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A B S T R A C T

Deep anomaly detection (DAD) is essential in optimizing building energy management. Nonetheless, most
existing works concerning this field consider unsupervised learning and involve the analysis of sensor readings
through a one-dimensional (1D) energy time series, which limits the options for detecting anomalies within the
building’s energy consumption. To the best of the authors’ knowledge, this paper presents the first study that
explores using two-dimensional (2D) image representations as features of a supervised deep transfer learning
(DTL) approach. Specifically, using 2D image representations allows taking advantage of any underlying data
within the feature set, providing more possibilities to encode data and detect pertinent features which may
not be considered in standard 1D time-series. Furthermore, the effects of using CNN activations as machine
learning (ML) model features are also investigated to combine the advantages of both techniques. Additionally,
the concept of layer and hyperparameter variation for the CNN model is also studied, with the objective of
reducing the overall time computation and resource requirements of the proposed system. Hence, this makes
our approach a candidate for edge-based applications. As per the conducted experiments, the top methodology
rests at the F1-scores of 93.63% and 99.89% under simulated and real-world energy datasets, respectively. This
involves using grayscale 2D image representations that combine CNN activations extracted from AlexNet and
GoogleNet pre-trained models as features to a linear support vector machine (SVM) classifier. Finally, the
comparison analysis with the state-of-the-art has shown the superiority of the proposed method in various
assessment criteria.
. Introduction

.1. Preliminary

Projections considering current energy policies demonstrate that
lobal electricity consumption will grow by 84% in the next 25 years
Alsalemi et al., 2022; Himeur et al., 2022d). As such, energy efficiency
s a core element for most countries worldwide. For instance, the
uropean Union (EU) has set significant challenges for energy and
limate policy, such as the 40/27/27 objectives (40% increase in energy
fficiency, 27% reduction of CO2 emissions, and 27% integration of re-
ewable energies by 2030) and also a significant prerequisite to moving
orward towards to 80%–95% reduction in greenhouse gas emissions
y 2050 (Himeur et al., 2020a; Sayed et al., 2021). Information and
ommunication technologies (ICT) are an essential means by which
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energy efficiencies may be achieved (Deng et al., 2020). However,
consumers and even managers are still hesitant to widely adopt ICT
technologies that contribute to energy efficiency for many and diverse
reasons (Sayed et al., 2022b), such as (i) the lack of demonstration
of their cost-effectiveness (Al-Kababji et al., 2022), (ii) the current
under-development of applications that exploit energy usage data for
the benefit of consumers and designated third parties (Varlamis et al.,
2022b), (iii) the lack of demonstration that energy savings can be
achieved without compromising comfort levels (Himeur et al., 2022b)
and (iv) limitations on consumers’ capacity or capability to make the
necessary changes in energy usage habits (Deng et al., 2022b,a).
Furthermore, the vast majority of buildings’ customers are not ex-
posed to price signals provided in multiple ways via different pricing
models and rate designs (Sardianos et al., 2021). Typically, driven by
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technological and industrial development, the growing population, and
the need to improve living standards, the upwards trend of energy
consumption in buildings cannot be curbed easily. Indeed, the building
energy sector is responsible for almost 40% of energy consumption
and up to 45% of CO2 emissions around the globe (Benavente-Peces
and Ibadah, 2020; Varlamis et al., 2022a). While different approaches
have been recently investigated, such as renewable energy and the
conception of green buildings (Fu et al., 2022; Song et al., 2023),
they remain very costly and not accessible to the population. To that
end, there has been a move to adopt novel technologies based on ICT,
artificial intelligence (AI) and machine learning (ML), Internet of things
(IoT), edge and cloud computing, etc., for promoting building energy-
saving (Manimala, 2021). Therefore, using these technologies along
with advanced metering infrastructure, smart distribution boards, and
renewable energy has given rise to ‘‘smart grid (SG)’’ (Himeur et al.,
2022e; Elnour et al., 2022).

The increasing energy consumption of buildings is also because most
buildings are not performing as expected by their designers/managers
(Ma et al., 2021; Deng et al., 2021) . Specifically, buildings are consum-
ing 20% more energy than necessary due to end-users incorrect energy
consumption habits and lack of awareness, malfunctioning equipment,
faulty devices, improper operating processes, and wrongly configured
monitoring systems (DOE, 2015). In this line, the building systems
may fail to meet the performance expectations due to various faults.
Poorly maintained, degraded, and improperly controlled equipment
wastes an estimated 15% to 30% of energy used in commercial build-
ings (Himeur et al., 2020b). Therefore, it is of great potential to develop
automatic, quick-responding, accurate, and reliable fault detection and
to provide diagnosis schemes to ensure the optimal systems operations
to save energy (Alsalemi et al., 2021). Developing efficient building
energy-saving systems aims at (i) early detection of abnormal energy
consumption and (ii) prevention of energy frauds from smart meters.
Put simply; this enables operators/end-users to foresee uncommon
events, identify unusual energy consumption behaviors, and detect
abnormal energy usage. In this regard, developing anomaly detection of
energy consumption (ADEC) is becoming a widely recognized research
topic, which attracts significant interest from both artificial intelligence
and energy research communities (Himeur et al., 2021c). An energy
consumption anomaly can be either a pattern or a contextual anomaly.
A pattern anomaly usually represents an outlier whose value differs
considerably from the neighboring energy consumption values. It can
be due to the malfunction of some devices (or systems), noise impulses
generated by some devices on the grid when turned on, or temporary
interference of sensor readings (Himeur et al., 2021a). On the other
hand, a contextual anomaly represents a set of energy consumption
patterns that are abnormal in a specific period of time. However, on
the individual level, their values may fall within the normal energy
consumption range. Different reasons can cause this kind of anomaly,
including (i) excessive energy consumption due to end-users’ behavior,
(ii) excessive consumption of faulty devices or systems, and/or (iii) ex-
cessive consumption of energy-greedy devices (Liu et al., 2020; Himeur
et al., 2021b).

Anomaly detection is the process of identifying events or observa-
tions that do not conform to expected behavior or pattern. Typically,
these anomalous observations can be translated into important infor-
mation about the health status of the system under study (Himeur
et al., 2022c). For example, they can be faults, malfunctioning in
the systems, or suspicious or unwanted behavior that requires imme-
diate attention and/or measures. With the advent of IoT-based and
smart technologies enabling the acquisition and access to an abundant
amount of data, data-driven approaches have become more attractive
for anomaly detection. They have been widely deployed for several
application domains such as in Elnour et al. (2020a), Yun et al. (2021),
Han et al. (2019) and Bang et al. (2019) for fault detection in heating,
ventilation, and air conditioning (HVAC) systems, in Noorizadeh et al.
(2021), Elnour et al. (2020b), Karimipour et al. (2019) and Elnour
2

et al. (2021) for attacks and intrusion detection in industrial control
systems, in Rtayli and Enneya (2020) and Paruchuri (2017) for fraud
detection, and in Chiosa et al. (2021), Rashid and Singh (2018) and
Sial et al. (2019) for detecting ADEC in buildings. Using ML for anomaly
detection makes developing detectors relatively easier and faster (Sayed
et al., 2022c). Unlike basic anomaly detection approaches that require
expert knowledge and potentially hand-crafted representations or rules,
the development of ML-based anomaly detection systems requires a fair
amount of good-quality data that are generally available in abundance
and a comprehensive process of parameter tuning of the ML algorithms
used (Himeur et al., 2022a). The last step can be time-consuming but
can be fully automated and optimized with the advancement in the
computation systems. Moreover, the application of ML for anomaly
detection helps enhance and improve the process’s performance, as
well-chosen/developed ML models can achieve high accuracy and re-
liability compared to the primary detection methods (Sayed et al.,
2022a).

