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We consider Mityuk’s function and radius which have been proposed in [15] as 
generalizations of the reduced modulus and conformal radius to the cases of multiply 
connected domains. We present a numerical method to compute Mityuk’s function 
and radius for canonical domains that consist of the unit disk with circular/radial 
slits. Our method is based on the boundary integral equation with the generalized 
Neumann kernel. Special attention is given to the validation of the theoretical results 
on the existence of critical points and the boundary behavior of Mityuk’s radius.
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1. Introduction

Let G ⊂ C be a bounded simply connected domain and α ∈ G. Then for ε ∈ (0, d(α, ∂G)/2) the domain 
Gε = G\{z : |z − α| < ε} is doubly connected. The quantity

m(G,α) = lim
ε→0

(
M(Gε) + 1

2π log ε
)

is called the reduced modulus of the domain G with respect to the point α where M(Gε) is the modulus of 
the doubly connected domain Gε [5,21]. If w = Φα(z) is the unique conformal map of G onto the unit disk 
|w| < 1 such that

Φα(α) = 0 and Φ′
α(α) > 0, (1)

then the conformal radius of G with respect to the point α is defined by [15]
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R(G,α) = 1
Φ′

α(α) . (2)

The reduced modulus of the domain G with respect to the point α is then given by [21, p. 16]

m(G,α) = 1
2π logR(G,α) = − 1

2π log Φ′
α(α). (3)

Vasil’ev [21, Section 2.2.1] assumed that the mapping function w = Φ̂α(z) satisfies the normalization 
Φ̂α(α) = 0 and Φ̂′

α(α) = 1. Hence w = Φ̂α(z) maps the domain G onto the disk |w| < R where R = R(G, α)
is the conformal radius of G with respect to the point α. This is equivalent to the above definition (2) since 
Φα(z) = Φ̂α(z)/R(G, α).

A generalization of the reduced modulus to multiply connected domains has been proposed by Mityuk [15]. 
Assume that G ⊂ C is a bounded multiply connected domain of connectivity � + 1 bordered by

Γ = ∂G =
�⋃

k=0

Γk

with Jordan curves Γ0, Γ1, . . . , Γm such that Γ0 encloses all the other curves. Let Ω ⊂ C be the canonical 
multiply connected domain consisting of the unit disk |w| < 1 with p circular slits and � − p radial slits 
where 0 ≤ p ≤ �. Then there exists a unique conformal mapping w = Φα(z) from G onto Ω holding the 
same normalization (1) [9, Theorem 6, p. 242]. The mapping function Φα depends also on the piecewise 
constant real-valued function θ defined on Γ by

θ(ζ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π/2, ζ ∈ Γ0,

θ1, ζ ∈ Γ1,
...

θ�, ζ ∈ Γ�,

where, for each k = 1, . . . , �, θk is the “oblique angle” of the slit which represents the angle of intersection 
between the slit and any ray emanating from the origin (see [24, p. 109]). This means, for k = 1, . . . , �

θk =
{

π/2 if Γk is mapped to a circular slit,
0 if Γk is mapped to a radial slit.

So, it is maybe more appropriate to denote the mapping function by w = Φα,θ(z). However, for convenience, 
we will omit to mention the subscript θ as it will be clear from the context.

Under this setting, the definitions (2) and (3) of the functions R(G, α) and m(G, α), respectively, can 
be extended to the multiply connected domain G. In this context, the function R(G, α) is called Mityuk’s 
radius of the domain G with respect to the point α ∈ G and the canonical domain Ω [7]. Similarly, the 
function m(G, α), which is called Mityuk’s function in [7], is the generalized reduced module of the multiply 
connected domain G with respect to the point α ∈ G and the canonical domain Ω. It is worth mentioning 
that for the canonical domain of the unit disk with circular slits, Mityuk’s function m(G, α) is the negative 
of the Robin function related to the motion of a single point vortex in the domain G [4,19].

One important motivation for the study of Mityuk’s function/radius is the connection of their critical 
points to the solutions of exterior inverse boundary value problems [6,8,11]. By rewriting the function Φα

as

Φα(z) = (z − α)φα(z), (4)
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Fig. 1. The canonical domain Ω: The unit disk with circular/radial slits.

where φα is an analytic function in G, the critical points of Mityuk’s function/radius are the roots of the 
equation φ′

α(α) = 0 [7]. The existence of these critical points for � ≥ 2 was proven in the case of circular 
concentric slits in [12] and in the case of a mix of circular and radial slits domain in [7]. In the former case, 
Kinder [12] indicated that the nature of critical points can be specified by the equation

nm − ns = 1 − �, (5)

where nm ≥ 1 is the number of local maxima and ns is the number of saddle points. When G is a doubly 
connected domain (� = 1), an example was constructed in [7] where Mityuk’s radius has no critical points.

