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Abstract
This paper studies the numerical computation of several conformal invariants of sim-
ply connected domains in the complex plane including, the hyperbolic distance, the
reduced modulus, the harmonic measure, and the modulus of a quadrilateral. The used
method is based on the boundary integral equation with the generalized Neumann ker-
nel. Several numerical examples are presented. The performance and accuracy of the
presented method is validated by considering several model problems with known
analytic solutions.

Keywords Conformal mappings · Hyperbolic distance · Reduced modulus ·
Harmonic measure · Quadrilateral domains

Mathematics Subject Classification 65E05 · 30C85 · 31A15 · 30C30

1 Introduction

Classical function theory studies analytic functions and conformal maps defined on
subdomains of the complex plane C . Most commonly, the domain of definition of the
functions is the unit disk D = {z ∈ C | |z| < 1}. The powerful Riemann mapping
theorem says that a given simply connected domain G with non-degenerate boundary
can be mapped conformally onto the unit disk and it enables us to extend results
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originally proven for functions defined in the unit disk to the case when the domain
of definition is a simply connected domain. Therefore for the convenient analysis
of distances and other metric characteristics of sets it is natural to use conformally
invariant distances and set functions. This works fine in the cases when the Riemann
mapping function is known explicitly, such as in the cases described in [12]. Polygons
form a large class of plane domains for which the Riemann mapping function can be
given in terms of the Schwarz–Christoffel formula which is semi-explicit, although it
involves unknown accessory parameters. A numerical implementation of conformal
mapping methods based on the Schwarz–Christoffel formula is documented in [6]
and the Schwarz–Christoffel Toolbox [5] is widely used to solve mapping problems in
concrete applications. The so called crowding phenomenon, an inherent computational
challenge in these mapping problems, is described in [6, pp. 20–21], [21, pp. 75–
77]. This phenomenon can be observed already in numerical conformal mapping of
rectangles onto a half-plane when the quotient m > 1 of the side lengths is large
enough. The critical value of m depends on the computer floating point arithmetic
and for double precision arithmetic the critical value lies in the range [10, 20] [6,
pp. 20–21], [21, pp. 75–77].

We apply here the boundary integral equation method as developed in [14,16,17,
19,25] to compute numerically conformal invariants such as the hyperbolic metric,
harmonic measure, reduced modulus, and the modulus of a quadrilateral [7,8,21,23].
The cases considered here include, in particular, classes of domains towhich the earlier
methods do not seem to apply. Our methods are described in the respective sections
of the paper, they are implemented in MATLAB, and the results are summarized by
tabular data and graphics. We also give experimental error estimate in some simple
cases. We include some code snippets within the text to indicate implementation
details. All the computer codes of our computations are available in the internet link
https://github.com/mmsnasser/ci-simply.

Section 2 reviews the boundary integral equation method for computing the confor-
mal mapping from bounded and unbounded simply connected domains onto circular
domains. This method will be applied in the remaining sections, sometimes together
with auxiliary procedures. In Sect. 3 we use our method to compute the hyperbolic
distance for several examples. Section 4 deals with the reduced modulus for bounded
and unbounded simply connected domains. Section 5 deals with the harmonicmeasure
for a simply connected polygonal domains. In Sect. 6, we present an iterative method
for numerical computation of the conformal mapping from a quadrilateral onto a
rectangle. We also present an analytic example to illustrate the effect of crowding
phenomenon on the accuracy of such mapping.

2 Conformal Mappings of Simply Connected Domains

In this section, we review a numerical method for computing the conformal mapping
from bounded and unbounded simply connected domains onto the unit disk and the
exterior unit disk, respectively. The method is based on the boundary integral equation
with the generalized Neumann kernel [16–18,25].
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2.1 The Generalized Neumann Kernel

Let G be a bounded or an unbounded simply connected domain bordered by a closed
smooth Jordan curve Γ = ∂G. The orientation of the boundary Γ is counterclockwise
when G is bounded and clockwise when G is unbounded. We parametrize Γ by a 2π -
periodic complex function η(t), t ∈ [0, 2π ].We assume that η(t) is twice continuously
differentiable with η′(t) �= 0 (the presented method can be applied also if the curve
Γ has a finite number of corner points but no cusps [19]). We denote by H the space
of all Hölder continuous real functions on the boundary Γ .

Let A be the complex function [17]

A(t) =
{

η(t) − α, if G is bounded,
1, if G is unbounded.

(1)

The generalized Neumann kernel N (s, t) is defined for (s, t) ∈ [0, 2π ] × [0, 2π ] by

N (s, t) := 1

π
Im

(
A(s)

A(t)

η̇(t)

η(t) − η(s)

)
. (2)

The kernel N (s, t) is continuous [25]. Hence, the integral operator N defined on H
by

Nρ(s) :=
∫
J
N (s, t)ρ(t)dt, s ∈ [0, 2π ],

is compact. The integral equation with the generalized Neumann kernel involves also
the following kernel

M(s, t) := 1

π
Re

(
A(s)

A(t)

η̇(t)

η(t) − η(s)

)
, (s, t) ∈ [0, 2π ] × [0, 2π ]. (3)

which is singular and its singular part involves the cotangent function [25]. The integral
operator M defined on H by

Mρ(s) :=
∫
J
M(s, t)ρ(t)dt, s ∈ [0, 2π ],

is singular, but it is bounded on H [25].

2.2 Bounded Simply Connected Domain

Letw = Φ(z) be the unique conformal map of the bounded simply connected domain
G onto the unit disk |w| < 1 such that

Φ(α) = 0 and Φ ′(α) > 0. (4)
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750 M. M. S. Nasser, M. Vuorinen

Then, the mapping function Φ with normalization (4) can be written for z ∈ G ∪ Γ

as [18, § 3]
Φ(z) = c(z − α)e(z−α) f (z) (5)

where the function f (z) is analytic in G with the boundary values A(t) f (η(t)) =
γ (t)+h+iρ(t), A(t) = η(t)−α, the function γ is defined by γ (t) = − log |η(t)−α|,
ρ is the unique solution of the integral equation

(I − N)ρ = −Mγ, (6)

and c = e−h where the constant h is given by

h = 1

2
[Mρ − (I − N)γ ]. (7)

Notice that Φ ′(α) = c = e−h > 0.
Instead of the normalization (4), we can assume that the mapping function Φ

satisfies the normalization

Φ(α) = 0 and Φ ′(α) = 1. (8)

In this case, the function Φ maps the domain G onto the disk |w| < R with a positive
constant R. The constant R is uniquely determined by G and the point α and is called
the conformal radius of G with respect to α and is denoted by R(G, α). For this case,
in view of (5), we can write the mapping function Φ for z ∈ G ∪ Γ as

Φ(z) = (z − α)e(z−α) f (z) (9)

where the function f is as in (5), i.e., we divide the right-hand side of (5) by c = e−h .
Hence, the boundary values of the mapping function Φ satisfy |Φ(η(t))| = 1/c = eh

which implies
R(G, α) = eh, (10)

where the constant h is as in (7).