1.2. Open challenges

On the other hand, deep learning (DL) has recently shown tremen-
dous success in tackling complexities related to high dimensionality,
data inter-dependency, and data heterogeneity in a wide range of
applications (Pang et al., 2021). On the other hand, in their original
forms, DL techniques were found inapplicable for anomaly detection
applications due to the characteristics of anomalies such as rarity,
heterogeneity, boundless nature, and prohibitively high cost of collect-
ing large-scale anomaly data (Pang et al., 2021). Even with that, the
research community successfully developed frameworks to adapt and
deploy DL algorithms to fit the anomaly detection problem, such as
by using unsupervised learning (Fan et al., 2018), feature extraction
methods (Himeur et al., 2020b), etc. This helped overcome the major
challenges to which shallow anomaly detection methods fail in different
application contexts.

Besides, a fundamental challenge stems from the fact that the
unsupervised learning approaches do not deploy any prior knowledge
of the anomalies, hence the weak performance of those approaches
in detecting complex and sophisticated anomalies. Those anomalies,
which can be very serious, can go undetected for a long while. Studies,
such as Tasfi et al. (2017), suggested harnessing the available histor-
ical data such that the limited available labeled data, along with the
unlabeled data, are exploited to develop a form of semi-supervised
deep anomaly detection (DAD) frameworks. Such approaches do not
completely eliminate the challenge, but they are regarded as fruitful
attempts to handle the problem. Other challenges rarely addressed are
the robustness and resilience of DAD approaches to noise presence
and adversarial observations. For that, hybrid methods combine DL
algorithms with expert knowledge to make a convenient mitigation
measure that boosts the detection’s reliability and performance, despite
the complexity of the development stage.

Moving on, when detecting anomalies with traditional ML algo-
rithms, there exists a major issue related to the high false-positive
rate. This is because most conventional ML models classify any unseen
observation as an anomaly. However, it may be a normal sample
that has not been included in the training ensemble. One theoretical
idea to overcome this issue is to have a large-scale training data set
consisting of all possible normal cases. However, in practice, this cannot
be guaranteed. Typically, even if it is possible to augment the training
data set to include much more normal observations, a model with a
high generalization ability will still be needed. To that end, using DL
models instead of conventional ML algorithms may have a better ability
to generalize.

1.3. Motivation of the study

In this context, convolutional neural networks (CNN) models have
become a prevalent ML technique, which provides promising
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performance when treating data with images as inputs. This is be-
cause of their ability to read, process, and extract the most pertinent
characteristics of 2D data (Wang et al., 2021). Thankfully, although
data is not formatted as an image in some applications, different
transformations can be explored to help apply CNN models to other
data formats. Energy time series is among these kinds of data which can
be transformed to address a problem from a computer vision context.
Consequently, transforming energy time series into 2D representations
creates more possibilities for analyzing, encoding, and interpreting
energy samples. Furthermore, different square kernels can be applied
to analyze the correlation between them (Himeur et al., 2021a). For
example, in various classification problems, such as the electrocar-
diogram (ECG), electroencephalogram (EEG), and non-intrusive load
monitoring (NILM), two-dimensional (2D) images are produced from
the one-dimensional signals, which allows applying popular image
processing and CNN algorithms. For instance, in Jun et al. (2018),
an ECG classification scheme using a 2D-CNN is proposed, where
each ECG beat is first represented in 2D space and then fed into a
CNN classifier. Moving on, Xavier initialization, data augmentation,
batch normalization, and dropout have been utilized to optimize the
performance of this architecture. Furthermore, in Li et al. (2020), a
two-stream CNN based on the current time–frequency feature fusion
for NILM is introduced. A time-series image transformation approach
to fuse current time–frequency multi-feature is first developed for this
case. Subsequently, a two-stream DL aggregating 2D-CNN and gated
recurrent unit (GRU) is presented.

1.4. Contribution

Based on the aforementioned discussion and the identified issues,
it is of utmost importance to develop powerful DAD algorithms for
ADEC, which can (i) avoid overfitting, (ii) reduce the number of false
positive alarms, and (iii) enable better interpretation of the feature
used to classify data and obtained outcomes. In this context, developing
a DAD solution based on using energy time-series images can help
achieve these goals. To that end, this work aims to determine the
optimum method for ADEC in sustainable buildings, considering the
overall accuracy and time and resource requirements as the basis of
the experimental comparisons. A detailed study is conducted on the
advanced applications of 2-D image representations and pre-trained
neural networks for ADEC. As per the literature review, studies con-
cerning these methodologies are limited, particularly for the selected
application of this research. With the current rising trend of artificial
intelligence, exploring this research area provides a suitable baseline
for future advancements within this topic. Furthermore, findings within
this work can also be extended to other domains. Overall, the main
contributions of this study can be summarized as follows:

• Conduction of a thorough literature review on ADEC to identify
the pros and cons of existing methods, including conventional
ADEC and DAD.

• Direct application of transfer learning via pre-trained NN models
using 2D representations of time-series energy signals.

• Hyper-parameter and layer variation on pre-trained CNN models.
• Direct uses pre-trained models as a feature extraction technique

by extracting neural network activations on a specific layer and
using them as features to differing ML approaches.

• Utilization of hyper-parameter varied pre-trained models as fea-
ture extraction methods in conjunction with ML approaches.

The remainder of the paper is organized as follows. Section 2
discusses the related works for ADEC in buildings using ML algorithms
and the main drawbacks and limitations. Section 3 details the proposed
approach’s details, where the datasets, processing stage, CNN models,
and transfer learning algorithms proposed in this study are deeply
explained. The empirical evaluation results are then presented under
different experimental and simulation scenarios in Section 4. Lastly,
concluding remarks and outlook are derived in Section 5.
3

2. Related works

ADEC can be performed using supervised or unsupervised learning.
Supervised learning requires anomaly benchmarks, which represent the
abnormal energy consumption values against which detected anomalies
can be compared to avoid false alarms. In this section, we briefly
reviewed conventional ADEC and DAD techniques.

2.1. Conventional ADEC methods

Conventional ADEC techniques have been widely used in the build-
ing energy sector due to their implementation simplicity and low
computational cost. For instance, in Araya et al. (2017), a pattern-based
anomaly detection scheme is proposed, named collective contextual
anomaly detection based on sliding windows (CCAD-SW). Typically, ab-
normal energy profiles are detected using overlapping sliding windows.
Moreover, an ensemble classifier is developed by combining various
classifiers using a majority vote; this results in ensemble anomaly
detection (EAD). The latter has been evaluated using real-world en-
ergy consumption footprints from different buildings (in Brampton,
Ontario, Canada). Moving forward, a data-driven ADEC scheme using
a spatiotemporal feature extraction technique is proposed in Liu et al.
(2017), which relies on the paradigm of symbolic dynamics to dis-
cover and represent causal interactions among subsystems. Then, the
extracted features are fed into a restricted Boltzmann machine (RBM),
which has been utilized to learn system-wide patterns and form an
energy abnormality detection system.

In Yip et al. (2018), linear programming (LP)-based ADEC tech-
nique is introduced to evaluate consumers’ energy consumption habits,
identify faulty meters, and prevent the potentiality of energy frauds.
Typically, this method allows (i) capturing energy theft attacks against
advanced metering infrastructure (AMI), (ii) pinpointing sub-meter
defects in SG environments, and (iii) overcoming some issues related
to the non-technical loss (NTL) detection. In Capozzoli et al. (2018),
Capozzoli et al. put forward an ADEC scheme by analyzing energy
time series in buildings and identifying unexpected and unusual power
consumption habits. This methodology is built by (i) using an improved
symbolic aggregate approximation procedure and (ii) optimizing the
tuning of the time-window length and symbol intervals with reference
to power consumption activities.