Furthermore, given that the domain G has smooth boundary curves, it was proven in [7] that Mityuk’s 
radius R(G, α) is infinitely differentiable on G and has the following limit values on the boundary Γ. First, 
for the external boundary Γ0, we have

lim
α→β∈Γ0

R(G,α) = 0. (6)

Then, for the internal boundary components Γk, k = 1, 2, . . . , �,

lim
α→β∈Γk

R(G,α) =
{

0 if Γk is mapped to a circular slit,
∞ if Γk is mapped to a radial slit.

(7)

In this paper, we shall present a numerical method to compute Mityuk’s radius R(G, α) and Mityuk’s 
function m(G, α) of the domain G with respect to the point α ∈ G and the canonical domain Ω consisting of 
the unit disk with � circular/radial slits (see Fig. 1). The presented method depends on the boundary integral 
equation with the generalized Neumann kernel. Through various numerical examples, we aim to validate 
the theoretical results presented in [12,7] on the existence of critical points and on the boundary behavior of 
Mityuk’s radius. In particular, we will numerically examine the validity of the limits (6) and (7) in the case 
of multiply connected domains with smooth, piecewise smooth and slit boundaries. At the end of the paper 
we summarize our experimental discoveries which suggest some problems for theoretical investigation.

2. Preliminaries

Let us first describe briefly the boundary parametrization used in this paper; see [18] for more details. 
We parametrize each boundary component Γk, for k = 0, 1, . . . , �, by a 2π-periodic complex function ηk(t), 
t ∈ Jk := [0, 2π]. We assume that ηk(t) is twice continuously differentiable with η′k(t) �= 0 for t ∈ Jk. The 
whole parameter domain is defined by

J =
�� Jk =

�⋃
{(t, k) : t ∈ Jk}.
k=0 k=0
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A parametrization of the whole boundary Γ is then defined on J by

η(t, k) = ηk(t), t ∈ Jk, k = 0, 1, . . . , �. (8)

As the value of the auxiliary index k for a given t will be clear from the context, we will drop it in the 
notation of the function η in (8) and simply write

η(t) =

⎧⎪⎨
⎪⎩

η0(t), t ∈ J0,
...

η�(t), t ∈ J�.

On the other hand, the smoothness of η(t) allows us to identify any function φ in the space of all real-
valued Hölder continuous functions H on Γ with a 2π-periodic Hölder continuous real function φ̂ of the 
parameter t in Jk by writing φ̂(t) := φ(η(t)). Therefore, we shall not distinguish between φ(η(t)) and φ(t)
in the sequel.

In order to introduce the boundary integral equation that will be used in the next section to compute 
Mityuk’s function and radius, we recall the definition of the generalized Neumann kernel formed with a 
continuously differentiable complex function A on J and the parametrization function η [16,22,23]

N(s, t) = 1
π

Im
(
A(s)
A(t)

η′(t)
η(t) − η(s)

)
.

We recall also the following associated kernel M(s, t) on J × J [23]

M(s, t) = 1
π

Re
(
A(s)
A(t)

η′(t)
η(t) − η(s)

)
.

The first kernel is continuous and the second has a singularity of cotangent type [23]. Using these two 
kernels, the integral operators N, M : H → H defined by

Nμ(s) =
∫
J

N(s, t)μ(t)dt, s ∈ J,

Mμ(s) =
∫
J

M(s, t)μ(t)dt, s ∈ J,

are both bounded with the first one being compact and the second being singular. Further details can be 
found in [22,23].

3. Computing Mityuk’s radius and Mityuk’s function

We use a boundary integral equation involving the integral operators N and M to compute Mityuk’s 
function/radius with respect to the canonical domain Ω in Fig. 1. To this aim, we first review the following 
method from [17, Section 4.2] for computing the unique conformal mapping w = Φα(z) satisfying the 
normalization (1) from the multiply connected domain G in z-plane onto the canonical circular/radial slit 
domain Ω in w-plane. We assume that the conformal mapping w = Φα(z) maps the curve Γ0 onto the 
unit circle |w| = 1 and maps the curve Γk, for each k = 1, 2, . . . , m, onto a circular or radial slit, i.e., for 
ηk(t) ∈ Γk,

Im
[
e−iθk log Φα(ηk(t))