2.3 Unbounded Simply Connected Domain

For an unbounded simply connected domain G ⊂ C with ∞ ∈ G, there exists a
unique conformal map w = Φ(z) from G onto the exterior of the unit disk |w| > 1
such that

Φ(∞) = 0 and Φ ′(∞) > 0. (11)

Then, the mapping function Φ with normalization (4) can be written for z ∈ G ∪ Γ

as [18, § 3]
Φ(z) = c(z − β)e f (z) (12)

where β is an auxiliary point in Gc = C\G and f (z) is an analytic function in G
with f (∞) = 0. The boundary values of the function f are given by A(t) f (η(t)) =
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Conformal Invariants in Simply Connected Domains 751

γ (t)+h+ iρ(t)where A(t) = 1, the function γ is defined by γ (t) = − log |η(t)−β|,
ρ is the unique solution of the integral equation (6), and c = e−h where the constant
h is given by (7). Notice that Φ ′(∞) = c = e−h > 0.

Similar to the bounded case, the normalization (11) can be replaced by

Φ(∞) = ∞ and Φ ′(∞) = 1. (13)

For the new normalization (13), the mapping functionΦ maps the unbounded domain
G onto the exterior disk |w| > Rwith a positive constant R. The constant R is uniquely
determined by G and is called the conformal radius of G with respect to ∞ and is
denoted by R(G,∞). If Φ satisfies the normalization (13), then it can be written as

Φ(z) = (z − β)e f (z), z ∈ G ∪ Γ , (14)

and its boundary values satisfy |Φ(η(t))| = 1/c = eh where the function f is as in (5)
and h is given by (7). Hence,

R(G,∞) = eh . (15)

2.4 Numerical Solution of the Boundary Integral Equation

The integral equation (6) is solved using the MATLAB function fbie in [17]. The
function fbie is based on using theMATLAB function zfmm2dpart in the toolbox
FMMLIB2D [9]. The computational cost for the overall method is O(n log n) opera-
tions where n is the number of nodes in the interval [0, 2π ]. Let et, etp, A, and gam
be the discretization vectors of the functions η(t), η′(t), A(t), and γ (t), respectively.
Then discretization vectors rho and h of the solution ρ(t) of the integral equation (6)
and the constant h in (7), respectively, can be computed by

[rho,h] = fbie(et,etp,A,gam,n,iprec,restart,gmrestol,maxit).

In the numerical experiments in this paper, the parameters in fbie are chosen as
following: iprec = 5 (the tolerances of the FMM is 0.5 × 10−15), gmrestol =
0.5 × 10−14 (the tolerances of the GMRES), restart = [ ] (the GMRES is used
without restart), and maxit = 100 (the maximum number of iterations for GMRES).

Finally, the values of the auxiliary points α in (5), (9) and β in (12), (14) have no
effects on the values of the conformalmappingΦ as long as these points are sufficiently
far away from the boundary Γ .

3 Hyperbolic Distance

For x, y ∈ D the hyperbolic distance ρD(x, y) is defined by [4,8,11]

sinh
ρD(x, y)

2
= |x − y|√

(1 − |x |2)(1 − |y|2) .
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752 M. M. S. Nasser, M. Vuorinen

The main property of the hyperbolic distance is the invariance under Möbius transfor-
mations of D onto D defined by

z �→ z − a

1 − az

where a ∈ D is fixed. In the metric space (D, ρD) one can build a non-euclidean
geometry, where the parallel axiom does not hold. In this geometry, usually called the
hyperbolic geometry of the Poincare disk, lines are circular arcs perpendicular to the
boundary ∂D . This geometry is fundamentally different from the Euclidean geometry,
but many results of Euclidean geometry have counterparts in the hyperbolic geometry
[4].

Let G be a Jordan domain in the plane. One can define the hyperbolic metric on
G in terms of the conformal Riemann mapping function Φ : G → D = Φ(G) as
follows:

ρG(x, y) = ρD(Φ(x),Φ(y)) .

This definition yields a well-defined metric, independent of the conformal mapping
Φ [4,8,11]. In hyperbolic geometry the boundary ∂G has the same role as the point
of {∞} in Euclidean geometry: both are like “horizon”, we cannot see beyond the
horizon. It turns out that the hyperbolic geometry is more useful than the Euclidean
geometry when studying the inner geometry of domains in geometric function theory.

3.1 Computing the Hyperbolic Distance for Simply Connected Domains

Let G ⊂ C be a bounded simply connected domain, let α ∈ G, and let w = Φ(z) be
the unique conformal map of G onto the unit disk |w| < 1 with the normalization (4).
Then for any two points z1 and z2 in G, we can define the hyperbolic metric ρG in the
usual way,

ρG(z1, z2) = ρD(Φ(z1),Φ(z2)) = 2 sinh−1

⎛
⎝ |Φ(z1) − Φ(z2)|√(

1 − |Φ(z1)|2
) (
1 − |Φ(z2)|2

)
⎞
⎠ .