By contrast, an unsupervised ADEC approach for integrated energy
systems (IESs) is proposed in Zhang et al. (2021) by combining four
ML models, namely clustering analysis (CA), knowledge-based (KB),
one-class support vector machine (OCSVM) and isolation forest (IF).
Specifically, this framework enables detecting and analyzing possible
vulnerabilities and threats of an IES with regard to the modifications
and changes of the operation status and run-time of every subsystem
in the IES. Similarly, Do et al. (2018) propose an unsupervised and
scalable ADEC scheme using a mixed-variate RBM (Mv-RBM), which
refers to a principled-probabilistic technique for estimating the density
of mixed data. The free energy extracted from the Mv-RBM has been
used as the abnormality score because it is similar to data negative
log-density up to an additive constant. Following, this process has
been extended for detecting abnormalities through multiple levels of
data abstraction, where the MIXed data Multilevel Anomaly Detec-
tion (MIXMAD) solution is developed by constructing an ensemble
of mixed DBNs having changing depths. Following the same concept,
an unsupervised ADEC is introduced in Rashid and Singh (2018) to
identify anomalous daily energy consumption in buildings based on
identifying patterns in the smart meters data. The local outlier factor
(LOF) is used for clustering the data into clusters of the various energy
consumption patterns. For each resultant cluster, a local abnormality
score is computed using all data points within the particular cluster to
reduce the false alarm rate. An anomalous consumption is identified if
it is significantly different from the prominently identified pattern of
the cluster.
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In Sial et al. (2019), four different ADEC schemes in hostel buildings
re investigated using (i) percentage change in consumption (PCC),
ii) k-nearest neighbor (kNN), (iii) histogram buckets (HB), and (iv)
rincipal component analysis (PCA). Smart meter data is grouped based
n the hour of the day, type of the day, and type of power supply
nd then pre-processed to normalize the data and fill in missing ones
o enhance the data analysis. In the 4 schemes, an anomaly score is
omputed and then used to identify abnormal consumption based on
defined threshold using a percentage confidence interval. Moving

n, an ADEC framework at the building level is proposed in Chiosa
t al. (2021), followed by the diagnosis at the appliance level to
dentify the source of detecting anomalous consumption. Frequent and
nfrequent aggregated energy patterns are identified using regression
rees (RTs) and an adaptive symbolic aggregate approximation (aSAX)
rocess. Then, association rule mining (ARM) is used to uncover the
ub-load(s) responsible for the detected anomaly. While in Xu et al.
2021), anomaly detection and dynamic energy performance evaluation
f HVAC systems are presented using ARM and clustering analysis to
dentify the energy patterns and the relevant association rules to detect
nd diagnose abnormal energy consumption.

In Zhou et al. (2021), ADEC is performed to detect anomalous en-
rgy patterns of central air conditioning systems (CACS) by formulating
he problem as binary classification. Data pre-processing is performed
hen information entropy (IE) is used to characterize the daily con-
umption patterns to mitigate the issues of high miss rates and high
alse-positive rates. The data pre-prepossessing partially requires expert
xperience. Then, a dataset of the normal daily energy consumption
atterns (NDECP) is created and continuously updated online, and then
on-conforming data patterns to the NDECP are flagged anomalous.
dditionally, a model-based fault detection method is proposed in Bang
t al. (2019) using the building simulation model to detect abnormal
nergy consumption of ventilation systems in buildings. A baseline is
reated based on the building simulation model that is compared with
he actual data of building operation based on the Chernoff bound
ethod that defines the allowable deviation from the baseline before

dentifying the instance anomalous.

.2. Deep Anomaly Detection (DAD)

Using DL for anomaly detection, also called DAD, has emerged
s a promising direction. Typically, DAD aims at detecting outliers
also called out-of-distribution patterns) by assigning anomaly scores
o data inputs (Zhang et al., 2022). DAD has excelled in identi-
ying abnormalities in complex and large-scale datasets, e.g., time
eries (Zhou et al., 2022), speech (Garoufis et al., 2022), ECG (Sri-
astava et al., 2022), images (Yousefan et al., 2022), and videos (Wu
t al., 2022). To that end, increasing attention is devoted by the
uilding energy sector to developing DL-based ADEC frameworks. For
xample, in Fan et al. (2018), a deep autoencoder (DAE) based energy
onsumption anomaly detection scheme is proposed. In doing so, a
AE-based ensemble approach is constructed by combining different
rchitectures. Also, the potential of various DAE models is examined,
uch as convolutional autoencoders (CAE), denoising autoencoders,
ecurrent autoencoders (RAE), etc. In Hollingsworth et al. (2018), the
uthors investigate energy prediction and ML models for detecting en-
rgy consumption anomalies. Therefore, an energy forecasting scheme
ased on autoregressive integrated moving averages (ARIMA) combines
ong short-term memory (LSTM) to analyze day-to-day operations and
emove seasonality and trends from energy observations. Similarly, an
nergy efficiency optimization technique for reducing energy waste has
een suggested in Yin et al. (2022) by exploiting abnormal energy
onsumption and using an innovative algorithm called ‘‘rain flow-
ased mean nearest neighbor distance anomaly factor.’’ Also, in Wang
t al. (2019), residual-based anomaly detection for energy consumption
s proposed using an LSTM NN that is used to forecast the energy
onsumption, and then the difference between the actual and predicted
4

values is used as the indication of the status of the energy consumption
based on static threshold settings. In another residual-based anomaly
detection mechanism, authors (Yang et al., 2022) have utilized learned
models to predict and generate residuals for anomaly detection Predic-
tions from the learned models are used to generate the residuals for
anomaly detection by Page’s cumulative sum test. In a similar way,
an unsupervised anomaly detection approach for detecting anomalous
energy usage in residential buildings is introduced in Xu and Chen
(2020b), which is based on recurrent neural network with quantile
regression (RNN-QR). In this regard, this approach relies on predicting
energy consumption before identifying abnormal patterns.

Moving on, Pereira and Silveira (2018) propose a scalable, un-
supervised, and generic system for pinpointing anomalies in energy
consumption time-series data. Accordingly, a variational self-attention
mechanism (VSAM) has been used to introduce attention in the model,
improving the encoder and decoder operation. Next, abnormalities
are detected using the probabilistic reconstruction scores provided by
our model. A CNN-based consumption anomaly detection for building
automation and management systems (BAMSs) is proposed in Tasfi
et al. (2017). It aims to accommodate sparsely labeled datasets such
that the framework consists of a supervised CNN-based auto-encoder,
which has branches at the output (i.e., reconstruction branch and clas-
sification branch) to produce two outputs. These are the classification
label and the reconstructed signal. The network’s branches are trained
independently based on the availability of data labels in the training
dataset. In situations where the training sample is unlabeled, only the
network parameters of the reconstruction branch are updated. The two
outputs of the network are used to deduce the final decision. Li et al.
(2022) have proposed an unsupervised deep generative model capable
of identifying whether the current state of the nuclear power plant is in
normal operation or in accident condition. The main advantage of their
approach that by only making use of normal operation data from the
nuclear power plant, the approach is effectively detecting the abnormal
operation state.

In Fenza et al. (2019), an LSTM network is deployed to forecast
the consumers’ behavior based on their consumption to isolate actual
anomalies from normal behavioral changes such as family structure
change, a house becoming a second residence, etc. At first, clustering
analysis is used to identify energy consumption profiles from the time-
series data. Then the LSTM-based model is developed using the outputs
of the clustering analysis to forecast future individual consumption
with respect to the most common profiles, and further analysis is
conducted on the forecasting error to identify potential anomalies in
such behaviors.

To address the increased sophistication and complexity of cyber–
physical system attacks and to handle the massive increasing volume
of data, domain-specific knowledge is required, which can then be
directly applied to analyze these challenges. To conduct research con-
sidering these challenges in mind, Nagarajan et al. (2022) proposed
an intelligent mechanism that combines CNN with a Gaussian-Mixture
Model (GMM) based on the Kalman Filter (KF). The model is capable
of detecting anomalous behavior in cyber–physical systems. In Chahla
et al. (2020), a framework for daily consumption anomaly detection
and isolation is proposed using an NN-based auto-encoder (AE-NN) for
anomalous consumption detection and a hybrid structure combining
K-means clustering algorithm and an LSTM network to localize the
anomaly throughout the day, which promotes the detection of abnor-
mal behavior based on the assumption that identical daily consumption
can repeatedly appear due to users’ living habits. While an anomaly
detection framework for ground source heat pump (GSHP) systems in
buildings, being one of the great energy consumers, is proposed in In Xu
and Chen (2020a) using a mode decomposition-based LSTM algorithm
for consumption prediction. The difference between the predicted and
actual values is used to identify the abnormal system energy consump-
tion by Grubbs’ test. In Himeur et al. (2020b), a rule-based scheme that
deploys the micro-moment paradigm as a feature extraction module is
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used to categorize power consumption data into five distinctive classes
based on consumption status, occupancy, and appliance use. Then, a
deep neural network (DNN) and complementary ensemble empirical
mode decomposition (CEEMD)-based anomaly classifier is developed
to automatically identify the five abnormal consumption classes.

