time in the two
distributions, respectively. The delay of the traffic from the low trust level has a linear growth in both
distributions. After the 5th second, the delay of the traffic from the high and medium trust levels
becomes nearly constant at a small value. In Fig. 9c, the delay of the traffic from the high trust level is
about 1.6 ms, from the medium trust level is about 2.0 ms after the 5th second. In Fig. 10c, the delay
of the traffic from the high trust level is about 1.3 ms, from the medium trust level is about 2.6 ms
after the 5th second. The linear growth of the delay represents that the traffic from the low trust level
is restrained, and the transmitting time keeps increasing. The delay of the traffic from the medium
trust level is greater than that from the high trust level in both distributions, as the latter has a higher
receiving rate. The delay of the traffic from the high trust level in Fig. 9c is more than that in Fig. 10c
for the same reason. Moreover, the delay of the traffic from the medium trust level in Fig. 9c is smaller
than that in Fig. 10c. This difference is because the receiving rate of the traffic from the medium trust
level in Fig. 9b is greater than that in Fig. 10b.

The jitter of the traffic from the three trust levels over time in the two distributions is presented in
Figs. 9d and 10d, respectively. The jitter of the traffic from the high and medium trust level is almost
zero in both distributions. In contrast, the jitter of the traffic from the low trust level is much more
significant as nearly 0.4 ms in both distributions. The almost zero jitter means that the traffic from the
high and medium trust level is received with a stable bandwidth. In contrast, a significant jitter indicates
that the traffic from the low trust level is restrained to almost zero and received intermittently.

The evaluation of the rerouting scheme is portrayed in Fig. 11 for comparison. The sending
rates, receiving rates, delay and jitter of the traffic from three trust levels over time are shown in
Figs. 11a–11d, respectively. The sending rate of each trust level is around 5 Mbps. The traffic sending
lasts for 60 s. We select the data in 20 s around the point rerouting happened for presenting in Fig. 11.
Half of the traffic on the SDN switch s1 is rerouted to the SDN switch s6 at the 11th second. The
receiving rates of the traffic from the three trust levels are around 1.5 Mbps before rerouting and
around 3 Mbps after rerouting, as illustrated in Fig. 11b. Fig. 11c depicts the delay of the traffic from
the three trust levels all descends when the rerouting happens. The delay goes up to the value before
rerouting in several seconds because the overall bandwidth is still less than the total sending rate after
rerouting. The jitter of the traffic from the three trust levels is also enhanced when the rerouting
happens and then goes down to nearly zero in several seconds, as revealed in Fig. 11d. The traffic
from the three trust levels has the same performance in the rerouting scheme.

Comparing with the rerouting scheme, Certrust can keep a high quality of services, such as higher
throughput, lower delay and lower jitter, for the traffic from the high trust level from the beginning
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of link congestion. In the rerouting scheme, the congestion is required to be detected firstly and then
change the routing policy in the network. The service quality will not change until the rerouting works.
Moreover, the traffic from any trust levels is treated equally in the rerouting scheme.

Figure 11: The evaluation of the rerouting scheme

6.4 Computational Overhead of Controller
The computational overhead of the controller for certificate verification has been evaluated in

DTLShps [15]. In DTLShps, the computational overhead of the controller is evaluated under the
number of concurrent connections from 1 to 30. To evaluate our scheme in the worst condition,
we use the data when the number of concurrent connections is 30. When the number of concurrent
connections is 30, DTLShps increases the overhead by about 1.7 times compared with the traditional
DTLS in SDN. Our framework adds a step of the trust level query compared with the handshake
process in DTLShps. The computational overhead of the trust level query for a certificate depends on
the search algorithm chosen and the size of the record. For example, the time complexity of Linear
Search is O(n) [35], Jump Search is O(

√
n) [36], and Binary Search is O(log2 n) [35]. The trust level

of certificates and the count of network behaviors are calculated in the background. Thus, these
calculating processes do not influence the delay in the handshake phase.

In our experimental environment, the average computational overhead on the controller for the
traditional DTLS handshake is 155 ms. The scheme of certificate verification increases this overhead
by 1.7 times, as illustrated in [15]. Thus, the computational overhead on the controller for the scheme
of certificate verification is 155 × (1 + 1.7) = 418.5 ms. The average time for searching the trust
level of a certificate in a record with 100 items using the linear search algorithm is far less than 1 ms
in the worst condition and can be ignored. The average time from the controller sent the rerouting
policy to the delay of the traffic started falling, as shown in Fig. 11c, is in the range of 1 to 2 s. As
the statistical frequency of our experiment is per second, we can not obtain a more precise value of
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the extra delay for rerouting. All the average values above are calculated over 100 samples. Although
inevitably increasing the computational overhead on the controller in the handshake phase, Certrust
has no delay in mitigating the link congestion. In contrast, the rerouting scheme adds no delay in the
handshake phase but inevitably generates extra delay for rerouting.

7 Conclusion

We proposed a certificate-based framework, Certrust, to mitigate the Crossfire attack over SDN
in the IoT scenarios. The malicious flows in the Crossfire attack were identified by the trust level of the
certificates. The trust of the certificate was modeled by the Bayesian trust system combining with the
forgetting curve. Moreover, the trust model was calculated based on the participation of the certificate
in each Crossfire attack. For detecting the attack accurately, a method based on graph connectivity was
also proposed to detect the Crossfire attack from the link congestion events. Finally, four trust-based
routing principles and their implementation were proposed to mitigate the link congestion caused by
the Crossfire attack.

Certrust settles link congestion in real-time and identifies the Crossfire attack in the background.
The link congestion is mitigated at the beginning without any delay for attack detection. The user with
a good reputation will receive a high-quality service under the Crossfire attack. In contrast, the user
with a poor reputation will suffer a hard time under the Crossfire attack. The traffic from users, who
do not use certificates, is treated the same as the traffic from certificates with a medium reputation. If
the attack traffic does not use certificates, the attack traffic will also be restrained compared with the
traffic from certificates with a good reputation. Thus, the service quality of the traffic from certificates
with a good reputation will always be guaranteed. This guarantee will also encourage users to use
certificates in communication.

The experiment illustrated that the decay rate of our forgetting curve is more moderate and
appropriate for the Bayesian trust system than that of the decay function proposed in the previous
researches. Although the delay in the handshake phase of a secure session is inevitably increased by
about 1.7 times, Certrust performed more effectively in mitigating link congestion than the rerouting
schemes.

With the rapid development of IoT, certificates will be more and more widely used. Although
certificates bring extra overhead compared with Pre-Shared Key (PSK) for authentication in IoT
devices, one certificate can be authenticated by multiple communication peers. On the contrary, one
PSK can correspond only to one communication peer, and the PSK also needs to be configured on the
communication peer previously. The more peers an IoT device needs to communicate with, the more
prominent the advantage of certificates will be. Furthermore, it is more and more popular to disguise
malicious traffic as regular traffic to improve the success rate of attacks. Thus, with the wide usage
of certificates in the future, more and more attacks will also use certificates. Therefore, the proposed
trust model of certificates will be applied to protect against more attacks in the future.
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