(16)
A MATLAB function for computing the hyperbolic metric ρG(z1, z2) for any two

points z1 and z2 in the bounded simply connected domain G is given below.

function dis = hypdist (et ,etp ,n,alpha ,zo ,z)
% This function computes the hyperbolic distance dis ...

between a
% point zo and a row vector of points z, in a simply ...

connected
% domain G where:
% et , etp: the parametrization of the boundary of G ...

and its
% derivative
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Conformal Invariants in Simply Connected Domains 753

Fig. 1 The contour lines of the function u(x, y) for the L-shaped polygon for z1 = 2i (left) and z1 = 2
(right)

% n: the number of discretization points
% alpha: a given point in G
A = et -alpha;
gam =-log(abs(et -alpha));
[mu ,h] = fbie(et ,etp ,A,gam ,n,5,[],1e-14 ,200);
fet =(gam+h+i*mu)./A;
Phi = exp(-mean(h(1:n))).*(et -alpha).*exp(gam+h+i.*mu);
Phio = fcau(et ,etp ,Phi ,zo);
Phiz = fcau(et ,etp ,Phi ,z);
dis = ... ...

2* asinh(abs(Phiz -Phio)./sqrt((1-abs(Phiz).^2).
*(1-abs(Phio).^2)));

end

In the remaining part of this section, we use the MATLAB function hypdist to
compute the hyperbolic metric ρG(z1, z2) for several examples. In these examples, for
a given point z1 in G, we define the function u(x, y) for all x and y such that x + iy
is in G by

u(x, y) = ρG(z1, x + iy) (17)

Then we use the MATLAB function hypdist to compute the values of the function
u(x, y) in the domainG and plot the contour lines for the function u(x, y) correspond-
ing to the several levels.

3.2 L-Shaped Polygon

As our first example, we consider the simply connected domain G in the interior of
the L-shaped polygon with the vertices 6+ i, 1+ i, 1+ 4i, −1+ 4i, −1− i, and 6− i.
The contour lines of the function u(x, y) obtained with n = 6 × 29 discretization
points on the boundary of the L-shaped polygon are shown in Fig. 1 (left) for z1 = 2i
and in Fig. 1 (right) for z1 = 2. Table 1 presents the values of the hyperbolic metric
ρG(z1, z2) for z1 = 2i (left), z1 = 2 (right), and for several values of z2.
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754 M. M. S. Nasser, M. Vuorinen

Table 1 The values of the
hyperbolic metric ρG (z1, z2)

z1 = 2i z1 = 2
z2 ρG (z1, z2) z2 ρG (z1, z2)

1 3.50661554819086 0 2.99228771572299

2 4.91711064317017 i 3.50483278097652

3 6.47927360380709 2i 4.91711064317017

4 8.05147684115352 3i 6.52150321421451

5 9.66456147776192

Fig. 2 The contour lines of the function u(x, y) for the amoeba-shaped boundary for z1 = 2 (left) and
z1 = −1 + i (right)

3.3 Amoeba-Shaped Boundary

In the second example, we consider the simply connected domain G in the interior of
the curve Γ (amoeba-shaped boundary [3]) with the parametrization

η(t) =
(
ecos t cos2 2t + esin t sin2 2t

)
eit , 0 ≤ t ≤ 2π.

The contour lines for the function u(x, y) computed with n = 212 are shown in Fig. 2
(left) for z1 = 2 and in Fig. 2 (right) for z1 = −1 + i.

3.4 Circular Arc Quadrilateral

For the third example, we consider the simply connected domain G in the interior of
the circular arc quadrilateral consisting of the right-half of the circle with center 1 and
radius 1, the upper-half of the circle with center i and radius 1, the left-half of the
circle with center −1 and radius 1, and the lower-half of the circle with center −i and
radius 1. The contour lines for the function u(x, y) computed with n = 212 are shown
in Fig. 3 (left) for z1 = 1.5 and in Fig. 3 (right) for z1 = 0.

3.5 Circular Arc Polygon

In the fourth example, we consider the simply connected domain G in the interior of
the circular arc polygon with seven sides. The contour lines for the function u(x, y)
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Conformal Invariants in Simply Connected Domains 755

Fig. 3 The contour lines of the function u(x, y) for the circular arc quadrilateral z1 = 1.5 (left) and z1 = 0
(right)

Fig. 4 The contour lines of the function u(x, y) for the circular arc polygon z1 = 4+5i (left) and z1 = 3+3i
(right)

computed with n = 7 × 210 are shown in Fig. 4 (left) for z1 = 4 + 5i and in Fig. 4
(right) for z1 = 3 + 3i.

4 ReducedModulus

The reduced modulus for simply connected domains is defined in terms of the confor-
mal radius of simply connected domains introduced in Sect. 2.

Let G ⊂ C be a bounded simply connected domain and α ∈ G. The reduced
modulus of the domain G with respect to the point α is defined by [23, p. 16], [8,
p.168, 560], [7, pp. 26–27]

m(G, α) = 1

2π
log R(G, α), (18)

where R = R(G, α) is the conformal radius of G with respect to the point α. It
follows from this definition thatm(G, α) < 0 when R(G, α) < 1,m(G, α) = 0 when
R(G, α) = 1, and m(G, α) > 0 when R(G, α) > 1.
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756 M. M. S. Nasser, M. Vuorinen

For an unbounded simply connected domain G ⊂ C with ∞ ∈ G, the reduced
modulus of the domain G with respect to ∞ is defined by [23, p. 17]

m(G,∞) = − 1

2π
log R(G,∞), (19)

where R = R(G,∞) is the conformal radius of G with respect to ∞.

4.1 Computing the ReducedModulus of Simply Connected Domains

As was explained in Sect. 2, the conformal radius of simply connected domains can
be computed using the integral equation with the generalized Neumann kernel. For
bounded simply connected domains, it follows from (10) that the reduced modulus of
the domain G with respect to the point α is given by

m(G, α) = h

2π

where the constant h is given by (7). For unbounded simply connected domains, it
follows from (15) that the reduced modulus of the domain G with respect to the point
∞ is given by

m(G,∞) = − h

2π
.