Table 1 summarizes the ADEC frameworks discussed above, the ML
models used in each study, their characteristics, application scenarios,
and limitations.

2.3. Critical discussion

By overviewing existing ADEC frameworks, a set of limitations and
open challenges have bee identified as follows:

• The comparison study presented in Table 1 shows that most
overviewed ADEC methods rely on unsupervised learning. This
is mainly due to the simplicity of its implementation compared
to supervised learning and the lack of annotated datasets. In
this line, by applying unsupervised ADEC methods on large-scale
datasets, the anomaly detection performance and computational
efficiency are often dramatically degraded. Moreover, it is hard
to properly assess the performance of the applied ADEC models
because of the unavailability of annotations.

• By analyzing existing ADEC frameworks based on conventional
ML and DL models, it was clear that a tangible definition of
abnormal energy consumption is essential to developing robust
ADEC models. However, this is quite challenging in different
energy data sets because of (i) the nature of buildings, (ii) the
variety of equipment, devices, and appliances installed in each
building, (iii) the type of data collected from each building, etc.
On the other hand, despite the tremendous effort that has been
made to put into action ADEC techniques using conventional ML
and DL techniques, different limitations and drawbacks persist
and need to be overcome to (i) improve the performance of
ADEC solutions for detecting abnormalities, (ii) reduce their com-
plexity, (iii) and enable their implementation on edge platforms.
Specifically, it is still challenging to reach convincing anomaly
detection performance using unsupervised learning models since
the rationality of ADEC results would only be carried out by
posterior analysis while most existing datasets are unlabeled.

• Despite that some unsupervised data mining schemes were uti-
lized to improve the performance of energy big data analysis,
the corresponding post-mining workloads could be immense. Con-
cretely, selecting non-redundant and relevant association rules
representing abnormal and normal energy consumption usage
could be laborious (Li et al., 2017; Fan et al., 2015).

• The performance of existing unsupervised ADEC techniques con-
siderably depends on the characteristics employed. Thus, features
for ADEC are constructed using simple statistics (e.g., the mean
and standard deviation of numerical variables) or domain exper-
tise. However, complex statistical models are subject to stringent
mathematical assumptions and are not scalable to large-scale
datasets, which can cause problems when processing real-world
high-dimensional data.

• The generalizability of ML models needs to be improved, mainly
because there is often a gap between the data distribution of the
source domain (used for training) and the target domain (used
in testing). This means that real-world data used in testing often
differ from training data, although both are related.

2.4. Novelty and innovation of the proposed method

To overcome the above-mentioned limitations, some studies have
suggested using auto-encoders as they can adopt the CNNs for devel-
oping unsupervised ADEC, where the models’ input and output are set
identically. However, auto-encoders are not that efficient compared to
5

CNN, and generative adversarial networks for anomaly detection (Gon-
zalez et al., 2022). Typically, their performance can be drooped if
insufficient training data is available (Takiddin et al., 2022). Fur-
thermore, the rapid development of CNN models has provided great
opportunities to analyze 2D signals and detect faulty and anomalous
variables, especially if annotated data sets are used. More importantly,
CNN provides data-driven approaches to extract features at different
levels, which is very useful for processing the most challenging tasks of
ADEC in buildings.

In contrast, in this study, we propose a supervised ADEC approach
that exploits the representation of energy time-series signals in 2D
space to feed different pre-trained CNN models. Typically, a DTL strat-
egy has been developed by fine-tuning pre-trained models, such as
GoogleNet and AlexNet, on two energy consumption datasets to detect
abnormal energy usage. These models are efficient in reading, process-
ing, and extracting the most relevant features of 2D data. Moreover,
CNN activations have then been used as ML features to improve the per-
formance of the proposed methodology. On the other hand, using DTL
and pre-trained CNN models can considerably (i) reduce the complexity
of the ADEC solution as there is no need to retrain these models from
scratch and (ii) improve the generalizability of the proposed solution
on other energy consumption datasets recorded from other buildings or
even in other regions.

3. Proposed ADEC methodology

This section details the different methodologies explored within
the context of this work, elaborating on justifying the advantages and
highlighting the points of improvement of each technique. The section
begins by introducing the data sets utilized for the experiments and
the pre-processing methods applied to meet the specifications of the
models used. It then extrapolates on the various techniques compared,
progressively identifying the research gaps addressed within this work.

3.1. Dataset description

To evaluate the performance of the proposed DAD scheme, the
simulated energy dataset (SiD) introduced in Himeur et al. (2020b)
and the Dutch residential energy dataset (DRED) (Uttama Nambi et al.,
2015) are considered. These datasets have been selected because they
include labels of normal and abnormal energy consumption footprints.
Specifically, SiD represents an annotated micro-moment-based energy
usage dataset produced using human behavior modeling of real power
consumption footprints from Bache and Lichman (2013). It comprises
ten feature sets generated based on energy usage and occupancy data.
By contrast, DRED is a real repository that includes energy consump-
tion, occupancy, and environmental data of one pilot household (in
the Netherlands) (Uttama Nambi et al., 2015). Sensor devices have
been set to record aggregated and appliance-level power consumption.
This dataset has been annotated using the same process as SiD, which
generates five sets of features corresponding to energy consumption and
occupancy data.

3.2. Pre-processing and conversion of time-series data to 2D images

In this work, we represent the sensor readings derived from the
SiD and DRED datasets into time-series 2D images, which will then
be used as the main input for the models, regardless of their usage,
which, in this work, can range from regular transfer learning, hyper-
parameter varied model, or NN activation extraction. This is achieved
by creating a matrix representation of the sensor readings, followed
by normalizing the values. In the grayscale domain, normalization is
achieved by dividing all matrix samples by the maximum value, which
is 255. Accordingly, a similar process is done with the RGB domain.
Once the values are normalized throughout the entire matrix, this is
resized into the required image size, as given by the pre-trained model.
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Table 1
A summary of ADEC frameworks discussed in this paper.

Work ML model Learning process Description Application Inconvenient

Bang et al. (2019)
Model-based Unsupervised Detect anomalous energy

consummation
Fault detection Requires developing the

building dynamic simulation
model

Chiosa et al. (2021) RTs, aSAX, ARM Unsupervised Detect anomalous energy
consummation at the
building level and
diagnose the source at the
sub-loads level

Anomaly detection
and diagnosis

The extraction of association
rules and development of
classification trees can result
in information loss and
accuracy decrease.

Rashid and Singh
(2018)

LOF Unsupervised Detect anomalous daily
energy consummation

Anomaly detection High FNR for hourly
consumption anomalies

Sial et al. (2019) PCC, kNN, HB, PCA Unsupervised Detect anomalous energy
consummation

Anomaly detection Does not address the
mitigation of the potential
high false-positive rate
problem

Capozzoli et al.
(2018)

Aggregate
approXimation

Unsupervised ADEC based on enhanced
symbolic aggregate
approXimation (SAX)
process

Anomaly detection High computational
complexity due to using a
time-windowing process.

Tasfi et al. (2017) CNN Semi-supervised DNN with confidence
sampling based on two
sub-networks

Anomaly detection Assumes the availability of
partially labeled data

Fenza et al. (2019) Clustering, LSTM Unsupervised Forecast the consumers’
behavior to isolate actual
anomalies from normal
behavioral changes

Anomaly detection High computational cost and
moderate anomaly detection
accuracy.

Araya et al. (2017) CCAD-SW,
EAD-CCAD-SW

Unsupervised Ensemble anomaly
detection by combining
multiple classifiers using
majority voting

Anomaly detection Less interpretable and it is
challenging to predict and
explain the output.
Expensive in terms of both
time and space.