]
= Rk, k = 1, 2, . . . , �,
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where θk = 0 for the radial slit case and θk = π/2 for the circular slit case. The undetermined real constants 
R1, . . . , R� should be computed alongside the conformal mapping Φα. Thus, the boundary values of the 
conformal mapping w = Φα(z) satisfy

Im
[
e−iθ(t) log Φα(η(t))

]
= R(t), η(t) ∈ Γ, (9)

where R(t) = (0, R1, . . . , R�). Here and in what follows, the notation h(t) = (h0, . . . , h�) stands for the real 
piecewise constant function

h(t) =

⎧⎪⎨
⎪⎩

h0, t ∈ J0,
...
h�, t ∈ J�,

where h0, . . . , h� are real constants.
The mapping function Φα can be written as

w = Φα(z) = c(z − α)e(z−α)f(z), z ∈ G ∪ Γ,

where

c = Φ′
α(α) > 0

and f(z) is an analytic function on G. Therefore, for η(t) ∈ Γ,

log Φα(η(t)) = log c + log(η(t) − α) + (η(t) − α)f(η(t)).

Multiplying both sides by e−θ(t), taking the imaginary of both sides, and using (9), we conclude that the 
boundary values of the function f are given by

A(t)f(η(t)) = γ(t) + h(t) + iμ(t), η(t) ∈ Γ, (10)

where

A(t) = ei
(
π
2 −θ(t)

)
(η(t) − α), γ(t) = Im

[
e−iθ(t) log (η(t) − α)

]
and

h(t) = (− log c,−R1 − log c sin θ1, . . . ,−R� − log c sin θ�). (11)

In (10), only γ is known whereas h and μ are unknown. The function μ is the unique solution of the integral 
equation

(I − N)μ = −Mγ, (12)

and the piecewise constant real-valued function

h = (h0, h1, . . . , h�) (13)

is given by
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h = [Mμ− (I − N)γ]/2. (14)

By computing μ and h, we obtain the boundary values of the auxiliary analytic function f from (10). 
Moreover, comparing (13) with (11) implies that

Φ′
α(α) = c = e−h0 . (15)

Now, we are in position to compute Mityuk’s radius and Mityuk’s function. In view of (15), it follows 
from (2) and (3) that Mityuk’s radius and Mityuk’s function of the domain G with respect to the point 
α ∈ G and the canonical domain Ω can be computed through

R(G,α) = eh0 and m(G,α) = h0

2π . (16)

A MATLAB function fbie for solving numerically the integral equation (12) has been presented in [18]. 
The function fbie is based on discretizing the integral equation (12) by the Nyström method with the 
trapezoidal rule [2,3,20] to obtain a linear system. For domains with corners, the trapezoidal rule with 
a graded mesh is used, see [13,14] for more details. The MATLAB function gmres is then used to solve 
iteratively this linear system. The matrix-vector multiplication required by the GMRES method is computed 
efficiently using the MATLAB function zfmm2dpart from the toolbox FMMLIB2D [10]. The function fbie is 
also used to compute approximations of the function h in (14). The total computational cost of the overall 
method is O((� + 1)n lnn) operations where n is the number of nodes in each of the intervals J0, J1, . . . , J�. 
For more details, see [18].

If the discretized versions of the functions η(t), η′(t), A(t), γ(t), μ(t) and h(t) are denoted by the vectors 
et, etp, A, gam, mu and h, respectively, then the linear systems (12) and (14) are numerically solved by 
calling

[mu, h] = fbie(et, etp, A, gam, n, iprec, restart, gmrestol, maxit).

In the numerical experiments presented in this paper, we choose iprec = 5 which means the tolerance 
of the FMM is 0.5 × 10−15. For the GMRES method, we choose gmrestol = 10−14 so that the tolerance 
of the GMRES method is 10−14. The GMRES is used without restart by choosing restart = [ ] and 
the maximum number of GMRES iterations is maxit = 100. Choosing the value of n depends on the 
geometry of the domain G and the location of the point α. For domains with smooth boundaries, accurate 
numerical results can be obtained for moderate values of n if α is sufficiently far from the boundary of 
G. If α is close to the boundary of G or if the boundary of G has corners, a sufficiently large value of 
n is required to obtain accurate results. In the numerical examples below, α could be very close to the 
boundary of G so we shall choose n = 215 for all examples. By obtaining the vector h, an approximate 
value for the constant h0 is computed as the average of the values of h over the interval J0. Finally, from 
h0 we can compute Mityuk’s radius and Mityuk’s function through (16). See Listing 1 for a MATLAB 
implementation. All the computer codes of our computations are available through the internet link at 
https://github .com /mmsnasser /mityuk -radius.