The above method for computing the conformal radius and the reduced modulus of
bounded and unbounded simply connected domains can be implemented inMATLAB
as in the following function.

function [cr ,m] = confrad (et ,etp ,n,alpha ,type)
% This function computes the conformal radius cr=R(G,a) ...

and the
% reduced modulus m=m(G,a) for a given simply connected ...

domain G
% with respect to the point a=alpha for bounded G and ...

a=inf for
% unbounded G where:
% et , etp: the parametrization of the boundary of G ...

and its
% derivative
% n: the number of discretization points
% alpha: a given point in G for bounded G and ...

alpha=beta (beta is an
% auxiliary point in the exterior of G for unbounded G)
% type='b' for bounded G and type='u' for unbounded G
if type=='b' A = et -alpha; elseif type=='u' A = ...

ones(size(et)); end
gam = -log(abs(et -alpha));
[∼,h] = fbie(et ,etp ,A,gam ,n,5,[],1e-14 ,200);
cr = exp(mean(h));
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if type=='b' m = mean(h)/(2*pi); elseif type=='u' m = ...
-mean(h)/(2*pi); end

end

4.2 Domain Exterior to an Ellipse

As our first example, we consider the simply connected domain Gr in the exterior of
the ellipse

η(t) = cos t − ir sin t, 0 ≤ t ≤ 2π, 0 < r ≤ 1.

For r = 0, the ellipse reduces to the segment [−1, 1] and for r = 1 to the unit circle.
We can easily show that the function

z = Ψ (w) = w + 1 − r2

4

1

w

maps the domain exterior to the circle |w| = (1 + r)/2 onto the domain exterior of
the ellipse. Hence, the inverse mapping

w = Φ(z) = z

⎛
⎝1

2
+ 1

2

√
1 − 1 − r2

z2

⎞
⎠ , (20)

maps the domain exterior to the ellipse onto the domain |w| > (1 + r)/2, where the
branch of the square root is chosen such that

√
1 = 1. It is clear that the function Φ

satisfies Φ(∞) = ∞ and Φ ′(∞) = 1. Hence, R(G,∞) = (1 + r)/2 and

m(G,∞) = − 1

2π
log

1 + r

2
= 1

2π
log

2

1 + r
.

We use the MATLAB function confrad to compute the reduced modulus
m(Gr ,∞) with n = 212 for 0.005 ≤ r ≤ 1. The obtained results are shown in
Fig. 5.

4.3 Domain Interior to an Ellipse

For the second example, we consider the simply connected domain Gr in the interior
of the ellipse

η(t) = cosh r cos t + i sinh r sin t, 0 ≤ t ≤ 2π, 0 < r .

Let w = Φ(z) be the unique conformal mapping from the interior of the ellipse
onto the interior of the unit circle with the normalization Φ(0) = 0 and Φ ′(0) > 0.
The exact form of the inverse conformal mapping z = Φ−1(w) is given in [10]. In
particular, it was shown in [10] that (Φ−1)′(0) = π/(2

√
sK (s)) where s = μ−1(2r)
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Fig. 5 The computed and the exact reduced modulus of the domain Gr exterior to an ellipse (left) and the
absolute error in the computed values (right)
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Fig. 6 The computed and the exact reduced modulus of the domain Gr interior to an ellipse (left) and the
absolute error in the computed values (right)

where μ−1 is the inverse of the Grötzsch modulus function, see (28) below. Hence,
Φ ′(0) = 2

√
sK (s)/π . Thus, the mapping function Φ̂ defined by

w = Φ̂(z) = Φ(z)

Φ ′(0)
= π

2
√
sK (s)

Φ(z)

is the unique conformal mapping from the interior of the ellipse onto the

|w| <
π

2
√
sK (s)

with the normalization Φ̂(0) = 0 and Φ̂ ′(0) = 1. Thus, R(Gr , 0) = π/(2
√
sK (s))

and hence

m(Gr , 0) = 1

2π
log

π

2
√
sK (s)

, s = μ−1(2r).

We use the MATLAB function confrad to compute the reduced modulus
m(Gr , 0) with n = 212 for 0.2 ≤ r ≤ 20. The obtained results are shown in Fig. 6.
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Conformal Invariants in Simply Connected Domains 759

4.4 Slitted Unit Disk

In the third example, we consider three types of slitted unit disks. In each case the
exact reduced moduli are given in [23, p. 33].

1)G1 = D\(−1, 0]whereD is the unit disk. The exact value of the reducedmodulus
of G1 with respect to r ∈ (0, 1) is given by [23]

m(G1, r) = 1

2π
log

4r(1 − r)

1 + r
.

To use the integral equation to compute m(G1, r), we first use the auxiliary map

ζ = Φ1(z) = 2
√
r
√
z,

where the branch of the square root is chosen on the negative real line, to open up the
slit and map the region G1 onto a region Ĝ1 bordered by piecewise smooth Jordan
curve where Φ1(r) = 2r and Φ ′

1(r) = 1. Then, it follows from [23, Cor. 2.2.1] that
m(G1, r) = m(Ĝ1, 2r). We use the MATLAB function confrad to compute the
reduced modulus m(Ĝ1, 2r) with n = 212 for 0.01 ≤ r ≤ 0.99. The obtained results
are shown in Fig. 7 (left).

2) G2 = D\[r , 1) for 0 < r < 1. The exact value of the reduced modulus of G2
with respect to the origin is given by [23]

m(G2, 0) = 1

2π
log

4r

(1 + r)2
.

To compute m(G2, r), we first use the auxiliary map

ζ = Φ1(z) = 2i
√
r
√
z − r ,

where the branch of the square root is chosen on the positive real line, tomap the region
G2 onto a region Ĝ2 bordered by piecewise smooth Jordan curve whereΦ1(0) = −2r
and Φ ′

1(0) = 1. Then, m(G2, 0) = m(Ĝ2,−2r). We use the MATLAB function
confrad to compute m(Ĝ2,−2r) with n = 212 for 0.01 ≤ r ≤ 0.99. The obtained
results are shown in Fig. 7 (center).

3) G3 = D\(−1, a] for 0 ≤ a < 1. The exact value of the reduced modulus of G3
with respect to r ∈ (a, 1) is given by [23]

m(G3, r) = 1

2π
log

4(r − a)(1 − ra)(1 − r)

(1 + r)(1 − a)2
.

To compute m(G3, r), we first use the auxiliary map

ζ = Φ1(z) = 2
√
r − a

√
z − a,

where the branch of the square root is chosen on the negative real line, to map the
region G3 onto a region Ĝ3 bordered by a piecewise smooth Jordan curve where
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Fig. 7 The absolute error for G1 (left), G2 (center), and G3 (right)
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Fig. 8 The domainG
 for 
 = 8 (left) and the computed reducedmodulus for the domainG
 for 3 ≤ 
 ≤ 40
(right)

Φ1(r) = 2(r − a) and Φ ′
1(r) = 1. Hence, m(G3, r) = m(Ĝ3, 2(r − a)). We use

the MATLAB function confrad to compute m(Ĝ3, 2(r − a)) with n = 212 for
a = 0, 0.25, 0.5, 0.75 and a + 0.01 ≤ r ≤ 0.99. The obtained results are shown in
Fig. 7 (right).