Liu et al. (2017) RBM Unsupervised ADEC using energy-based
spatiotemporal graphical
modeling

Anomaly detection Difficult to accurately assess
the performance as it is based
on an unsupervised learning
process.

Yip et al. (2018) LP Unsupervised Detecting energy theft
attacks against AMI

NTL detection Require annotated data

Zhang et al. (2021) CA, KB, OCSVM,IF Unsupervised Vulnerability dynamic
analysis for large-scale
integrated energy systems

vulnerability
dynamic
analysis/anomaly
detection

N/A

Do et al. (2018) Mv-RBM Unsupervised Unsupervised anomaly
detection by estimating the
density of mixed data.

Anomaly detection The time complexity increases
linearly with the number of
data types.

Xu et al. (2021) Clustering analysis,
ARM

Unsupervised Detect anomalous HVAC
systems energy
consummation

Anomaly detection
and diagnosis

The time complexity grows
with large-scale datasets.

Zhou et al. (2021) IE Unsupervised Detect anomalous CACS
daily energy consummation

Anomaly detection Require expert knowledge

Hollingsworth et al.
(2018)

ARIMA, LSTM Unsupervised Anomaly detection using
DL-based energy
time-series forecasting

Anomaly forecasting The lack of interpretability.

Wang et al. (2019) LSTM Unsupervised Detect anomalous energy
consummation

Anomaly detection Uses conventional thresholds
setting scheme

Chahla et al. (2020) AE-NN, K-mean
clustering, LSTM

Unsupervised Detects daily anomalous
consumption and localize
anomalies throughout the
day

Anomaly detection
and isolation

Detect anomalies without
specifying at what time they
have occurred.

Xu and Chen
(2020a)

LSTM + CEEMD Unsupervised Predict the consumption of
GSHP pumps and statically
analyze the consumption
prediction error to detect
anomalous

Anomaly detection High computational cost due
to the combination of LSTM
and CEEMD.

Himeur et al.
(2020b)

Micro-moments,
DNN

Supervised Label consumption data
and then diagnose
anomalous consumption
type based on energy
amount, occupancy, and/or
appliance use

Anomaly diagnosis Require data annotation.
This process is achieved using bi-cubic interpolation. The images are
then concatenated in three dimensions to create an RGB format per the
models’ requirements and converted into a grayscale color map array.

On the other side, different transformation techniques have been
proposed in the Literature to transform time-series into images. This
aims to provide more insights into the characteristics and patterns
6

which are invisible in the initial time-series’ 1D sequences. As explained
in Fig. 1, a list of features for a given instant is arranged into a 5 × 5
matrix. As per our previous experiments, the grayscale color map
returned the highest accuracy as our previous experiments with tradi-
tional transfer learning compared to the jet color map representation.
Fig. 2 displays the grayscale representation of a set of readings from the
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Fig. 1. Overview of the conversion of 1D time-series to 2D images.
Fig. 2. (a) Grayscale Image Representation for Simulated Data, (b) Jet Colormap Image Representation for Simulated Data, (c) Grayscale Image Representation for Real Data, (d)
Jet Colormap Image Representation for Real Data.
simulated dataset with 8 features. These images are also resized into
the relevant image size requirement of the pre-trained model through
bi-cubic interpolation coupled with anti-aliasing. Specifically, Figs. 2(a)
and (b) show the grayscale and jet colormap representations of a set of
readings from the simulated dataset with 8 features, while Fig. 2(c) and
(d) display the grayscale and jet colormap representations for the real
dataset with 4 features.

3.3. Definition of abnormal energy consumption using micro-moments

Data annotation is essential for applying supervised DL models
and defining normal and abnormal energy consumption patterns. To
that end, a micro-moment quantization is performed in recorded en-
ergy time series, where five energy micro-moment classes are defined.
Typically, an energy micro-moment represents a daily intent-driven
moment of user energy consumption actions. In this regard, for each
appliance data, energy consumption footprints are split into: ‘‘class 0
- good usage’’: represents power consumption that is less than 0.95%
of maximum active consumption rate (in watts); ‘‘class 1 - turn on
a device’’; ‘‘class 2 - turn off a device’’; ‘‘class 3 - excessive con-
sumption’’: refers to power consumption that more than 0.95% of
maximum active consumption rate; and ‘‘class 4 - consumption while
outside’’: deals with the abnormal energy consumption of an ensemble
of devices, e.g., fans, air conditioners, televisions, light lamps, desk-
tops/laptops, etc. Typically, with these devices, if the consumer is
present during their operation, its energy consumption is considered
normal; otherwise, it is regarded as abnormal.
7

Table 2 outlines the definitions of energy micro-moment classes
adopted in this framework to annotated energy consumption datasets
used to validate developed CNN-based ADEC models.

It is worth noting that the last two categories are responsible for
wasting large amounts of energy. Thus, detecting these anomalous
behaviors is of utmost importance before providing end-users personal-
ized recommendations to correct their energy consumption behaviors.
In doing so, a mobile app can be developed to provide end-users with
real-time notifications and recommendations about their energy con-
sumption patterns. On the other hand, the five micro-moment classes
are extracted based on analyzing the occupancy profile (O) and power
consumption (P) of each device in reference to the device active con-
sumption range (DACR), device operation time (DOT), and device
standby power consumption (DSPC). The proposed methodology used
to extract micro-moment features (M2F) over time is summarized in the
following steps:

• Step 1. Micro-moments definition: power consumption read-
ings 𝑝 of an appliance and occupancy patterns 𝑂 collected at a
sampling rate 𝑡 are recorded and stored in the dataset’s backend
server. Then, the appliance operation parameters are called, in-
cluding 𝐷𝐴𝐶𝑅, 𝐷𝑂𝑇 , and 𝐷𝑆𝑃𝐶. Table 3 presents an example
of different appliance parameter specifications used in the rule-
based algorithm to extract power consumption micro-moments.

• Step 2. Rule-based micro-moment extraction: a rule-based
algorithm is proposed to extract the micro-moment class of each
power observation p(t) as explained in Algorithm 1.
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Fig. 3. Flowchart of the proposed ADEC based on time-series analysis: (a) ADEC using 1D signal analysis, (b) ADEC using 2D signal representations.

8
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Table 2
Micro-moment classes definition and description for anomaly detection.

# Class Micro-moment description

0 Good consumption Consume less than 95% of max. active consumption
1 Turn on Switch on an appliance
2 Turn off Switch off an appliance
3 Excessive consumption >95% of max. active consumption
4 Consumption while outside User not present while energy is consumed by an appliance
.

Algorithm 1: CNN Activations as Features to ML Models.
Result: classify(MLmodeltrain(features),test_value)
. Label energy time-series data using a rule based algorithm as
follows:
hile t ≤ N do
if P(t) ≥ min(A) and P(t) ≤ 0.95 × max(A) then

MF(t) = 0 (Good usage) ;
else if P(t) ≥ min(A) and P(t-1) ≤ max(S) then

MF(t) = 1 (Turn on device) ;
else if P(t) ≤ max(S) and P(t-1) ≥ min(A) then

MF(t) = 2 (Turn off device) ;
else if P(t) ≥ 0.95 × max(A) or 𝑇𝑀 (𝑡) ≥ max(T) then

MF(t) = 3 (Excessive consumption) ;
else

if O(t) = 0 and P(t) ≥ 0.95 × max(S) then
MF(t) = 4 (consumption while outside) ;

end
end
2. Convert energy time-series into 𝑁 grayscale images, where 𝑙 is
the last fully connected layer of the model and 𝑥 represents the
model, with 1 representing model 1, 2 representing model 2, and
3 representing a combination of both.
. Extract deep features to identify the types of abnormalities as
follows:
hile 𝑡 ≤ 𝑁 do

case 1: while (i<l){
features=[model_1(i)];
}

break;
case 2: while (i<l){

features=[model_2(i)];
}

break;
case 3: while (i<l){

features=[model_1(i);model_2(i)];
}

break;
end
4. classify (ML_model_train(features), micro-moment_labels)

3.4. Direct application of CNNs models

In this work, we represent the sensor readings derived from the
relevant datasets after data annotation into time-series images for
transfer learning. This is done by creating a matrix representation of
the sensor readings and normalizing the values. After this, the images
are concatenated in three dimensions to create an RGB format and
converted into grayscale or a jet colormap array with 128 colors.
Both representations will be examined for performance comparison
purposes. Fig. 3 portrays the flowchart of the proposed approach.