4. Numerical examples

In this section, we use the MATLAB function Mityuk given in Listing 1 to compute the values of Mityuk’s 
radius of several multiply connected domains. We examine especially the existence of critical points of 
Mityuk’s radius for different cases of the canonical domain, and check the validity of the limit values in 
equations (6) and (7). Note that a considerable computational effort is needed for each example. In fact, 

https://github.com/mmsnasser/mityuk-radius
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Listing 1: MATLAB function for computing Mityuk’s function/radius for bounded multiply connected 
domains.

1 function [R,m] = Mityuk(et,etp,n,thetak,alpha)
2 % Compute Mityuk's radius R(G,alpha) and Mityuk's function m(G,alpha)
3 % where alpha is a point in G, et, etp: parametrization of the boundary
4 % and its first derivative, thetk=[theta_1,...,theta_L] are the oblique
5 % angles of the spirals
6 for k=1:length(thetak)
7 J = 1+(k-1)*n:k*n;
8 A(J,1) = exp(i.*(pi/2-thetak(k))).*(et(J)-alpha);
9 gam(J,1)=imag(exp(-i.*thetak(k)).*clog(et(J)-alpha));

10 end
11 [~,h] = fbie(et,etp,A,gam,n,5,[],1e-14,100);
12 h0 = mean(h(1:n)); R = exp(h0); m = h0/(2*pi);
13 end

computing the values of Mityuk’s radius R(G, α) at a vector of points αk, k = 1, 2, . . . , p, requires calling 
the MATLAB function Mityuk for each point αk, i.e., p times. In the numerical examples below, to plot 
the contour maps of Mityuk’s radius R(G, α), we first discretize the domain G to get a mesh-grid and then 
compute values of R(G, α) at the mesh-grid points. Although the function Mityuk takes only 0.5-3 seconds 
to execute, the overall running time for all mesh-grid points could be several hours.

4.1. Doubly connected domains

In the following examples, we consider G to be a doubly connected domain and compute R(G, α) for two 
cases of the canonical domain: the unit disk with a circular slit and the unit disk with a radial slit.

4.1.1. Annulus
First, as a special case, we consider an annulus G = {z : q < |z| < 1} when 0 < q < 1. In [7], it was 

proven that Mityuk’s radius with respect to the canonical domain consisting of the unit disk with a radial 
slit has no critical points in G. On the contrary, it was shown in [1] that Mityuk’s radius with respect to 
the canonical domain consisting of the unit disk with a circular slit has an infinite number of critical points 
in G, which constitute the circle |α| = √

q.
Furthermore, an analytical formula for Mityuk’s radius can be derived in terms of the inner radius q of 

the annulus (see [1,7] for more details). In the case of the canonical domain consisting of the unit disk with 
a circular slit, Mityuk’s radius can be written as

R(G,α) = (1 − |α|2)
∞∏
j=1

(1 − q2j |α|2)(1 − q2j/|α|2)
(1 − q2j)2 .

Similarly, the exact form of Mityuk’s radius with respect to the canonical domain consisting of the unit disk 
with a radial slit is given by

R(G,α) = (1 − |α|2)
∞∏
j=1

[
(1 − q2j |α|2)(1 − q2j/|α|2)

(1 − q2j)2

](−1)j

.

In order to validate these analytic results, we compute numerically the values of Mityuk’s radius for 
G = {z : q < |z| < 1} with q = 0.25. The contour maps and the surface plots of the function R(G, α)
are shown in Figs. 2 and 3. Fig. 2 reveals that all the points on the circle |α| = 0.5 are critical points of 
the function R(G, α) for the canonical domain consisting of the unit disk with a circular slit, which is an 
agreement with the analytical results [1]. On the other hand, Fig. 3 illustrates the non-existence of critical 
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Fig. 2. The contour maps and the surface plots of the function R(G,α) for θ1 = π/2.

Fig. 3. The contour maps and the surface plots of the function R(G,α) for θ1 = 0.

Fig. 4. The values of the radius function R(G, x) for x ∈ G with −1 < x < 1. The domain G is the same as in Figs. 2 and 3. (For 
interpretation of the colors in the figures, the reader is referred to the web version of this article.)

points of R(G, α) in the case of a radial slit, which confirms the result presented in [7]. We also numerically 
validate the limits (6) and (7) by computing R(G, x) for several values of x ∈ G with −1 < x < 1. The 
graph of R(G, x) as a function of x is shown in Fig. 4 for the two cases of the canonical domain. We can 
see that

lim
|x|→1−

R(G, x) = 0

for the two cases of the canonical domain as follows from (6), and
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Fig. 5. The contour maps of the function R(G, α) for θ1 = π/2 (left), θ1 = 0 (center), and the values of R(G, x) for x ∈ G with 
−1 < x < 1 (right) where the center of the inner circle is a = 0.05 for the first row and a = 0.5 for the second row. Critical 
streamlines are shown in red color.

lim
|x|→0.25+

R(G, x) =
{

0 if θ1 = π
2 ,

∞ if θ1 = 0,

which is consistent with (7).