4.5 Polygon

For the fourth example, we consider the simply connected domain G
 in the interior
of a polygon with 
 vertices where 
 ≥ 3 (see Fig. 8 (left) for 
 = 8). We assume that
the vertices of the polygon are given by

vk = e2kπ i/
, k = 0, 1, 2, . . . , 
 − 1.

In this example, the exact value of the reduced modulus is unknown. We use the
MATLAB function confrad to compute the reduced modulus m(G
, 0) with n =

 × 29 for 
 = 3, 4, . . . , 40. The obtained results are shown in Fig. 8. It is clear from
this figure that m(G
, 0) < 0 which means that R(G
, 0) < 1 for the above values
of 
. In other words, the conformal mapping Φ with the normalization (8) maps the
domain G
 onto a disk interior to the unit disk.
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5 Harmonic Measure

Let G be a Jordan domain in C and Γ be its boundary. Let also L be a boundary arc
on Γ such that L �= ∅ and Γ \L �= ∅. The harmonic measure of L with respect o G is
the C2(G) function u : G → (0, 1) satisfying the Laplace equation

Δu = 0

in G and u(z) → 1 when z → L and u(z) → 0 when z → Γ \ L . The harmonic
measure is one of the key notions of potential theory and it has numerous applications
to geometric function theory [8]. The harmonic measure of L with respect to G will
be denoted by ω(z, L) (see e.g., [2, p. 123], [8, Ch. I], and [22, p. 111]).

5.1 Harmonic Measure for the Unit Disk

Assume that G is the unit disk |z| < 1, Γ is the unit circle |z| = 1, and L is the right
half of the unit circle. It is clear that the Möbius transformation

z �→ z − i

iz − 1

maps the unit circle onto the real line and the interior of the unit circle onto the upper
half plane. More precisely, it maps the right half of the unit circle onto the negative
real line, maps the point i onto 0, maps the left half of the unit circle onto the positive
real line, and maps −i onto ∞. Hence, the harmonic measure of L with respect to G
is given by [2, p. 123], [8, Ch. I],

ω(z, L) = 1

π
Im log

z − i

iz − 1
, (21)

where the branch with log 1 = 0 is chosen.

5.2 Harmonic Measure for a Polygon

Assume that G is the interior domain of a polygon Γ withm vertices {z1, z2, . . . , zm},
labelled in counterclockwise orientation, and L is the segment [zk, zk+1] for k =
1, 2, . . . ,m (we define zm+1 = z1) [(see Fig. 9 (left)].

To compute ω(z, L), we discretize the parametrization η(t), 0 ≤ t ≤ 2π , of the
polygon Γ on each segment [zk, zk+1] by ns graded points on [2(k−1)π/m, 2kπ/m].
Thus, the whole polygon Γ is discretized by n = mns point ti , i = 1, 2, . . . , n in
[0, 2π ] such that zk = η(t1+(k−1)ns ) for k = 1, 2, . . . ,m. Then we use the method
presented in Sect. 3 to compute the conformal mapping ζ = Φ(z) from the interior
of Γ onto the unit disk |ζ | < 1. The mapping function Φ maps the two points zk and
zk+1 onto two points ζ1 and ζ3, respectively, on the unit circle |ζ | = 1. The segment
L is then mapped onto the arc L̂ on the unit circle |ζ | = 1 from ζ1 to ζ3. Let ζ2

123



762 M. M. S. Nasser, M. Vuorinen

-2 -1 0 1 2 3
-3

-2

-1

0

1

2

-1 0 1
-1

0

1

-1 0 1
-1

0

1

Fig. 9 The arc L between z1 and z3 and

be the point on the middle of L̂ between ζ1 and ζ3 so that ζ1, ζ2 and ζ3 arranged in
counterclockwise orientation [(see Fig. 9 (center)]. Then the Möbius transformation

w = Ψ (ζ ) = (ζ − ζ1)(ζ2 − ζ3) − i(ζ − ζ3)(ζ2 − ζ1)

(ζ − ζ3)(ζ2 − ζ1) − i(ζ − ζ1)(ζ2 − ζ3)

maps the unit disk |ζ | < 1 onto the unit disk |w| < 1 and maps the unit circle |ζ | = 1
onto the unit circle |w| = 1 such that the points ζ1, ζ2 and ζ3 are mapped onto the
points −i, 1 and i, respectively. Thus, the mapping function Ψ maps the arc L̂ on
|ζ | = 1 onto the right half of the unit circle |w| = 1 [see Fig. 9 (right)].

Finally, the mapping function

w = Ψ (Φ(z))

maps the domain G onto the disk |w| < 1 and maps the segment L on Γ onto the
right half of the unit circle |w| = 1. Hence, by (21), the harmonic measure of L with
respect to G is given by

ω(z, L) = 1

π
Im log

Ψ (Φ(z)) − i

iΨ (Φ(z)) − 1
.

The above method for computing the harmonic measure of a segment L =
[zk, zk+1] with respect to the polygon domain G can be implemented in MATLAB
as in the function hm.m where the discretization of the parametrization of the poly-
gon is computed using the MATLAB function polygonp.m (both functions can be
downloaded from https://github.com/mmsnasser/ci-simply/tree/master/harmonic

5.3 Polygon with 5 Sides

As our first example, we consider the simply connected domainG in the interior of the
polygon with 5 sides (the polygon shown in Fig. 10 and the vertices of the polygon are
2− 2i, 2+ i, 2i, −2, and −1− 3i). We use the MATLAB function hm with ns = 29 to
compute the harmonic measure ω(z, L) of each side L of the polygon with respect to
the polygon domain G. The level curves of the function ω(z, L) are shown in Fig. 10.
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Fig. 10 The level curves of the function ω(z, L) for the polygon with 5 sides

5.4 Polygon with 13 Sides

For the second example, we consider the simply connected domain G in the interior
of the polygon with 13 sides where the vertices of the polygon are 4, 4+2i, 2+4i, 4i,
−1+3i,−2+3i,−3+ i,−3,−2−2i,−1−3i,−3i, 1−2i, and 3−2i. TheMATLAB
function hm with ns = 29 is used to compute the harmonic measure ω(z, L) for each
side L of the polygon with respect to the polygon domain G. The level curves of the
function ω(z, L) for the first 6 sides are shown in Fig. 11.