Moreover, Algorithm 1 explains in detail the overall steps conducted
to classify energy consumption footprints after transforming them into
2D representations.

Once the images are organized into specific folders, these are
resized into the relevant image size requirement of the pre-trained
model through bi-cubic interpolation coupled with antialiasing. These
9

Table 3
Power consumption specifications for different home appliances (Himeur et al., 2020b)

Appliance DOT DACR (W) DSPC (W)

Air conditioner 15 h 30 min 1000 4
Microwave 1 h 1200 7
Oven 3 h 2400 6
Dishwasher 1 h 45 min 1800 3
Laptop 12 h 42 min 100 20
Washing machine 1 h 500 6
Light 8 h 60 0
Television 12 h 42 min 65 6
Refrigerator 17 h 30 min 180 0
Desktop 12 h 42 min 250 12

Table 4
Pre-trained model comparison.

Year Model Size Layers Error rate (%) Parameters (million)

2012 AlexNet 277 × 277 8 15.3 60
2015 GoogleNet 277 × 277 22 6.67 7
2016 SqueezeNet 277 × 277 18 – 1.2

are then fed into the NN classifier for a 5-level classification train-
ing. In this work, we compare and investigate the performance of
three pre-trained models, including AlexNet (Krizhevsky et al., 2012),
GoogleNet (Szegedy et al., 2015), and SqueezNet (Iandola et al., 2016).
A summary of information regarding these models is presented in
Table 4.

3.5. Transfer learning and hyper-parameter and layer variation

This section describes the proposed transfer learning methodol-
ogy and the impact of hyper-parameter and layer variation on the
performance of the proposed solution.

3.5.1. Transfer learning
Transfer learning has gained wide popularity in recent years due to

its ability to provide adequate accuracy and performance at a signifi-
cantly lower training time than a model trained from scratch (Kandel
and Castelli, 2020). By definition, transfer learning in CNNs refers to re-
using the parameters and framework of a previously trained model for a
related application (Kandel and Castelli, 2020). In the case of this work,
we re-use pre-trained models such as AlexNet (Krizhevsky et al., 2017),
GoogleNet (Szegedy et al., 2015), and SqueezeNet (Iandola et al., 2016)
for direct transfer learning applications. These models were previously
trained using the ImageNet image classification dataset, which com-
prises 1.28 million images divided into 1000 classes. A summary of
basic information regarding these models is provided in Table 5.

Nonetheless, since the pre-trained models are usually trained on
large datasets, these models are often unnecessarily large. They can
significantly be scaled down depending on the number of classes and
data of the current application. This technique is known as hyper-
parameter and layer variation, which will be discussed further in the
following sub-section.

3.5.2. Hyper-parameter and layer variation
As previously mentioned in Section 3.2, the main aim of hyper-

parameter and layer variation is to scale down the size of a pre-trained

NN model based on a specific application for which it is used without
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Table 5
General comparison summary between pre-trained CNN models (Copiaco et al., 2021).

Model Year Size (MB) Input size Layers Parameters 5% ER

AlexNet (Krizhevsky et al., 2017) 2012 227 227 × 227 8 62.3 mil 16.4
GoogleNet (Szegedy et al., 2015) 2014 27 224 × 224 22 4 mil 6.70
ResNet (He et al., 2016) 2015 167 224 × 224 101* 25 mil 3.57
Inception-ResNet (Szegedy et al., 2017) 2017 209 299 × 299 164* 55.9 mil –
Xception (Chollet, 2017) 2016 85 299 × 299 71 22.9 mil –
SqueezeNet (Iandola et al., 2016) 2016 5.2 227 × 227 18 1.25 mil –
VGGNet (Simonyan, 2014) 2014 515 224 × 224 41* 138 mil 7.30
LeNet (LeCun et al., 1998) 1998 – 32 × 32 7 60000 28.2
negatively affecting the overall system performance. This is done to
gain advantages in time and resource requirements, which are factors
that should also be considered when developing a usable system,
alongside accuracy.

In this work, we mainly utilize MAlexNet-40 (Copiaco et al., 2021),
a 40-layer variant of the AlexNet pre-trained network with fewer hyper-
parameters. This is originally developed by Copiaco et al. (2021) for
home monitoring purposes using Continuous Wavelet Transform (CWT)
scalogram image representations of audio signals as the main medium.
This was established by increasing the number of convolutional layers
while decreasing the number of hyper-parameters to account for a
sufficient balance.

Result comparisons in the weighted F1-score served as the main
grounds for decision-making on the variations made. For the experi-
ments conducted in this work, MAlexNet-40 is used in two ways: (i)
as a traditional transfer learning pre-trained model and (ii) as a CNN
activations extractor. For both techniques, aside from the weighted F1-
score, time and resource requirement measures play an important role
in determining the suitability of this technique for the selected applica-
tion. Hyper-parameter varied models are often made to specifically suit
what they are developed for. Hence, they possess a different advantage
of adaptability and flexibility than more extensive networks trained on
large datasets.

It is important to note that in this work, we do not necessarily aim
to develop a specifically-suited hyper-parameter varied model. Instead,
the objective of conducting this experiment is to assess the suitability
of this method for this specific application.

3.6. CNN activations as features to ML models

The utilization of NN models as a feature extraction technique is
another method that arose in recent years (Chen et al., 2016; Toğaçar
et al., 2020). Nonetheless, this technique’s evidence remains limited,
particularly for building energy consumption applications. Using CNN
activations as features of ML techniques proposes possible combined
advantages of the two methodologies.

For instance, CNNs are known for providing adequate computa-
tional efficiency (Gu et al., 2018). Further, it yields a high accuracy,
particularly for data that possess a spatial relationship. On the other
hand, there are also significant advantages found in ML techniques.
For example, the support vector machines (SVM) classifier consistently
returns high accuracy, even for unstructured data (Dhiman et al.,
2021).

Hence, this work aims to merge the advantages of CNNs and ML
methodologies by using the CNN model as a feature extractor and
integrating this with ML through different techniques of fusion, includ-
ing early fusion, joint fusion, and late fusion, as per the comparison
diagram provided in Fig. 4.

It is important to note that the diagrams shown in Fig. 4 represent
the combination of two features or two types of images. As observed, in
early fusion type I, different features are concatenated before being sent
into a model for classification. The second type of early fusion involves
varying the second type of feature to an extent and sending it in the
10
same model as the first type. Although this is a fairly simple type of
fusion that does not require a complex design, it is not equipped with
the flexibility to integrate features at multiple levels of abstraction (Qiu
et al., 2018). Another type of fusion is joint fusion, which falls un-
der two categories. The first category involves extracting activations
individually for all features concerned. These activations are then con-
catenated and sent to a model for training, while the second category
does the same, but solely for the first feature. The second feature is
sent to the model directly without extracting activations. This method
provides advantages in terms of flexibility. Further, it does not require
training multiple models, which saves training time and resource re-
quirements (Christlein et al., 2015). Similarly, it is also equipped with
advantages in learning more compatible features at each modality,
provided that it uses CNNs to extract activations (Gholamalinezhad and
Khosravi, 2020; Kelly and Knottenbelt, 2015). Nonetheless, this type
of fusion requires a large number of training data for better accuracy.
Finally, late fusion utilizes aggregation subsequent to concatenating
the CNN activation modalities extracted for the individual features.
Although this methodology does not require a large number of data for
training, it cannot model features from varying modalities nor learn the
compatibility of features extracted from each modality as much as the
joint fusion does.

For these reasons, we will particularly focus on early fusion and
joint fusion in the scope of this work. Several ML and CNN models
will also be compared and paired. The optimum methodology is then
identified through the highest accuracy and the least time and resource
requirements.