4.1.2. Two circles
Let G be the domain interior to the circle |z| = 1 and exterior to the circle |z−a| = 0.25 for a = 0.05 and 

a = 0.5. The contour maps of the function R(G, α) are shown in Fig. 5 for a = 0.05 (first row) and a = 0.5
(second row). As we can see from this figure, we have two critical points (nm = ns = 1) for the unit disk 
with a circular slit and no critical point in the case of a radial slit. Interestingly, shifting the origin of the 
inner circle in the annulus changes dramatically the number of critical points in the case of a circular slit. 
On the other hand, the graph of R(G, x) as a function of x ∈ G such that −1 < x < 1 is shown in Fig. 5 for 
the two cases of the canonical domain. Notice that limit values of Mityuk’s radius at domain boundaries as 
given in equations (6) and (7) are again confirmed for this example.

4.1.3. Rectangle with a slit
Consider the domain (see Fig. 6 (left))

G = {z : −3 < Re z < 3, −1 < Im z < 1}\[−1, 0].

The MATLAB function Mityuk is not directly applicable to such a domain as it is not bounded by Jordan 
curves. So we shall use an elementary conformal mapping to “open up” the intervals and obtain a domain 
bounded by piecewise smooth Jordan curves. Since the elementary mapping
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Fig. 6. The rectangle with a slit domain G (left) and its image Ψ2(G) (right) as described in §4.1.3.

Ψ1(z) = 1
4

(
z + 1

z

)
+ 1

2

maps conformally the exterior of the unit disk onto the exterior of the segment [0, 1], its inverse mapping

Ψ2(z) = Ψ−1
1 (z) = (2z − 1)

(
1 +

√
1 − 1

(2z − 1)2

)

maps the exterior of the segment [0, 1] onto the exterior of the unit disk where we choose the branch for 
which 

√
1 = 1. Thus, the mapping ζ = Ψ−1

1 (z) maps the domain G onto the domain Ψ2(G) exterior to 
the unit disk and interior to the piecewise smooth Jordan curve Ψ2(Γ0) where Γ0 is the external boundary 
component of G (see Fig. 6 (right)).

Let w = Ψ(ζ) be the conformal mapping from the domain Ψ2(G) onto the unit disk with a circular/radial 
slit such that Ψ(Ψ2(α)) = 0 and Ψ′(Ψ2(α)) > 0. Hence, the function

w = Φα(z) = e−i arg Ψ2(α)Ψ(Ψ2(z))

conformally maps the domain G onto the unit disk with a circular/radial slit such that

Φα(α) = 0, Φ′
α(α) = Ψ′(Ψ2(α))|Ψ′

2(α)| > 0,

where

Ψ′
2(α) = 1

Ψ′
1(Ψ2(α)) = 4Ψ2(α)2

Ψ2(α)2 − 1 .

Henceforth, in view of (2), Mityuk’s radius of the domain G with respect to the point α is given by

R(G,α) = 1
Ψ′(Ψ2(α))|Ψ′

2(α)| .

Note that R(Ψ2(G), Ψ2(α)) = 1/Ψ′(Ψ2(α)), and hence the previous equation becomes (see [21, Corollary 
2.2.1])

R(G,α) = R(Ψ2(G),Ψ2(α))
|Ψ′

2(α)| . (17)

The external boundary component of the domain Ψ2(G) is a piecewise smooth curve. With suitable 
parametrization of such a boundary component (see [14] for more details), we can use the MATLAB function 
Mityuk to compute the values of Mityuk’s radius R(Ψ2(G), Ψ2(α)), and then get the values of R(G, α)
by (17). The contour maps of the function R(G, α) are shown in Fig. 7, and unveil the existence of eight 
critical points (nm = ns = 4) in the case of a circular slit and no critical point for a radial slit.
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Fig. 7. The contour maps of the function R(G, α) for θ1 = π/2 (left) and θ1 = 0 (right). Critical streamlines are shown in red color.