6 Quadrilateral Domains

Let w = Φ(z) be the conformal mapping from the interior of the unit circle D = {z ∈
C : |z| = 1} onto the interior of the rectangle

Rr = {w : 0 < Rew < 1, 0 < Imw < r} (22)

such that

Φ(z1) = 0, Φ(z2) = 1, Φ(z3) = 1 + ir , Φ(z4) = ir ,
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Fig. 11 The level curves of the function ω(z, L) for the polygon with 13 sides

where z1, z2, z3, and z4 are points on ∂D (in the counterclockwise orientation) and
r > 0 is an undetermined positive real constant. The constant r is known as the
modulus of the quadrilateral (D; z1, z2, z3, z4) and denoted by M(D; z1, z2, z3, z4).
The modulus of the quadrilateral domains is invariant under conformal mappings, and
hence general bounded simply connected domains can be handled by mapping them
onto the unit disk with the help of method presented in Sect. 2.

If the domain Rr is known (i.e., if r is known), then we can map Rr onto the unit
disk using the method described in Sect. 2. Let ζ = Ψ1(w) be the conformal mapping
from Rr onto the disk |ζ | < 1 such that

Ψ1(α) = 0, Ψ ′
1(α) > 0

where α is a given point in Rr . The mapping function z = Ψ1(w) maps the points 0,
1, and 1 + ir on ∂Rr onto points ζ1, ζ2, and ζ3 on the unit circle. Then the Möbius
transform

z = Ψ2(ζ ) = z3 + (z3 − z1)(z2 − z3)(ζ2 − ζ1)(ζ − ζ3)

(z2 − z1)(ζ2 − ζ3)(ζ − ζ1) − (z2 − z3)(ζ2 − ζ1)(ζ − ζ3)

maps the unit disk |ζ | < 1 onto the unit disk |z| < 1 such that the points ζ1, ζ2 and ζ3
are mapped onto the points z1, z2 and z3, respectively. Thus, the mapping function

z = Ψ (w) = Ψ2(Ψ1(w)) (23)

maps the domain Rr onto the unit disk D such that the points 0, 1, 1+ ir are mapped
onto the points z1, z2 and z3, respectively. If z = Ψ (w) maps also the point ir onto
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Fig. 12 The first two iterations

the point z4, then Ψ −1 will be the required map, i.e.,

w = Φ(z) = Ψ −1(z).

6.1 Iterative Method

In this section, for a given quadrilateral (D; z1, z2, z3, z4), we present an iterative
method for computing the unknown constant r and the mapping function z = Ψ (w)

such that Ψ (0) = z1, Ψ (1) = z2, Ψ (1 + ir) = z3, and Ψ (ir) = z4. First we choose
an initial value r0 = 1, then we use the function Ψ to map Rr0 to a quadrilateral
(D; z1, z2, z3, z4,0)where z4,0 is a point on the arc [z3, z1] containing z4 (see Fig. 12).
The point z4,0 could be on either side of z4 on the arc [z3, z1]. We add a correc-
tion Δ0 to r0 to get a new approximation r1. Then we map Rr1 to a quadrilateral
(D; z1, z2, z3, z4,1) using the function Ψ . The point z4,1 is now close to the point
z4. We continue with this iterative method to generate a sequence of approximation
r0, r1, r2, . . . and the mapping function Ψ maps the rectangle Rrk to a quadrilat-
eral (D; z1, z2, z3, z4,k). We stop the iteration when the distance (on the unit circle)
between the two points z4 and z4,k is small. Then, we consider rk as an approximation
to r .

Since, for each iteration k, the point z4,k is on the arc [z3, z1], we can always choose
suitable correctionsΔk to ensure the convergence of the iterativemethod. In this paper,
for k ≥ 1, we choose

Δk = 1

2π
arg

(
z4,k
z4

)
. (24)

To accelerate the convergence of the iterative method, we introduce a factor δk and
we calculate rk using the formula

rk+1 = rk + δkΔk, k ≥ 0, (25)
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where r0 = 1, δ0 = δ1 = 1, and for k ≥ 2,

δk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2δk−1, if arg
(
z4,k−2
z4

)
arg

(
z4,k−1
z4

)
> 0 and arg

(
z4,k−1
z4

)
arg

(
z4,k
z4

)
> 0,

1
2δk−1, if arg

(
z4,k−2
z4

)
arg

(
z4,k−1
z4

)
< 0 and arg

(
z4,k−1
z4

)
arg

(
z4,k
z4

)
< 0,

δk−1, otherwise.
(26)

In other words, when the three points z4,k−2, z4,k−1 and z4,k are in the same side of
z4, we double δk−1 to increase the correction added to rk and so push z4,k toward z4.
However, when the three points z4,k−2, z4,k−1 and z4,k oscillate around z4, we bisect
δk−1 to reduce the correction added to rk . To avoid getting very long rectangle or very
narrow rectangle during the iterations, we do not allow δkΔk to be more than 0.2rk or
less than −0.2rk .

6.2 Algorithm

The above iterative method is summarized as follows.
Initialization:
Set r0 = 1, δ0 = δ1 = 1.
Iterations:
For k = 1, 2, 3, . . ., where k denotes the iteration number:

– Map the domain interior to the rectangle with the vertices {0, 1, 1 + irk−1, irk−1}
onto the unit disk D by the function Ψ in (23) such Ψ (0) = z1, Ψ (1) = z2,
Ψ (1 + irk−1) = z3.

