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We establish uniformbounds for oscillatory singular integrals as well as oscillatory singular integral operators.We allow the singular
kernel to be given by a function in the Hardy space 𝐻1(S𝑛−1), while such results were known previously only for kernels in L log
𝐿(S𝑛−1), a proper subspace of 𝐻1(S𝑛−1). One of our results established a 𝐿𝑝(𝑤) → 𝐿

𝑝
(𝑤) bound for certain weights. At the same

time, it provides a solution to an open problem in Lu (2005).

1. Introduction

In this paper we establish uniform bounds for oscillatory
singular integrals. We consider two types of oscillatory
singular integrals, which will be described later.

Let 𝑛 ≥ 2 and S𝑛−1 denote the unit sphere in R𝑛 equipped
with the induced Lebesgue measure 𝜎. For an integrable
functionΩ : S𝑛−1 → C satisfying

∫
S𝑛−1

Ω𝑑𝜎 = 0, (1)

we define

𝐾 (𝑥) =

Ω (𝑥
󸀠
)

|𝑥|
𝑛
, (2)

where 𝑥󸀠 = 𝑥/|𝑥| for 𝑥 ∈ R𝑛 \ {0}. For 𝑑,𝑚 ∈ N, let

P (𝑑,𝑚)

= {𝑃 : R𝑚 󳨀→ R : 𝑃 be a polynomial with deg (𝑃)≤ 𝑑}.
(3)

Type I. An oscillatory integral of type I is given by

𝐼
𝑛
(Ω, 𝑃) = p.v. ∫

R𝑛
𝑒
𝑖𝑃(𝑥)

𝐾 (𝑥) 𝑑𝑥, (4)

where 𝐾 is given by (2) and 𝑃 is a polynomial on R𝑛. For a
given Ω : S𝑛−1 → C and 𝑑 ∈ N the main concern is to estab-
lish a bound for

sup
𝑃∈P(𝑑,𝑛)

󵄨󵄨󵄨󵄨𝐼𝑛 (Ω, 𝑃)
󵄨󵄨󵄨󵄨 . (5)

Previous results in this regard include Stein [1] for Ω ∈

𝐿
∞
(S𝑛−1) and Papadimitrakis and Parissis [2] for Ω ∈

𝐿 log 𝐿(S𝑛−1) which improved Stein’s result.

Type II. A type II oscillatory singular integral is actually an
integral operator of the form

𝑇
Ω,𝑄

: 𝑓 󳨀→ p.v. ∫
R𝑛
𝑒
𝑖𝑄(𝑥,𝑦)

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦, (6)

where𝐾 is given by (2) and𝑄 is a real-valued polynomial on
R𝑛 × R𝑛. Ricci and Stein [3] showed that, if Ω ∈ 𝐶

1
(S𝑛−1),

𝑇
Ω,𝑄

is bounded on 𝐿
𝑝
(R𝑛). Subsequently Lu and Zhang

[4] and Jiang and Lu [5] established the same bounds for
‖𝑇
Ω,𝑄
‖
𝑝,𝑝

under the weaker conditions Ω ∈ 𝐿
1+𝜖
(S𝑛−1) and

Ω ∈ 𝐿 log 𝐿(S𝑛−1), respectively.
We will now state our main results, beginning with oscil-

latory singular integrals of Type II.
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A set 𝑅 in R𝑛 is called a rectangle if there is an orthonor-
mal basis {𝑒

1
, . . . , 𝑒

𝑛
} of R𝑛 (which may depend on 𝑅) such

that

𝑅 =

{

{

{

𝑛

∑

𝑗=1

𝑥
𝑗
𝑒
𝑗
: 𝑎
𝑗
≤ 𝑥
𝑗
≤ 𝑏
𝑗
, for 1 ≤ 𝑗 ≤ 𝑛

}

}

}

. (7)

In other words, what we call a rectangle in R𝑛 is simply any
rotation of an arbitrary 𝑛-cell [𝑎

1
, 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑛
, 𝑏
𝑛
]. Let R

𝑛

denote the collection of all rectangles in R𝑛.

Definition 1. Let 𝑝 ∈ (1,∞), and let 𝑤 be a nonnegative,
locally integrable function on R𝑛. We say that 𝑤 is in the
weight class 𝑉

𝑝
if

sup
𝑅∈R
𝑛

(
1

|𝑅|
∫
𝑅

𝑤 (𝑥) 𝑑𝑥)(
1

|𝑅|
∫
𝑅

𝑤(𝑥)
−1/(𝑝−1)

𝑑𝑥)

𝑝−1

< ∞.

(8)

It is easy to see that𝑉
𝑝
is a subcollection of thewell-known

weight class 𝐴
𝑝
of Muckenhoupt [6, 7]. Examples of weights

in 𝑉
𝑝
include all weights of the form |𝐺(𝑥)|

𝛼, where 𝐺(𝑥) is a
polynomial in R𝑛 and −1 < 𝛼 deg(𝐺) < 𝑝 − 1.