Fig. 8. The values of R(G, iy), R(G, 0.25 + iy), R(G, 0.5 + iy), and R(G, 1 + iy), x ∈ (−1, 0) ∪ (0, 1), for θ1 = π/2 (left) and θ1 = 0
(center), and the values of R(G, x), x ∈ (−3, 0) ∪ (1, 3), for θ1 = 0 (right). The domain G is the same as in Fig. 7.

The function Mityuk is also used to compute R(G, iy), R(G, 0.25 + iy), R(G, 0.5 + iy), and R(G, 1 + iy)
for x ∈ (−1, 1) \ {0} in the case of the two canonical domains, and R(G, x) for x ∈ (−3, 0) ∪ (1, 3) in the 
case of a radial slit. It should be pointed out that the limits in (6) and (7) were proved in [6] only for 
domains with smooth boundaries. The graphs in Fig. 8 present a numerical counter example that shows 
these limits are not valid if the inner slit of G is mapped onto a radial slit. More precisely, for θ1 = 0 (i.e., 
when the canonical domain is the unit disk with a radial slit), if α ∈ G approaches the slit in the domain 
G, then the values of Ψ2(α) move toward the unit circle in the domain Ψ2(G). Hence, by (7), the values 
of R(Ψ2(G), Ψ2(α)) converge to +∞. However, when α ∈ G goes to any of the two end-points of the slit, 
the values of |Ψ′

2(α)| converge to +∞. Hence, by (17), it is not necessary that the function R(G, α) has an 
infinite limit in this case. In fact, as α moves vertically toward the slit, Fig. 8 (center) shows that the values 
of R(G, α) converge to a finite number when α approaches particularly one of the two end-points of the slit 
and the values of R(G, α) become large when α approaches points on the slit away of its two end-points. In 
the case when α comes close to the two end-points along the real axis, Fig. 8 (right) shows that the values of 
R(G, α) converge to finite numbers which are different from the limits in the vertical direction. This means 
the limit of Mityuk’s radius R(G, α) does not exist as α approaches the two end-points of the slit.

On the other hand, for θ1 = π/2 (i.e., when the canonical domain is the unit disk with a circular slit), 
if α ∈ G approaches the slit in the domain G, then the values of Ψ2(α) come close to the unit circle in the 
domain Ψ2(G) and, by (7), the values of R(Ψ2(G), Ψ2(α)) converge to 0. Since Ψ′

2(α) �= 0 even for points on 
the slit, then, by (17), the values of R(G, α) go to 0 as well if α ∈ G approaches any point on the slit. This 
is confirmed by the numerical results presented in Fig. 8 (left). Finally, we note that the values of R(G, α)
converge to 0 if α ∈ G approaches any point on the outer rectangle for both the two cases of the canonical 
domain.

4.1.4. Rectangle in rectangle
Let

G = {z : −3 < Re z < 3, −1 < Im z < 1} \ {z : 0 < Re z < 1, 0 < Im z < 0.5}.

The function Mityuk can be directly used (with suitable parametrization of the boundary components) to 
compute the values of Mityuk’s radius R(G, α). The contour maps of the function R(G, α) are shown in 
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Fig. 9. The contour maps of the function R(G, α) for θ1 = π/2 (left) and θ1 = 0 (right). Critical streamlines are shown in red color.

Fig. 10. The values of R(G, x), R(G, 0.25 +iy), R(G, 0.5 +iy), and R(G, 1 +iy), y ∈ (−1, 0) ∪ (0.5, 1), for θ1 = π/2 (left) and θ1 = 0
(center), and the values of R(G, x), R(x + 0.25i), and R(x + 0.5i), x ∈ (−3, 0) ∪ (1, 3), for θ1 = 0 (right). The domain G is the 
same as in Fig. 9.

Fig. 9. Similarly to the previous example, we have the existence of eight critical points (nm = ns = 4) for 
a circular slit and no critical point in the case of a radial slit. We compute also R(G, iy), R(G, 0.25 + iy), 
R(G, 0.5 + iy), and R(G, 1 + iy) for y ∈ (−1, 0) ∪ (0.5, 1). The results are shown in Fig. 10.

Although, the boundary components of the domain are only piecewise smooth, the numerical results of 
this example reveal that the limits in (6) and (7) are still valid for the two cases of the canonical domain. 
Fig. 10 shows the values of R(G, α) converge to 0 if α ∈ G approaches any point on the outer rectangle. The 
results shown in Fig. 10 (left) suggest also that the limit in (7) is valid if the inner rectangle of G is mapped 
onto a circular slit; i.e., when the canonical domain is the unit disk with a circular slit (θ1 = π/2). Indeed, 
if α ∈ G approaches any point on the inner rectangle, then the values of R(G, α) converge to 0. When the 
canonical domain is the unit disk with a radial slit (θ1 = 0), the numerical results presented in Fig. 10
(center and right) illustrate that if α ∈ G approaches points on the inner rectangle away of its corners, the 
values of R(G, α) become very large. However, when α comes vertically or horizontally toward any of the 
inner rectangle corners, the values of R(G, α) become large but not as large as for off-corner points.

