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1. Motivation and significance

Conformal mappings are used to transform two-dimensional
domains with complex geometry (physical domains) onto do-
mains with simpler one (canonical domains). Numerous canonical
domains have been considered in the literature for conformal
mappings of multiply connected domains in the extended com-
plex plane C U {oo} [1-3]. Perhaps the most important canonical
domain for simply and multiply connected domains is the circular
domain; i.e., a domain all of whose boundaries are circles. This
is due to the existence of analytic formulas for several problems
in circular multiply connected domains (see the recent mono-
graph [4] and the references cited therein). Furthermore, circular
domains are ideal for using Fourier series and FFT [5].

E-mail address: mms.nasser@qu.edu.qa.

https://doi.org/10.1016/j.s0ftx.2020.100464

Important examples of complex geometry domains are the
polygonal domains, whose boundaries consist of straight line seg-
ments. For simply connected domains, the Schwartz-Christoffel
(SC, for short) formula provides us with an explicit form of the
conformal mapping from the unit disk onto a given polygonal
domain [6]. The SC formula for simply connected domains was
discovered independently by Christoffel in 1867 and Schwarz
in 1869 (see [6, p. 4]). The generalization of this formula to
doubly connected domains was due to Komatu [7] in 1945 (see [8,
pp. 478-486]). However, the extension of the SC formula to
multiply connected domains was established only recently. In-
deed, Delillo, Elcrat and Pfaltzgraff [5] and DelLillo [9] derived
SC formulas for conformal mappings from circular domains onto
unbounded and bounded polygonal domains, respectively, using
the reflection principle. Crowdy [10,11] presented SC formulas for
computing such mappings using Schottky-Klein prime functions.

Driscoll [12-14] created a MATLAB package called SC Tool-
box for computing the conformal mapping from the unit disk
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onto a given polygonal simply connected domain. The toolbox
is a generalization of the Fortran package SCPACK developed by
Trefethen [15]. The SC Toolbox has been widely used by many
researchers. However, no such toolbox is available so far for
polygonal multiply connected domains. The development of such
a MATLAB toolbox is the subject of this paper. The proposed
toolbox can be used for computing the conformal mapping w =
f(z) from a given polygonal multiply connected domain G onto a
circular domain D and its inverse z = f~1(w).

2. The conformal mapping

Assume G is a given bounded or unbounded polygonal multi-
ply connected domain bordered by m polygons I3,j = 1,2, ...,
m, such that no corner of these polygons is a cusp. For m = 1, the
domain G is simply connected. If G is bounded, then we assume
that I, is the external boundary component and encloses all the
other boundary components I}, j = 1,2,...,m — 1. The total
boundary I" = 9G = UL, I} is oriented such that G is on the left
of I'. Then there exists a conformal mapping w = f(z) from the
domain G onto a circular multiply connected domain D bordered
by m circles G, j = 1,2, ..., m (see [8, p. pp. 488-496] and [16,
pp. 118-127]). The mapping f extends to the boundary of G with
f(I;)=G,j=1,2,...,m. We assume that the circular domain
D is bounded when G is bounded and D is unbounded when G is
unbounded. The total boundary C = dD = UL,C; has the same
orientation as I.

When G is bounded, the conformal mapping f is uniquely
determined by assuming that the external boundary G, = f(I},)
of D is the unit circle and

fla)=0, f'(a)>0, (1)

where « is a given point in the domain G. The condition (1) can
be replaced with the condition

fla)=0, f(B)=1, (2)

where $ is a given point on the external boundary I3,. On the
other hand, if G is unbounded, then the mapping function f is
uniquely determined by assuming that

f@)=z+0 (%) 3)

near infinity. Alternatively, f is uniquely determined by assuming
that C,, = f(I},) is the unit circle and

floo) =00, f(B)=1, (4)

where f is a given point on the boundary I7,.