– Let z4,k−1 = Ψ (irk−1).
– Compute Δk−1 from (24).
– For k ≥ 2, compute δk−1 from (26).
– If δk−1Δk−1 > 0.2rk−1, then set δk−1Δk−1 = 0.2rk−1 and δk−1 = δk−1/2.
– If δk−1Δk−1 < −0.2rk−1, then set δk−1Δk−1 = −0.2rk−1 and δk−1 = δk−1/2.
– The approximate value of r is updated through rk = rk−1 + δk−1Δk−1.
– Stop the iteration if |rk − rk−1| < ε or k > Max where Max is the maximum
number of allowed iterations and ε is a given tolerance.

In our numerical experiments, we choose Max = 50 and ε = 0.5 × 10−13. The
iterative method produces a sequence of numbers r0, r1, r2, r3, . . .which converges to
the required constant r . The iterative method provides us also with a conformal map
z = Ψ (w) from Rr onto the given domain D. Then the required map Φ is given by

w = Φ(z) = Ψ −1(z).

The numerical examples presented in this section show that the iterative method con-
verges for several examples. However, no proof of convergence is available so far.
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Table 2 The numerical results

Domain r Number of iterations Total CPU time

Q1 1 1 0.6

Q2 1.41421356237738 23 6.5

Q3 4.99266938932358 36 10.4

Q4 0.272437506734334 40 12.1

6.3 Examples

We consider the computing of the conformal mapping from the quadrilateral domains

(D; eiθ1 , eiθ2 , eiθ3 , eiθ4),

onto rectangular domains for the following values of θ1, θ2, θ3, and θ4:

1. Q1 : θ1 = −π , θ2 = −0.5π , θ3 = 0, θ4 = 0.5π .
2. Q2 : θ1 = −0.5π , θ2 = −0.25π , θ3 = 0.25π , θ4 = 0.5π .
3. Q3 : θ1 = −0.5005π , θ2 = −0.4995π , θ3 = 0.4995π , θ4 = 0.5005π .
4. Q4 : θ1 = −π , θ2 = −0.0001π , θ3 = 0, θ4 = 0.5π .

The values of the modulus r = M(Q j ), j = 1, 2, 3, 4, the number of iterations
required for convergence, and the total CPU time (sec) required for convergence are
listed in Table 2. For the four domains, we use n = 211. Orthogonal polar grids in
the circular domains and their images under the conformal mapping are shown in
Figs. 13, 14, 15 and 16. The points z1, z2, z3, z4 on the unit circle and their images
on the rectangle are shown as small colored squares such that a point zk and its image
has the same color. For Q3, z1 = e−0.5005π and z2 = e−0.4995π which are very close
to each other. Similarly, z3 = e0.4995π and z4 = e0.5005π are very close to each other.
The length of the arcs between z1 and z2 and between z3 and z4 is 0.001π . Thus, we
can not distinguish between z1 and z2 and between z3 and z4 in Fig. 15 (left). The
small arc between z1 and z2 is mapped by the conformal mapping to the lower side of
the rectangle. Similarly, the small arc between z3 and z4 is mapped by the conformal
mapping to the upper side of the rectangle. Although these arcs are too small, the
proposed iterative method converges after only 36 iterations. In Q4, the two points
z2 = e−0.0001π and z3 = 1 are very close to each other where the length of the arcs
between them is 0.0001π , and hence we can not distinguish between z2 and z3 in
Fig. 16 (left). The small arc between z2 and z3 is mapped by the conformal mapping
to the right side of the rectangle. The proposed iterative method converges after only
40 iterations.

For the three domains Q2, Q3, and Q4, the error per iteration is shown in Fig. 17.
For Q3 and Q4, we have points on the unit circle that are very close to each other.
This explains why the number of iterations for Q3 and Q4 is larger than the number
of iterations for Q2. For Q1, the method converges after only one iteration since the
exact value of r is 1 which is the same as our initial value r0.
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Fig. 13 The quadrilateral domain Q1 and its image

Fig. 14 The quadrilateral domain Q2 and its image

6.4 Explicit Formula for theModulus

Consider the quadrilateral domain

(D; 1, eiθ1 , eiθ2 , eiθ3),

which can be mapped conformally onto the rectangular domain Rr = {w : 0 <

Rew < 1, 0 < Imw < r} such that the point 1 is mapped to 0, eiθ1 is mapped to
1, eiθ2 is mapped to 1 + r i, and eiθ3 is mapped to r i. The quadrilateral domain can be
mapped also by Möbius transform onto the upper half-plane such that the point 1 is
mapped to −1, eiθ1 is mapped to 0, eiθ2 is mapped to a positive real number s, and eiθ3

is mapped to ∞. See Fig. 18.
The exact value of the positive constant s can be obtained in terms of the values of

θ1, θ2, and θ3. For distinct points z1, z2, z3, and z4 in C, we define the absolute (cross)

123



Conformal Invariants in Simply Connected Domains 769

Fig. 15 The quadrilateral domain Q3 and its image

Fig. 16 The quadrilateral domain Q4 and its image

Fig. 17 The successive error
|rk − rk−1| for the three
domains Q2, Q3, and Q4 vs the
number of iteration k
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Fig. 18 The quadrilateral domain (left), the rectangular domain (center), and the upper half-plane (right)

ratio by [4]

|z1, z2, z3, z4| = |z1 − z3||z2 − z4|
|z1 − z2||z3 − z4| .

This definition can be extended if z4 = ∞ by taking the limit, i.e.,

|z1, z2, z3,∞| = |z1 − z3|
|z1 − z2| .

Thus, for the four points 1, eiθ1 , eiθ2 , and eiθ3 on the unit circle, we have

|1, eiθ1 , eiθ2 , eiθ3 | =
sin

(
θ2
2

)

sin
(

θ1
2

) sin
(

θ3−θ1
2

)

sin
(

θ3−θ2
2

) .

Similarly, for the four points −1, 0, s, and ∞ on the real line, we have

| − 1, 0, s,∞| = 1 + s.