4.1.5. Triangle in triangle
Consider the domain G bordered externally by the triangle with vertices 0, 5, and 4 + 5i, and internally 

by the triangle with vertices 3 + 3i, 4 + 3i, and 3 + i (see Fig. 12 (top, left)). The contour maps of the 
function R(G, α) are shown in Fig. 11, which unveil the existence of six critical points (nm = ns = 3) in the 
case of a circular slit and no critical point in the case of a radial slit. To check the validity of limit values 
in equations (6) and (7), we display in Fig. 12 the curve of R(G, α) along the vertical and horizontal paths 
α = 3 + iy, α = 4 + iy, α = x + i, and α = x + 3i for real numbers x and y such that α ∈ G. As can be seen 
from this figure the behavior of the function R(G, α), as α ∈ G approaches any of the corner points of the 
inner triangle, is similar to the previous example.

4.1.6. Square in square/Square in circle/Circle in square
In a similar fashion to the case of an annulus, we consider three examples of G by replacing the inner 

circle, the outer circle, or both by squares. The vertices of the outer square are ±1 ± i and the vertices of the 
inner square are ±0.25 ±0.25i and hence, for these three examples, the domain G is symmetric. The contour 
maps of the function R(G, α) shown in Fig. 13 are quite revealing in several ways. First, in agreement with 
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Fig. 11. The contour maps of the function R(G, α) for θ1 = π/2 (left) and θ1 = 0 (right). Critical streamlines are shown in red 
color.

Fig. 12. The points 3 + iy, 4 + iy, x + i, and x + 3i in the domain G (top, left) and the values of Mityuk’s radius R(G, α) at these 
points.

the previous examples, Mityuk’s radius has no critical point for the canonical domain with a radial slit. 
In the case of a circular slit, it is apparent that the number of critical points depends on the number of 
corners in the inner and outer boundary components. In particular, we have the existence of sixteen critical 
points (nm = ns = 8) when both the inner and outer boundary components are squares, and eight critical 
points (nm = ns = 4) when one of them is a circle and the other is a square. Note also the symmetrical 
distribution of critical points location in these three examples.

4.2. Multiply connected domains

Finally, in this section, we consider two examples of the domain G when � ≥ 2.

4.2.1. Three circles
Let G be the triply connected domain interior to the circle |z| = 3 and exterior to the circles |z−1.5| = 1

and |z + 1.5| = 1. We include three cases of the canonical domain: two circular slits, two radial slits, and 
one circular slit and one radial slit. The contour maps of the function R(G, α) are shown in Fig. 14. We 
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Fig. 13. The contour maps of the function R(G, α) for θ1 = π/2 (left) and θ1 = 0 (right). Critical streamlines are shown in red 
color.

Fig. 14. The contour maps of the function R(G, α) for: θ1 = θ2 = π/2 (left), θ1 = θ2 = 0 (center), and θ1 = π/2, θ2 = 0 (right). 
Critical streamlines are shown in red color.

can see that for the unit disk with two circular slits, Mityuk’s radius has five critical points (nm = 2 and 
ns = 3), where four of them are symmetric with respect to the saddle point 0. Remark also that there is 
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Fig. 15. The values of R(G, x) for −3 < x < 3 such that x ∈ G for: θ1 = θ2 = π/2 (left), θ1 = θ2 = 0 (center), and θ1 = π/2, θ2 = 0
(right). The domain G is the same as in Fig. 14.

Fig. 16. The contour maps of the function R(G, α) for: θ1 = · · · = θ5 = π/2 (first row, left), θ1 = · · · = θ5 = 0 (first row, right), 
θ1 = θ2 = θ3 = θ5 = π/2, θ4 = 0 (second row, left), θ1 = θ3 = θ5 = π/2, θ2 = θ4 = 0 (second row, center), and θ4 = π/2, 
θ1 = θ2 = θ3 = θ5 = 0 (second row, right). Critical streamlines are shown in red color.

only one critical point (saddle) for the two remaining cases of the canonical domain. The existence of critical 
points in the cases of two circular slits and a mix of circular and radial slits confirms the theoretical results 
of [7,15]. On the other hand, the nature of critical points in the case of two radial slits opens a room for 
theoretical investigation. Finally, we present in Fig. 15 the graph of R(G, x) with respect to x ∈ G such that 
−3 < x < 3. It can be seen that the boundary behavior of R(G, x) agrees with (6) and (7) for the three 
cases.