The SC formulas derived in [5,9-11] can be used to compute
the inverse mapping z = f ~!(w) from the circular domain D onto
the polygonal domain G. However, using these SC formulas re-
quires solving a system of non-linear equations to determine the
preimages of the polygons’ vertices as well as the centers and the
radius of the circles. Solving such a nonlinear system of equations
is still a challenging problem. On the other hand, conformal map-
pings from multiply connected domains onto circular domains
can be computed using Koebe’s iterative method [17] (see [8,
§ 17.7]). As a special case, Koebe’s method can be used to compute
the conformal mapping w = f(z) from a given polygonal multiply
connected domain G onto a circular multiply connected domain
D. A fast implementation of Koebe's iterative method using the
boundary integral equation with the generalized Neumann kernel
is given in [18] (see also [19]). The method presented in [18]
can be used also to compute the inverse map z = f~'(w) from
the circular domain D onto the polygonal domain G. Further, this
method can be applied even for domains with high connectivity

and complex geometry, see [18,19]. More recently, another effi-
cient numerical method for computing the conformal mapping
from circular domains onto polygonal domains based on rational
approximations has been presented by Gopal and Trefethen [20]
and Trefethen [21].

In the presented PlgCirMap toolbox, the above described con-
formal mapping w = f(z) from the polygonal domain G onto the
circular domain D as well as its inverse z = f~(w) from D onto G
will be computed using the boundary integral method presented
in [18].

3. Software framework
3.1. Software architecture

The PlgCirMap is a MATLAB toolbox that consists of dif-
ferent MATLAB functions. The main functions in this toolbox
are plgcirmap, evalu, evalud, and plotmap. The function
plgcirmap itself depends on three main functions, mainmap,
cirmapb, and cirmapu (see Fig. 1). The inputs for the function
plgcirmap are a cell array ver containing the vertices of the
polygons and a point alpha in the polygonal domain G. The de-
fault values of the parameters for the numerical calculations are
set in the function plgcirmap. The numerical implementation
of Koebe’s iterative method is given in the function mainmap.
Koebe’s iterative method requires computing conformal map-
pings from bounded simply connected domains onto the unit
disk and computing conformal mappings from unbounded simply
connected domains onto the exterior of the unit disk (see [18]
for more details). Such conformal mappings will be computed
using the functions cirmapb and cirmapu, respectively. The
output of the plgcirmap will be a MATLAB object £ containing
the required information about the conformal mapping f and its
inverse f~!. From the object f, we can compute the values of
the conformal mapping and its inverse using the function evalu.
The values of the first derivatives of f and f~! can be computed
using the function evalud. Finally, the function plotmap uses
the object £ to visualize the conformal mapping f and its inverse

f
3.2. Software functionalities

The PlgCirMap toolbox is used to compute and visualize the
conformal mapping w = f(z) from a given polygonal multiply
connected domain G onto a circular multiply connected domain
D and its inverse z = f~!(w). All conditions (1)—(4) can be imple-
mented in the toolbox. PlgCirMap can be used also for polygonal
simply connected domains. To use the PlgCirMap toolbox, the
boundary of the polygonal domain is assumed to have no cusps
or slits.

4. Implementation and empirical results
4.1. Parameters’ default values

In the PlgCirMap toolbox, the mapping function w = f(z)
and its inverse z = f~!(w) are computed using the boundary
integral method presented in [18]. The method is based on a
fast numerical implementation of Koebe's iterative method using
the boundary integral equation with the generalized Neumann
kernel [18,19]. Assume that each polygon I has ¢; > 3 vertices.
We discretize each segment of the polygon I with n graded mesh
points so that I is discretized by ¢;n graded mesh points (see [22,
23] for details on how the graded mesh points are chosen).
Then, applying the Nystrom method with the trapezoidal rule
reduces the integral equation to a linear system which is solved
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Fig. 1. PlgCirMap’s software architecture.
iteratively by the MATLAB function gmres. The matrix-vector forj = 1,2,..., m. The vertices must be ordered such that the

product in the GMRES method is computed using the MATLAB
function zfmm2dpart from the MATLAB toolbox FMMLIB2D [24].
The computational cost of the method is O(m?¢n 4+ mfnlogn)
where £ = maxi<j<m ¢; (see [18,19] for details).

In the PlgCirMap toolbox, the default values of the parameters
for the numerical calculations are set in the function plgcirmap
as follows.

1. The default value of n, the number of discretization points
in each side of the polygons, is set to n=2"9. In fact,
accurate results can be obtained even for the values of n
as small value as n=2"5. Increasing the value of n leads
to increased accuracy of the obtained results. However,
choosing very large values of n should be avoided since it
could cause a problem with the convergence of the FMM
functions in the toolbox FMMLIB2D [24].