An important property of Möbius transformations is that they preserve the absolute
ratios [4], thus

| − 1, 0, s,∞| = |1, eiθ1 , eiθ2 , eiθ3 |,

and hence the exact value of 1 + s is given by the formula

1 + s =
sin

(
θ2
2

)

sin
(

θ1
2

) sin
(

θ3−θ1
2

)

sin
(

θ3−θ2
2

) . (27)

LetΩ1 be the family of curves lying in D and joining the arcs (1, eiθ1) and (eiθ2 , eiθ3)
(see Fig. 18). Similarly, let Ω2 be the family of curves lying in Rr and joining the
segments (1, 1+ ir) and (ir , 0), and let Ω3 be the family of curves lying in the upper

123



Conformal Invariants in Simply Connected Domains 771

/2 3 /2
-16

-15

-14

-13

-12

-11

/2 3 /2
0

5

10

15

20

25

30

0 10 20 30 40 50
-13

-11

-9

-7

-5

-3

-1

1

Fig. 19 Comparison with the exact formula (29) for n = 213

half-plane and joining the sets (−1, 0) and (s,∞). The modulus is invariant under
conformal mapping [1,13,24] and hence [7, p. 20]

M(Ω1) = M(Ω2) = M(Ω3) = 1

r
.

The exact value of M(Ω3) can be obtained also in terms of the real constant s as in
the following formula from [24, Eq. (5.52) and Ex. 5.60(1)],

M(Ω3) = π

2μ
(

1√
1+s

)

were μ(s) is the Grötzsch modulus function [2, Ch. 5]

μ(s) = π

2

K (s′)
K (s)

, K (s) =
∫ 1

0

dx√
(1 − x2)(1 − s2x2)

, s′ =
√
1 − s2. (28)

Consequently, the exact value of the constant r is given by

r = 2

π
μ

(
1√
1 + s

)
(29)

where the value of the s + 1 is given by (27). In this paper, the values of the function
μ are computed as described in [20].

To test the Algorithm 6.2, we fix θ1 = 0.5π and θ3 = 1.5π . Then, we choose values
for θ2 between 0.5001π and 1.4999π . The numerical results obtained with n = 213

are shown in Fig. 19. Figure 19 shows the relative error in the computed values of r
vs θ2 (left), the total CPU time (in seconds) required for computing each value of r vs
θ2 (center), and the successive error |rk − rk−1| for each value of θ2 vs the iteration
number k (right). We see from the figure, with less than 40 iterations, the successive
error for the iterative method method is less than 10−13 for all values of θ2 except for
θ2 = 0.5001π (red line). As expected, the relative error in the computed values of r
is very small when θ2 is a way from θ1 and θ3. The numerical results obtained with
n = 210 are shown in Fig. 20.
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Fig. 20 Comparison with the exact formula (29) for n = 210

6.5 The Crowding Phenomenon

According to [6, pp. 20–21], the term crowding was coined in 1980 [15] to describe
the error/instability in numerical computing of conformal mapping. Thereafter it has
become a “benchmark issue” for all numerical conformal mapping software. As
explained in [21, p. 77], mapping a rectangle with aspect ratio m to the unit disk
seems to be impossible for m = 24. Problems start already with m = 8 and become
more serious with increasingm. The critical value ofm depends on the computer float-
ing point arithmetic with 10 < m < 20 for double precision arithmetic [6, pp. 20–21],
[21, pp. 75–77].

For rectangle Rr in (22), the aspect ratio ism = r for r > 1 andm = 1/r for r < 1.
Assume that θ1 = π/2 and θ3 = 3π/2 are fixed as above and π/2 < θ2 < 3π/2. In
this subsection, we use the analytic example presented in Sect. 6.4 to find the critical
value of r for mapping the quadrilateral (D; 1, i, eiθ2 ,−i) onto the rectangle Rr with
double precision arithmetic.

In view of (27), we have

1 + s = 2

1 + cot
(

θ2
2

) .

Thus, by (29) the value of the modulus r can be written in terms of θ2,

r = 2

π
μ

⎛
⎜⎜⎝

√√√√1 + cot
(

θ2
2

)
2

⎞
⎟⎟⎠ . (30)

Also, the value of θ2 can be written in terms of the modulus r ,

θ2 = 2 cot−1
(
2

(
μ−1

(rπ
2

))2 − 1

)
. (31)

The values of the modulus r obtained with the formula (30) for π/2+ 10−15 < θ2 <

3π/2 − 10−15 are shown in Fig. 21 (left). Similarly, Fig. 21 (right) shows values θ2
obtained with the formula (31) for 1/12 < r < 12. We see from Fig. 21 (right) that
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Fig. 22 The relation between r and θ2 for r > 1 (left) and 0 < r < 1 (right)

the values of θ2 become very close to θ3 = 3π/2 even for small values of r . In fact,
for r = 12, the value of θ2 obtained with formula (31) satisfies

3π

2
− θ2 = 1.776 × 10−15.

Similarly, for r = 1/12, we have

θ2 − π

2
= 1.776 × 10−15.

For further investigation, we use the MATLAB symbolic toolbox to obtain more
accurate results for the formulas (30) and (31). For r ≥ 1, the values of log10(3π/2−θ2)

are shown in Fig. 22 (left). It is clear from Fig. 22 (left) that, up to double precision
accuracy of the computer, θ2 = 3π/2 for the value of r as small as r = 13. Similarly,
for 0 < r ≤ 1, the values of log10(θ2 − π/2) are shown in Fig. 22 (right). Up
to double precision accuracy of the computer, it follows from Fig. 22 (right) that
θ2 = π/2 for r = 1/13. As a consequence, up to double precision accuracy of the
computer, mapping a rectangle onto a quadrilateral (D; 1, i, eiθ2 ,−i) is impossible
when the aspect ratio of the rectangle is as small as r = 13.
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We see from Fig. 22 (left) that the relation between r and log10(3π/2−θ2) is linear
for r > 1. We use MATLAB function polyfit to find the coefficients of the line,
and hence, we can estimate

θ2(r) ≈ 3π

2
− 32.3663566817311 × 10−1.36452159123521r , r > 1. (32)

Similarly, Fig. 22 (right) shows that there is a linear relationship between 1/r and
log10(θ2 − π/2) for 0 < r < 1. By using MATLAB function polyfit to find the
coefficients of the line, we can estimate

θ2(r) ≈ π

2
+ 32.3665310118084 × 10−1.36452172896714/r , 0 < r < 1. (33)

Equation (32) illustrates how fast the value of θ2 approaches θ3 = 3π/2 even for
small values of r , r > 1. Similarly, Eq. (33) illustrates that the value of θ2 approaches
θ1 = π/2 even for small values of 1/r , 0 < r < 1.
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