4.2.2. Six circles
Suppose G is of connectivity 6 being interior to the circle |z| = 1 and exterior to the five circles with 

centers 0, 0.6, 0.6i, −0.6 and −0.6i. The radii of all inner circles is 0.2. We include three cases of the canonical 
domain: five circular slits (θ1 = · · · = θ5 = π/2), five radial slits (θ1 = · · · = θ5 = 0), and three circular slits 
and two radial slits (θ1 = θ3 = θ5 = π/2 and θ2 = θ4 = 0). The contour maps of the function R(G, α) are 
shown in Fig. 16. We can see that Mityuk’s radius has twelve critical points (nm = 4 and ns = 8) for the 
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Fig. 17. The contour maps of the function R(G, α) for: θ1 = · · · = θ6 = π/2 (left), θ1 = · · · = θ6 = 0 (center), θ1 = θ2 = θ3 = π/2, 
θ4 = θ5 = θ6 = 0 (right). Critical streamlines are shown in red color.

case of five circular slits, and only four saddle points in the two other cases of the canonical domain. We 
remark also the symmetrical distribution of critical points location in all the three cases.

4.2.3. Seven circles
Assume G is of connectivity 7, interior to the circle |z| = 1 and exterior to the five circles with centers 

0.2, 0.5 + 0.5i, −0.1 + 0.5i, −0.6 + 0.1i, −0.4 − 0.5i, and 0.3 − 0.6i. The radii of all inner circles is 0.15. 
We include three cases of the canonical domain: six circular slits (θ1 = · · · = θ6 = π/2), five radial slits 
(θ1 = · · · = θ6 = 0), and three circular slits and three radial slits (θ1 = θ2 = θ3 = π/2 and θ4 = θ5 = θ6 = 0). 
The contour maps of the function R(G, α) are shown in Fig. 17. It is apparent from this figure that the 
critical points of Mityuk’s radius satisfy the equation nm − ns = −5 for the three cases of the canonical 
domain.

5. Conclusion

We have introduced a numerical method to compute Mityuk’s function and radius of multiply connected 
domains with respect to the canonical domain consisting of the unit disk with � circular/radial slits. Our 
main interest has been to validate the theoretical results on the existence and nature of critical points of 
Mityuk’s radius as well as the boundary behavior of this function as proven in [1,7,12]. For doubly connected 
domains, we have first considered the special case of an annulus. In contrast to the case of the unit disk 
with a radial slit where Mityuk’s radius has no critical points [7], there is an infinite number of critical 
points located on the circle with center zero and radius equal to the square root of the inner circle radius 
in the other case of the unit disk with a circular slit [1]. The other examples of doubly connected domains 
exhibit the same property of existence of critical points for a circular slit and nonexistence for a radial slit. 
Except for the case of an annulus, where there is an infinite number of critical points, equation (5) is also 
true for doubly connected domains. In particular, the number of maxima is equal to the number of saddle 
points [12].

For multiply connected domains of connectivity � ≥ 2, we have presented several examples for which 
Mityuk’s function/radius admits critical points for different cases of the canonical domain. The numerical 
results illustrate that Mityuk’s radius has at least one local maximum if the canonical domain contains only 
circular slits. Concerning the boundary behavior of Mityuk’s radius, we have remarked that the limit at the 
external boundary component is always equal to zero even when the boundary is piecewise smooth. On the 
other hand, the limit values in (7) do not hold true when one of the internal curves is a slit mapped to a 
radial slit. Two final observations on the numerical results presented in this paper that might open a room 
for theoretical investigation are given as follows:
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• The symmetry and geometry of the domain is directly reflected into the location and number of critical 
points. Mityuk’s radius has more critical points for symmetric domains compared to non-symmetric 
domains of the same connectivity.

• For Mityuk’s radius R(G, α) of the domain G with respect to the point α ∈ G and the canonical 
domain consisting of the unit disk with circular slits, it follows from the limits (6) and (7) that R(G, α)
approaches 0 as α approaches the boundary Γ = ∂G. Our numerical tests suggest that

R(G,α) ≥ d(α, ∂G) (18)

holds for all α ∈ G and for all multiply connected domains G considered in this paper. This observation 
suggests the following question: “Is it true that (18) holds for all finitely connected domains G bordered 
by Jordan curves?”
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