Theorem 2. Let 𝑄(𝑥, 𝑦) be a real-valued polynomial on R𝑛 ×
R𝑛. Suppose that 𝑤 ∈ 𝑉

𝑝
, Ω ∈ 𝐻

1
(S𝑛−1) and Ω satisfies (1).

Then the operator 𝑇
Ω,𝑄

is bounded on 𝐿𝑝(R𝑛, 𝑤) for 1 < 𝑝 <
∞, with a bound on its norm which may depend on the degree
of 𝑄 but is otherwise independent of the coefficients of 𝑄.

The space 𝐻1(S𝑛−1) is the Hardy space on the unit
sphere. Since 𝐿 log 𝐿(S𝑛−1) is a proper subspace of 𝐻1(S𝑛−1),
Theorem 2 represents an improvement over results men-
tioned earlier. By taking 𝑤 = 1, it answers an open question
in [8, page 52] in the affirmative.

Our second result has the same flavor as the first, but it
concerns Type I oscillatory singular integrals instead.

Theorem 3. Suppose that Ω ∈ 𝐻
1
(S𝑛−1) and Ω satisfies (1).

Then
sup
𝑃∈P(𝑑,𝑛)

󵄨󵄨󵄨󵄨𝐼𝑛 (Ω, 𝑃)
󵄨󵄨󵄨󵄨 ≤ 𝑐𝑛 (1 + log 𝑑) ‖Ω‖𝐻1(S𝑛−1), (9)

where 𝑐
𝑛
is a constant independent of 𝑑 and Ω.

Our result in this regard is built on the work of Papadim-
itrakis and Parissis who gave the following bound in [2]:

sup
𝑃∈P(𝑑,𝑛)

󵄨󵄨󵄨󵄨𝐼𝑛 (Ω, 𝑃)
󵄨󵄨󵄨󵄨 ≤ 𝑐 (1 + log 𝑑) (‖Ω‖

𝐿 log𝐿(S𝑛−1) + 1) . (10)

They also showed the logarithmic growth of the bound in
𝑑 to be best possible. Our bound, while dependent on
the dimension 𝑛, provides an improvement over the factor
(‖Ω‖
𝐿 log𝐿 + 1).

2. Proofs of Theorems 2 and 3

We will begin by recalling the atomic decomposition for
𝐻
1
(S𝑛−1).

Definition 4. A measurable function 𝑎(⋅) on S𝑛−1 is called a
regular𝐻1 atom if it satisfies the following:

(i) ∫S𝑛−1 𝑎(𝑦)𝑑𝜎(𝑦) = 0,

(ii) supp(𝑎) ⊆ S𝑛−1 ∩ 𝐵(𝜃
0
, 𝜌) for some 𝜃

0
∈ S𝑛−1 and

𝜌 > 0, where 𝐵(𝜃
0
, 𝜌) = {𝑦 ∈ R𝑛 : |𝑦 − 𝜃

0
| < 𝜌},

(iii) ‖𝑎‖
∞
≤ 𝜌
−𝑛+1.

An exceptional atom is just an 𝐿∞ function 𝑎(⋅) on S𝑛−1
satisfying ‖𝑎‖

∞
≤ 1.

The following result is from [9, 10].

Lemma 5. For every ℎ ∈ 𝐻1(S𝑛−1) there exist {𝜆
𝑘
} ⊂ C and

𝐻
1 atoms (both regular and exceptional) {𝑎

𝑘
(⋅)} such that

ℎ = ∑

𝑘

𝜆
𝑘
𝑎
𝑘
, (11)

and ‖ℎ‖
𝐻
1
(S𝑛−1) ≈ ∑𝑘 |𝜆𝑘|.

Proof of Theorem 2. Let 𝑑 = deg(𝑄). It suffices to show that,
for 1 < 𝑝 < ∞, there exists a 𝐶(𝑛, 𝑑, 𝑝, 𝑤) > 0 such that
󵄩󵄩󵄩󵄩𝑇Ω,𝑄𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛,𝑤) ≤ 𝐶 (𝑛, 𝑑, 𝑝, 𝑤) ‖Ω‖𝐻1(S𝑛−1)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛,𝑤), (12)

for all 𝑓 ∈ 𝐶
∞

0
(R𝑛). Since the sum in (11) converges in the

sense of distribution, by Lemma 5, we only need to prove
󵄩󵄩󵄩󵄩𝑇Ω,𝑄

󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛,𝑤)→𝐿𝑝(R𝑛,𝑤) ≤ 𝐶 (𝑛, 𝑑, 𝑝, 𝑤) , (13)

when Ω is a regular atom.
Belowwe will assume thatΩ(⋅) = 𝑎(⋅) satisfies Conditions

(i)–(iii) in Definition 4. Obviously we may also assume that
𝜌 ∈ (0, 1/4). We also extendΩ to be a homogeneous function
of degree 0 by settingΩ(𝑥) = Ω(𝑥/|𝑥|) for 𝑥 ∈ R𝑛 \ {0}. Let𝑀
be an 𝑛×𝑛 orthogonalmatrix such that 𝜃