2. For the FMM function zfmm2dpart, we set the default
value iprec=4, which means the accuracy of the FMM is
0.5 x 107'2, The accuracy of the obtained results can be
improved by choosing iprec=5 (the accuracy of the FMM
will be 0.5 x 10~1). However, there may be a problem
with the convergence of the FMM if we choose iprec=5,
especially when n is too large.

3. In the MATLAB function gmres, the default tolerances of
the GMRES method is set to gmrestol=0.5e—12 and the
default maximum number of iterations allowed is set to
gmresmaxit=100. The GMRES is used without restart.

4. For Koebe’s iterative method, the default tolerance and the
default maximum number of iterations allowed are set to
koebetol=1e-12 and koebemaxit=100, respectively.

Remarks

1. The default value for maximum number of iterations al-
lowed for both the GMRES method and Koebe’s iterative
method is 100. However, for several numerical experi-
ments with the PlgCirMap toolbox, both methods con-
verges with less than 100 iterations.

2. If we choose very large values of n and/or iprec=5, the
FMM functions in the toolbox FMMLIB2D might cause the
computer to crash. Unfortunately, no warning message will
be displayed and sometimes one need to restart MATLAB.
In such case, we need to reduce the value of n.

4.2. The main functions of the toolbox

4.2.1. The function plgcirmap

To call this function, we need first to define the vertices ver
of the polygons and a point alpha in the domain G. Here, ver
is a cell array where verj are the vertices of the polygon I;

domain G is always on the left of the boundary I". If G is bounded,
the verm are the vertices of the external polygon and alpha is
the point in the domain G that will be mapped to 0 in the domain
D. When G is unbounded, we define alpha=inf and it will be
mapped to inf in the domain D.

For computing the conformal mapping with the normaliza-
tions (1) or (3), the function plgcirmap is called as follows:

f = plgcirmap(ver, alpha).

To compute the conformal mapping with the normalizations (2)
or (4), we call the function plgcirmap as:

f = plgcirmap(ver, alpha, ver{end}(k))

which means that the vertex k on the polygon I, will be mapped
to 1. The object £, which is a MATLAB struct with several fields,
contains the data of the conformal mapping w = f(z) from G onto
D as well as its inverse z = f~!(w) from D onto G. For example,

1. £.cent is a vector of length m containing the centers of
the circles G, j=1,2,...,m.

2. f.rad is a vector of length m containing the radius of the
circles G, j=1,2,...,m.

3. f.imgver is a cell array where f . imgverj are the images
of the vertices of the polygon I; on the circle G for j =
1,2,...,m. Note that these computed values are known
in the literature as the preimages of the vertices of the
polygons.

4. f.et is a vector that contains the discretization of the
parametrization of the boundary I" = 9G.

5. f.zet is a vector that contains the discretization of the
parametrization of the boundary C = aD.

4.2.2. The function evalu

Once the function plgcirmap is executed and the MATLAB
struct £ is computed, we use the function evalu to compute
the values of the mapping function f and its inverse f~!. For
computing the direct mapping f at a vector of points z in G,
we call the function evalu(f,z,'d"). Similarly, the values of the
inverse mapping f~! at a vector of points w in D can be computed
through evalu(f,w,'v').

4.2.3. The function evalud

The function evalud is used to compute the values of the first
derivatives of the mapping function f and its inverse f~'. The
values of f’(z) at a vector of points z in G can be computed via
evalud(f,z,'d") and the values of (f~1Y(w) at a vector of points
w in D can be computed by evalud (f,w,'v').
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Fig. 2. A comparison between the PlgCirMap Toolbox (center) and the SC Toolbox (right).

4.2.4. The function plotmap

The function plotmap is used to visualize the conformal
mapping f and its inverse f~!. To plot rectangular grids in
the polygonal domain G and their images in the circular
domain D, we call plotmap(f,'d','rec',n1,n2) where nl is
the number of horizontal lines and n2 is the number of ver-
tical lines. We can also plot rectangular grids in D and their
images in G through plotmap(f,'v','rec',nl,n2). Similarly,
polar grids can be plotted via plotmap (f,'d','plr',nl1,n2) and
plotmap(f,'v','plr',n1,n2) where nl is the number of circles
and n2 is the number of rays. To plot the domains G and D
without grid-points, we call plotmap (£).