4. Experimental results

This section details the results gathered by applying the method-
ologies discussed in the previous section. Since this work aims to find
the optimal methodology for the selected application, techniques are
mainly compared in terms of their weighted F1-scores. The F1-score
is considered to be the harmonic mean of the recall and precision,
allowing a balanced representation between the two metrics regardless
of imbalanced data.

In addition to this, several other reliable metrics are considered,
such as specificity, precision, recall, and accuracy. The recall, which
is also known as sensitivity, focuses on the number of True Positives
in each class. The specificity, however, focuses on the number of
True Negatives correctly identified. Reporting our results on these four
metrics allows us to represent the system performance from multiple
perspectives depending on the priority level. For example, if detecting
positive cases correctly is the main goal, then the recall can report an
estimated performance on this. The same is true with the specificity
for negative predictions. Regardless, displaying comparable figures
between the four metrics show the robustness of the overall system in
all cases.

A visual representation of the system performance is also given
through the confusion matrix, which visually displays the ratio of
True and False Positives, as well as True and False negatives under
each category. Finally, the time and resource requirements ratio is
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Fig. 4. The different fusion Strategies using DL.
computed for the methods being compared, provided that the same
system specifications are used to generate the results.

The experimental work begins by comparing different pre-trained
models and image representations through the application of direct
transfer learning. This would help identify the optimum image rep-
resentation technique, which will be used throughout the rest of the
experiments. Further, comparing different pre-trained models will also
provide a benchmark for the rest of the experiments to compare against.
Fig. 5 displays the comparison of the grayscale, jet-128, and non-scaled
image representations, as well as AlexNet, GoogleNet, and SqueezeNet
pre-trained models, using the SiD dataset. The data is utilized at an
80–20 split in favor of the training set.

As observed, both AlexNet and GoogleNet have returned a com-
parable performance for classification. Hence, both models will be
considered CNN activation methods in the succeeding experiments.
Further, for all pre-trained models compared, the grayscale image
representation yielded the highest F1-score. For this reason, the rest
of the experiments will utilize this image representation as input.
11
4.1. Neural activations and ML: Combining human brain comprehension
with statistical comprehension

This section explores the applicability of combining the advantages
associated with CNNs and ML techniques. This leads to the develop-
ment of an innovative approach that utilizes activations extracted from
CNN models as features of an SVM classifier, as portrayed in Fig. 6.
This begins by feeding the grayscale image representations as features
to the selected NN. The network is then trained to the last fully con-
nected layer, where activations are extracted. These activations contain
information analyzed by the CNN architecture, which can help provide
higher accuracy to the ML prediction. Table 6 displays the detailed
results yielded when using AlexNet as a CNN activation extractor and
using these as features to a Linear SVM classifier. In contrast, Table 7
displays the results for GoogleNet.

As per Tables 6 and 7, a substantial improvement was observed in
the results, which proves that there is indeed important information
that can be gathered by the CNNs’ comprehension of the inputs given.
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Fig. 5. Weighted F1-score comparison for the SiD dataset.
Fig. 6. Flowchart of the final approach implemented to detect energy consumption anomalies.
Table 6
Results of combining AlexNet Activations with Linear SVM.

Micro-moment Train Test TP FP FN Accuracy Precision Recall F1-score
classes (%) (%) (%) (%)

0 47540 11885 11580 841 308 97.43 93.23 97.41 95.27
1 6224 1556 1110 243 446 71.34 82.04 71.34 76.31
2 6223 1556 1127 94 429 72.43 92.30 72.43 81.17
3 5074 1269 939 132 330 74.00 87.68 74.00 80.26
4 19034 4759 4699 263 60 98.74 94.70 98.74 96.68

TOTAL 84095 21025 19455 1573 1573 92.53 92.33 92.52 92.24
Table 7
Results of combining GoogleNet Activations with Linear SVM.

Micro-moment Train Test TP FP FN Accuracy Precision Recall F1-score
classes (%) (%) (%) (%)

0 47540 11885 11700 904 189 98.44 98.41 92.83 95.54
1 6224 1556 1037 133 519 66.65 66.65 88.63 76.08
2 6223 1556 1120 85 436 71.98 71.98 92.95 81.13
3 5074 1269 958 114 331 75.49 75.49 89.37 81.85
4 19034 4759 4696 282 63 98.68 98.68 94.34 96.49

TOTAL 84095 21025 19511 1518 1518 92.80 92.78 92.66 92.41
Due to this, other ML techniques are also tested and compared against
the Linear SVM, the results of which are shown in Fig. 7. It is also
important to note that the Recall metric shows better performance
when compared to the other metrics in the majority of the classes. This
suggests that the correct identification of that class (True Positive) is
more commonly encountered, as opposed to the misidentification of
the other classes in question. This characteristic is ideal for detecting
anomalies, as true positives are prioritized over false negatives.

Having found the Linear SVM to be the optimum ML technique for
this application, we continue exploring the different fusion methods,
particularly the joint fusion method, discussed in Section 3.5.2 using
this model. Table 8 enlists the different combinations made, along with
the weighted F1-scores yielded from the comparisons.
12
Table 8
Fusion technique experimental results.

Input 1 Model 1 Input 2 Model 2 ML Technique F1-score

Grayscale AlexNet Grayscale GoogleNet Linear SVM 93.63%
Jet-128 AlexNet Jet-128 GoogleNet Linear SVM 92.09%
Grayscale AlexNet Jet-128 AlexNet Linear SVM 93.36%
Grayscale GoogleNet Jet-128 GoogleNet Linear SVM 93.28%

As observed, applying the fusion method presented benefits in the
accuracy of the overall system. The advantages associated with this
technique can be justified by the fact that CNNs are structured in
terms of neurons, which is similar in functionality to human brain
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Fig. 7. Weighted F1-score comparison different ML techniques, using AlexNet-extracted activations as features.
Fig. 8. Results of using MAlexNet-40 for transfer learning and activation extraction.
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omprehension. Using two different inputs or two different models
n the methodology allows the system to think in a similar manner
o two different brains that can provide varying perspectives on a
pecific application. For this reason, it can be deduced that this tech-
ique could identify deeper-level features that can help stimulate the
tatistical-based ML model to yield higher accuracy.

.2. Effects of a hyper-parameter varied model

Given the positive findings reported in the previous sub-sections,
his sub-section presents the analysis of the applicability of hyper-
arameter and layer variation on CNN models for the selected appli-
ation. A hyper-parameter varied model is usually tailored explicitly
or the chosen application. The major benefit of using this technique is
n improved resource requirement, provided that varying the hyper-
arameters used in a CNN architecture can significantly scale down
he model’s size. Nonetheless, developing your hyper-parameter varied
odel is often time-consuming since developing a specific model is
one through a trial-and-error process.

Hence, in this experiment, we will use the MAlexNet-40 (Copiaco
t al., 2021), initially developed to suit a 10-level classification system
f sound classes using Continuous Wavelet Transform scalogram RGB
mage representations. This is a variation of the AlexNet, which scaled
he size down from 220 MB to a mere 14 MB while providing the
uthors with higher accuracy.

It is important to note that this experiment aims solely to test out the
ime and resource advantages offered by the hyper-parameter varied
odel compared to our current optimum technique, which involves the
se of CNN activations as features of the Linear SVM model. We test the
yper-parameter varied model in two ways, both of which utilize the
rayscale image representation as the primary input type:
 o

13
• Direct transfer learning with MAlexNet-40.
• Using MAlexNet-40 as a CNN activation extractor for the Linear

SVM.

Fig. 8 displays the results of these techniques, compared in four
eighted metrics, including accuracy, precision, recall, and F1-score.

As observed, although the hyper-parameter varied model gave rea-
onable results for direct transfer learning, it did not provide promising
esults for an activation extractor. Either way, the current top method-
logy still exceeds the transfer learning method by over 10%. Hence,
o assess whether it would be beneficial to develop a specific hyper-
arameter varied model for this application, the time and resource
equirements were then looked at. Table 9 reports the findings with
egard to this experiment. Time readings were taken using an Intel(R)
ore(TM) i7-8550U CPU at 1.80 GHz, 2.00 GHz processor.