0
𝑀
𝑡
= (0, . . . , 0, 1) =

e. We define the linear transformation Γ on R𝑛 by

Γ𝑦 = 𝑦(
𝜌𝐼
𝑛−1

0

0 1
)𝑀, (14)

where 𝐼
𝑛−1

denotes the (𝑛 − 1) × (𝑛 − 1) identity matrix and
𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
) = (𝑦̃, 𝑦

𝑛
). By letting Ψ(𝑥, 𝑦) = 𝑄(Γ𝑥, Γ𝑦),

𝑓
Γ
(𝑥) = 𝑓(Γ𝑥), 𝑤

Γ
(𝑥) = 𝜌

𝑛−1
𝑤(Γ𝑥), and

ℎ (𝑥) = 𝜌
𝑛−1

(
|𝑥|
𝑛
Ω (Γ𝑥)

|Γ𝑥|
𝑛

) , (15)

we get

(𝑇
Ω,𝑄
𝑓) (Γ𝑥) = (𝑇

ℎ,Ψ
𝑓
Γ
) (𝑥) . (16)

If ℎ(𝑥) ̸= 0 for some 𝑥 = (𝑥̃, 𝑥
𝑛
) ∈ R𝑛 \ {0}, then by (i) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜌𝑥̃, 𝑥
𝑛
)

󵄨󵄨󵄨󵄨(𝜌𝑥̃, 𝑥𝑛)
󵄨󵄨󵄨󵄨

− e
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜌, (17)

which implies that

𝑥
𝑛
> (1 −

𝜌
2

2
)
󵄨󵄨󵄨󵄨(𝜌𝑥̃, 𝑥𝑛)

󵄨󵄨󵄨󵄨 .
(18)
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Thus,

|𝑥| = 𝜌
−1
(
󵄨󵄨󵄨󵄨(𝜌𝑥̃, 𝑥𝑛)

󵄨󵄨󵄨󵄨

2

+ (𝜌
2
− 1) 𝑥

2

𝑛
)
1/2

< 𝜌
−1
[1 + (𝜌

2
− 1)(

1 − 𝜌
2

2
)

2

]

1/2

×
󵄨󵄨󵄨󵄨(𝜌𝑥̃, 𝑥𝑛)

󵄨󵄨󵄨󵄨 ≤
√2 |Γ𝑥| .

(19)

Therefore we have

‖ℎ‖
∞
≤ 2
𝑛/2
. (20)

By its definition and a well-known argument, ℎ is homo-
geneous of degree 0 and satisfies (1). Also observe that
deg(Ψ) = deg(𝑄) and 𝑤

Γ
is an 𝐴

𝑝
weight with an 𝐴

𝑝
bound

independent of Γ. Thus, byTheorem 5 in [11] andTheorem 5
of [5], there is a 𝐶(𝑛, 𝑑, 𝑝, 𝑤) > 0 such that

󵄩󵄩󵄩󵄩𝑇Ω,𝑄
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛 ,𝑤)→𝐿𝑝(R𝑛 ,𝑤) =

󵄩󵄩󵄩󵄩𝑇ℎ,Ψ
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑛,𝑤

Γ
)→𝐿
𝑝
(R𝑛,𝑤

Γ
)

≤ 𝐶 (𝑛, 𝑑, 𝑝, 𝑤) .

(21)

This proves Theorem 2.

Proof of Theorem 3. Let 𝑃 ∈ P(𝑑, 𝑛), and let 𝑄(𝑥, 𝑦) = 𝑃(𝑥 −
𝑦). For a Ω ∈ 𝐻

1
(S𝑛−1) which satisfies (1), we write

Ω = ∑

𝑗

𝜆
𝑗
𝑎
𝑗
, (22)

where {𝑎
𝑗
} are regular𝐻1 atoms and ‖Ω‖

𝐻
1 ≈ ∑

𝑗
|𝜆
𝑗
|. By the

proof ofTheorem 2, for each 𝑗, there exist a 𝑃
𝑗
∈ P(𝑑, 𝑛) and

a function 𝜔
𝑗
on S𝑛−1 which satisfies (1) and ‖𝜔

𝑗
‖
∞
≤ 2
𝑛/2

such that
󵄩󵄩󵄩󵄩𝑇Ω,𝑄

󵄩󵄩󵄩󵄩2,2
≤ ∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜔
𝑗
,𝑄
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2,2
, (23)

where𝑄
𝑗
(𝑥, 𝑦) = 𝑃

𝑗
(𝑥 − 𝑦). By (23) andTheorem 1 in [2], we

have
󵄨󵄨󵄨󵄨𝐼𝑛 (Ω, 𝑃)

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩𝑇Ω,𝑄

󵄩󵄩󵄩󵄩2,2
≤ ∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜔
𝑗
,𝑄
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2,2

≤ 𝑐 (1 + log𝑑)(∑
𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝜔
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿 log𝐿(S𝑛−1))

≤ 𝑐
𝑛
(1 + log𝑑) ‖Ω‖𝐻1(S𝑛−1),

(24)

which proves Theorem 3.
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