4.3. Comparison with Schwarz-Christoffel toolbox [14]

The PlgCirMap toolbox can be used for computing the confor-
mal mapping from a given polygonal simply connected domain G
onto the unit disk (for bounded G) or the exterior of the unit disk
(for unbounded G). For such case, the accuracy of the PlgCirMap
toolbox can be compared against the well known SC Toolbox [ 14].
Consider the simply connected domain G interior to the polygon
with the vertices 1.51, —1+ 1.51, —1 —1, 1.5 — 1, 1.5, and 1 (see
Fig. 2). The SC Toolbox can be used to map the unit disk onto
the domain G such that 1 on the unit circle is mapped to the last
vertex of the polygonal which is also 1. So, we shall assume here
that f is the conformal mapping from the polygonal domain G
onto the unit disk D normalized by (2) witha = 0and 8 = 1,
ie, f(0)=0and f(1) = 1.

To use the PlgCirMap toolbox in computing such conformal
mapping f, we first set the vertices of the polygon and the point
« in G as follows:

>>ver{1}=[1.5i ; -1+1.51 ; -1-1i ; 1.5-1i ; 1.5 ; 1];
>> alpha =0;

Then, we use the MATLAB function plgcirmap to compute the
object £,

>> f=plgcirmap(ver,alpha,ver{1}(6));

To plot orthogonal polar grids in the unit disk D (see Fig. 2 (left))
and their images under the inverse mapping f~! in the polygonal
domains G, we call

>> plotmap(f,'v','plr',20,25);

The resulting figure is shown in Fig. 2 (center).

Next, we use the SC Toolbox to compute the inverse mapping
f~! from the unit disk D onto the polygonal domain G. First, we
set the accuracy of the SC toolbox to 10714 by calling

>> options = scmapopt ('Tolerance', le-14);

Then, we use the SC toolbox to compute a MATLAB object fisc
by calling

>> p=polygon(ver{1});

>> fisc = diskmap(p,options);

>> fisc = center(fisc,alpha);

The plot of the image of the orthogonal polar grids in the disk
D under the inverse mapping f~' computed by the SC toolbox is
shown in Fig. 2 (right). This figure is generated by calling
>>plot(fisc,20,25);

For comparison, we compute the preimages of the vertices of
the polygon using the PlgCirMap toolbox by calling

>> prevertpcm = f.imgver{:};
and using the SC toolbox by calling
>> prevertsc = get(fisc,'prevert');

Then, we compute the maximum norm between the computed
values as

>>E_1 = norm(prevertsc-prevertpcm, inf)

The obtained maximum norm is E; = 1.0579 x 10~ 12,
Next, we choose a set of points

>>zz =0.6.%exp(i.*linspace(0,2*pi,1000));

in the polygonal domain G. To compute the values of the con-
formal mapping f at these points zz using the SC toolbox, we
call the function evalinv (fisc,zz). For the PlgCirMap toolbox,
the values of the mapping f at the points zz are computed by
calling evalu(f,zz,'d'). Then, we compute the maximum norm
between the computed values as

>> E_2 =norm(evalinv(fisc,zz)-evalu(f,zz,'d"),inf)

The obtained maximum norm is E; = 5.3952 x 10~ 13.
We also compare the two toolboxes by choosing a set of points

>>ww=0.9.*%exp(i.*linspace(0,2*pi,1000));
in the unit disk D. Then, we compute the maximum norm be-
tween the values of the inverse map f~! computed at the points

ww by the two toolboxes as

>> E_3 = norm(fisc(ww)-evalu(f,ww,'v'),inf)
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Fig. 3. An example of a bounded multiply connected domain.

The obtained maximum norm is E5 = 1.0291 x 10~12,

Finally, we check the accuracy of each toolbox separately. We
use both toolboxes to compute approximate values for f ~1(f(zz))
and f(f~!(ww)). Then, we compute the maximum error norm in
the computed values for the SC toolbox by

>>ES_1 =norm(fisc(evalinv(fisc,zz))-zz,inf)
>> ES_2 = norm(evalinv(fisc,fisc(ww))-ww,inf)

The obtained values are ES; = 9.6538 x 10~ !> and ES, = 1.4457 x
107, For the PlgCirMap toolbox, we compute the maximum
error norm in the computed values by

>>E_4 =norm(evalu(f,evalu(f,zz,'d),'v')-zz,inf)
>> E_b =norm(evalu(f,evalu(f,ww,'v'),'d") -ww,inf)

and the obtained values are E;, = 7.3621 x 10~ and E5 =
1.1931 x 10713,

As we see from this example, there is a very good agreement
between the results obtained by the well developed SC toolbox
and the presented PlgCirMap toolbox (for the default value of n,
n = 29). Further, we will have a good agreement between the
results obtained by the two toolboxes even for small values of
n. Indeed, if we change the value of n in the MATLAB function
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Fig. 4. An example of an unbounded multiply connected domain.

plgcirmap to n = 23, then the above computed norms will be
as follows: E; = 9.6102 x 1078, E, = 1.0283 x 1078, E3 =
6.3408 x 1078, E; = 4.7186 x 107°, and Es = 8.2561 x 107°.