It is important to note that Table 9 reports the time extractions
or the entire database. As observed, the results infer that although a
igher accuracy can be attained by extracting features from two pre-
rained models, the time it takes to extract those features increases
ccordingly. Nonetheless, it is evident that although GoogleNet and
AlexNet-40 are smaller in size compared to the AlexNet, the time

t takes to extract activations is not necessarily shorter, but rather,
sing a hyper-parameter varied model only shortens the training time
f the SVM model. Since the SVM model will be exported for use after
raining, a lower training time is not necessarily relevant for measuring
he performance of the overall model. For this reason, we conclude the
xperiments with the joint fusion of AlexNet and GoogleNet extracted
ctivations from Grayscale images as features to the Linear SVM classi-
ier as the top methodology, yielding an F1-score of 93.63%. T_S More-
ver, Fig. 9 portrays the confusion matrices of the implemented models,



A. Copiaco, Y. Himeur, A. Amira et al. Engineering Applications of Artificial Intelligence 119 (2023) 105775
Table 9
Time and resource requirements analysis.

Time extraction report SVM training time Report

Model Layer Time (s) Time (h) CNN Size Architecture Layers Training Ratio

GoogleNet loss3 8426 2.341 27 MB DAG 144 8x
AlexNet fc8 4628 1.285 227 MB Series 25 5x
Both models N/A 13000 3.611 N/A N/A N/A N/A
MAlexNet-40 fc38 4039 1.122 14 MB Series 40 1x
Fig. 9. Confusion matrices of the implemented models: (a) Jet_GNetSVM, (b) Jet_ANetSVM, (c) Jet_ANetGNetSVM, (d) RS_GNetSVM, (e) RS_ANetSVM, (f) RS_ANetGNetSVM, (g)
RSandJET_ANetSVM, and (h) BEST_RSandJET_GNetSVM.
including (a) Jet_GNetSVM, (b) Jet_ANetSVM, (c) Jet_ANetGNetSVM,
(d) RS_GNetSVM, (e) RS_ANetSVM, (f) RS_ANetGNetSVM, (g) RSand-
JET_ANetSVM, and (h) BEST_RSandJET_GNetSVM.

4.3. Correlation analysis

To justify the use of pre-trained 2D CNN models as features from an
SVM, a correlation analysis has been conducted to check the correlation
14
rates between (i) energy time-series from the same class and from
different classes and (ii) images that belong to the same class and those
from different classes. Accordingly, Fig. 10 presents the correlation re-
sults obtained on SiD and DRED datasets. As presented in Fig. 10(a), the
correlations between signals time-series of the same class (in diagonal)
were high but also between signals from different classes. This can
result in increasing the false-positive rate. However, in Fig. 10(b), it
is clear that after transforming energy time-series into images, only
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Fig. 10. Correlation matrices measured between (a) energy time-series signals from SiD, (b) images extracted from SiD; (c) energy time-series signals from DRED; and (d) images
xtracted from DRED.
he correlations between images from the same class (in the diagonal)
ave been kept high. By contrast, the correlations between images from
istinct classes have been reduced or maintained at 87%, which can
elp discriminate between them easily when using the SVM classifier.
oreover, under DRED, it can be shown that after transforming the

nergy time-series into images (10(d)), the correlations between images
rom each same class have been increased to reach 100%. This was not
he case in Fig. 10(c), where the correlation rates were much lower.

Overall, this study has demonstrated that transforming energy time-
eries into images can help increase the correlation between images
rom the same class while increasing the discrimination between images
rom different classes. Typically, this has resulted in better detecting
nd classifying energy anomalies after applying pre-trained CNN as
eature extractors and SVM as a classifier.

.4. Comparison with the state-of-the-art

A comparative evaluation study is conducted to prove the effi-
iency of the proposed ADEC based on DTL and energy time-series
mages. Typically, the performance of the proposed method in terms
f accuracy and F1-score has been compared with the studies pre-
ented in Himeur et al. (2020b) and Himeur et al. (2021b). The
ormer uses a 1D-DNN model and the micro-moment concept to detect
bnormal energy consumption. By contrast, the latter has relied on
sing an improved K-nearest neighbors (KNN) classifier and the micro-
oment paradigm. Table 10 presents the anomaly detection accuracy

nd F1-score obtained by these techniques.
While it is clear from Table 10 that DRED presents less challenge

n detecting energy consumption anomalies than SiD, the proposed
ethod performs better than the other techniques based on 1D-DNN

nd IKNN. On the other hand, the superiority of our approach is
ignificant under SiD, where 2.68% and 2.2% accuracy improvements
ave been reached compared to Himeur et al. (2020b) and Himeur et al.
2021b), respectively. Additionally, the improvements in terms of the
15
F1-score have attained 3.39% and 4.53% in comparison with Himeur
et al. (2020b) and Himeur et al. (2021b), respectively.

5. Conclusion

In conclusion, this paper innovates in detecting energy consumption
anomalies using energy time-series images by presenting the first study
investigating such an idea to the best of the authors’ knowledge. In this
regard, 1D energy time series were transformed to 2D images to (i) ease
the use of pre-trained 2D CNN models, (ii) provide more possibilities of
encoding the features as each sample is surrounded with 8 samples, (iii)
simplify the interpretation of the anomaly classification process. More
specifically, this work assessed the applicability of transfer learning
using CNN-extracted activations and hyper-parameter varied models
for ADEC in buildings.

Moreover, experiments involving the different levels of feature fu-
sion were explored, which helped confirm the linear relationship be-
tween anomaly detection accuracy and fusion techniques. Additionally,
aside from traditional transfer learning, the concept of combining the
advantages of ML and DL techniques was also explored from the
experimental point of view. Accordingly, pre-trained CNN models, such
as AlexNet and GoogleNet were used as feature extractors the anomaly
classification was completed using SVM. In this line, the effects of
utilizing a hyper-parameter varied model both as a feature extractor
and a classifier were investigated in terms of both time and resource
requirements. The top methodology provides an F1-score of 93.63%,
involving the use of CNN activations extracted from gray-scale images
using AlexNet and GoogleNet pre-trained models as features of the
Linear SVM classifier. Furthermore, a comparative study has been con-
ducted with the state-of-the-art ADEC methods, in which the proposed
methods has shown clear superiority in terms of different evaluation
criteria.

All in all, this framework demonstrated that combining energy
time series images and image classification capabilities of pre-trained
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Table 10
Performance comparison of the proposed method with the state-of-the-art.

Work Model description DRED SiD

Accuracy F1-score Accuracy F1-score
(%) (%) (%) (%)

Himeur et al. (2020b) 1D DNN + micro-moments applied on energy time-series 99.29 99.60 93.43 90.24
Himeur et al. (2021b) IKNN + micro-moments applied on energy time-series 99.71 99.77 93.91 89.10
Proposed 2D pretrained CNN applied on energy time-series images 99.91 99.89 96.11 93.63
CNN models can provide promising classification performance while
eliminating manual preprocessing steps, including noise elimination,
feature extraction, and feature selection. On the other hand, the re-
search outcome of the study opens new doors for more investigations
regarding the use of 2D pre-trained CNN models for anomaly detection
of time series and related applications, such as occupancy detection
in buildings, indoor air quality monitoring, and comfort optimization.
Moreover, this work can be improved from different perspectives.
However, this study provides some minor limitations that can mainly
be related to using supervised learning, which necessitates data labeling
before training pre-trained CNN models. However, this is related to
all ML/DL models based on supervised learning and not unique to our
solution. Lastly, future work will rely on developing a complete energy-
saving solution for the University of Dubai campus based on the ADEC
approach proposed in this paper. This will be possible by (i) adding a
recommendation generation module, (ii) using the Home Assistant mo-
bile app to receive explainable recommendations and visualize energy
usage in real-time, and (iii) implementing the overall system on edge
devices to preserve privacy and improve security.
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