5. Illustrative examples

In this section, we use the PlgCirMap toolbox to compute the
conformal mappings for two domains. More examples for both
bounded and unbounded domains are available in https://github.
com/mmsnasser/PlgCirMap.

5.1. A bounded multiply connected domain

For the first example, we consider a bounded polygonal mul-
tiply connected domain of connectivity 17. In the MATLAB code
given below, we first define the vertices of the polygons and we
choose a point « in the domain G. Then, we call the function
plgcirmap to compute the conformal mapping with the normal-
ization (1). The function plotmap is then called to visualize the
conformal mapping f and its inverse f~! as in Fig. 3.

ver{l} = [31+10i ; 31+5i ; 28+5i ; 28+10i ];
ver{2} = [25410i ; 25+51i ; 22+45i ; 22+10i 1];
ver{3} = [19+10i ; 19+1i ; 13+1i ; 13+101i ];
ver{4} = [10+10i ; 10+51i ; 7+5i ; T7+10i ];
ver{5} = 44101 ; 4451 ; 1+5i ; 14101 ];
ver{6} = [31+19i ; 31+14i ; 28+14i ; 28+19i ];
ver{7} = [25+19i ; 25+14i ; 22+14i ; 22+19i ];
ver{8} =

i

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[19+144i ; 19+12i ; 17+12i ; 17+14i ];
ver{9} = [15+14i ; 15+12i ; 13+12i ; 13+141i ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[

ver{10} = [19+18i ; 19+16i ; 17+16i ; 17+181i ];
ver{1ll} = [15+18i ; 15+16i ; 13+16i ; 13+18i ];
ver{12} = [19+221 ; 19+20i ; 17+20i ; 17+22i ];
ver{13} = [15+221 ; 15+201 ; 13+20i ; 13+221i ];
ver{l4} = [10+19i ; 10+14i ; 7+14i ; 7+19i 1;
ver{1l5} = 44191 ; 44141 ; 1+141i ; 1+191i 1;
ver{16} = [16+29i ; 23+24i ; 9+24i ]

ver{17} = [16+32i ; 0+221i ; 0+0i ; 32+0i ; 32+22i ];
alpha = 16+15i;

f = plgcirmap (ver,alpha);
plotmap (£, 'd', 'rec', 25,30

i

plotmap (£, 'v', 'rec',20,20);
plotmap(f, 'd', 'plr',15,25
(

plotmap(f, 'v', 'plr',10,20

i

)
)
)
);

i

5.2. An unbounded multiply connected domain

In the second example, we consider an unbounded polygonal
multiply connected domain of connectivity 24. The MATLAB code
for this example is given below where the normalization (3) is
used. Fig. 4 shows the obtained figures.

ver{l} = [-1.75-0.91 ;-1.95-0.51 ;-1.75-0.11 ;-1.55-0.51 ];
ver{2} = [-1.25-0.91 ;-1.45-0.51 ;-1.25-0.11 ;-1.05-0.51 ];

ver{3} = [-0.75-0.9i ;-0.95-0.5i ;-0.75-0.1i ;-0.55-0.5i 1;
ver{4} = [-0.25-0.9i ;-0.45-0.5i ;-0.25-0.1i ;-0.05-0.5i 1;
ver{5} = [ 0.25-0.9i ; 0.05-0.5i ; 0.25-0.1i ; 0.45-0.5i 1;
ver{6} = [ 0.75-0.9i ; 0.55-0.5i ; 0.75-0.1i ; 0.95-0.5i 1;
ver{(7} = [ 1.25-0.9i ; 1.05-0.5i ; 1.25-0.1i ; 1.45-0.5i 1;
ver{8} = [ 1.75-0.9i ; 1.55-0.5i ; 1.75-0.1i ; 1.95-0.5i 1;
ver{9} = [-1.75+0.1i ;-1.95+0.5i ;-1.75+0.9i ;-1.55+0.5i ];
ver{10} = [-1.25+0.1i ;-1.45+0.5i ;-1.25+0.9i ;-1.05+0.51 1;
ver{1l} = [-0.75+0.1i ;-0.95+0.51 ;-0.75+0.9i ;-0.55+0.5i 1;
ver{12} = [-0.25+0.1i ;-0.45+0.5i ;-0.25+0.9i ;-0.05+0.5i 1;
ver{13} = [ 0.25+0.1i ; 0.05+0.5i ; 0.25+0.9i ; 0.45+0.5i 1;
ver{14} = [ 0.75+0.1i ; 0.55+0.51i ; 0.75+0.9i ; 0.95+0.5i J;
ver{15} = [ 1.25+0.1i ; 1.05+0.5i ; 1.25+0.9i ; 1.45+0.5i 1;
ver{16} = [ 1.75+0.1i ; 1.55+0.5i ; 1.75+0.9i ; 1.95+0.5i 1;
ver{17} = [-1.75+1.1i ;-1.95+1.51i ;-1.75+1.9i ;-1.55+1.5i J;
ver{18} = [-1.25+1.1i ;-1.45+1.5i ;~-1.25+1.9i ;-1.05+1.5i J;
ver{19} = [-0.75+1.1i ;-0.95+1.5i ;=-0.75+1.9i ;-0.55+1.5i ];
ver{20} = [-0.25+1.1i ;-0.45+1.5i ;-0.25+1.9i ;-0.05+1.5i J;
ver{21} = [ 0.25+1.1i ; 0.05+1.5i ; 0.25+1.9i ; 0.45+1.5i J;
ver{22} = [ 0.75+1.1i ; 0.55+1.5i ; 0.75+1.9i ; 0.95+1.5i 1;
ver{23} = [ 1.25+1.1i ; 1.05+1.5i ; 1.25+1.9i ; 1.45+1.5i J;
ver{24} = [ 1.75+1.1i ; 1.55+1.5i ; 1.75+1.9i ; 1.95+1.5i J;

alpha = inf;
f=plgcirmap (ver,alpha) ;
plotmap (£, 'd', 'rec',25,25);

6. Impact

Conformal mappings are a powerful tool to solve several prob-
lems in the fields of science and engineering involving the Laplace
equation due to its invariant under conformal mappings. With
the help of conformal mappings, solving the Laplace equation in
domains with complex geometry (physical domains) is reduced to
solving this equation in domains with simpler geometry (canoni-
cal domains). The simple geometry of the circular domain makes
it an important canonical domain from both physical and com-
putational points of view. For example, D. Crowdy with several
collaborators have recently presented analytic formulas for sev-
eral problems of fluid mechanics in circular multiply connected
domains (see e.g., [4] and the references cited therein). With the
help of the presented toolbox, such analytic formulas can be used
also for polygonal domains (we refer to [25] for an example of
such applications of the toolbox).

7. Final remarks and suggestions for future improvements

1. The numerical method used in the PlgCirMap toolbox to
compute the conformal mapping is based on the boundary
integral method presented in [ 18]. Thus, the accuracy of the
toolbox depend on the accuracy of the numerical solution
of the used boundary integral equation. In the current
version of the toolbox, the integral equation is solved using
the Nystrom method with the trapezoidal rule based on
graded mesh points (see [22] for details). Improving the
accuracy of the numerical solution of the integral equation
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will improve the accuracy of the presented toolbox. This
could be considered in the future.

2. The method presented in [18] can be used for general
multiply connected domains with smooth or piecewise
smooth boundaries. As a result, the PlgCirMap toolbox can
be generalized to multiply connected domains other than
polygonal domains. In particular, this toolbox can be gen-
eralized easily to compute the conformal mapping from
multiply connected domains with circular-arc boundaries
onto circular multiply connected domains.

3. The accuracy of the numerical methods for computing the
conformal mapping from a circular domain D onto an elon-
gated domain G is seriously affected by what is known
as the crowding phenomenon (see [6, §2.6]). Although the
method used in this toolbox is based on computing the
conformal mapping from the elongated domain G onto the
circular domain D, it still affected by crowding. One pos-
sible way to improve the accuracy of the presented tool-
box for elongated domains in future is to use the domain
decomposition method or to consider canonical domains
other than the circular domain (see [6]).
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