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A B S T R A C T   

This research paper focuses on modelling of nitrogen oxides emitted by diesel engine for multiple biodiesel 
blends. A lot of research work has observed that the properties of biodiesel blends affect the nitrogen oxide 
emissions. To this aim, total of fifteen blends of multiple biodiesels are prepared on vol. % by using four non- 
edible category biodiesels. The suitability and quality of the biodiesel and diesel blends are tested through a 
characterization and found within the permissible limits of ASTM. The experimentation has been carried out on a 
direct injection compression ignition (DICI) engine with constant speed and varying loading condition from no 
load to full load in a step of 25%. During the experimentation, the NOx emissions are measured using a Netel 
MGA-2 exhaust gas analyzer. The study revealed that several properties such as viscosity, density, mean gas 
temperature, etc. affect NOx emission. In addition, NOx emission increases with an increase in BPs. The artificial 
neural network (ANN) is performed by considering physicochemical and thermal properties as a function. The 
ANN predicts the estimated NOx with an accuracy of 0.99.   

1. Introduction 

Several types of pollutants emit from the engine emissions after 
burning of the fuels which are harmful to human beings in general and 
climates in particular [1]. Incomplete combustion of an engine results in 
the release of harmful pollutants such as carbon monoxide (CO), hy-
drocarbons (HC), and particulate matter (PM) emissions [2–4]. Flavor-
less, odorless, and colorless most noxious matter found in exhaust 
emissions known as carbon monoxide (CO). If the molecules are not 
oxidized then hydrocarbons releases from the combustion process as a 
byproduct whereas carbon atoms are not burned due to limited oxygen 
availability leads to produced carbon monoxide and both the terms 
hydrocarbons and carbon monoxides have adverse effect on human 
health [5]. The carbon dioxide emissions are linked to fuel consump-
tions, more the fuel consumption which leads to increases the carbon 
dioxide emissions. The pollutant levels basically dependent on the 
maintenance condition of the vehicle and vehicle technology. Exhaust 

emission pollutants also affected by different aspects such as style of 
driving, vehicle condition, ambient temperatures [6]. The various 
emission parameters of vehicle engines are measured by exhaust gas 
analyzer and described in vol. % and ppm format. The light-duty and 
passenger vehicles require emission levels in g/km whereas heavy-duty 
vehicle prefers in g/kWh when the comparison required with European 
vehicle emission standards [7,8]. The interconnection between emission 
parameters of vehicles and specific fuel consumptions (SFCs) are 
observed in open literature [9–11]. 

1.1. Nox emission formation mechanism 

NOx can be formed by five different ways. Prompt NOx is also known 
as Fenimore mechanism. Especially it is formed at the front of the flame 
when enriched air–fuel mixture with absence of oxygen. In oxidation the 
radicals of CH with molecular nitrogen (N2) lead to form cyan hydric 
acids (HCN) and oxides of nitrogen (NO). Generally amines or cyano 
compounds conveyed and rehabilitated to intermediate compounds to 
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form NO when radicals of hydrocarbons react molecular nitrogen (N2) 
[12]. Zeldovich mechanism that would leads to intermediate route in 
lean fuels having equivalence ratio (φ) < 0.8 under low temperatures. 
The thermal NOx formation depends on the zone temperature, air–fuel 
ratio, oxygen concentration and equivalence ratio and last but the most 
important reaction time [13]. Table 1 provides the comparative litera-
ture review of NOx emission and their variations for different biodiesel- 
diesel blends under different operating conditions. 

Due to popularity of numerical investigations in the presence sce-
nario various techniques such as multiple objective optimization [22], 
biodiesel production [23,24], production using RSM [25], production 
using catalyst (CaO) [26,27], ternary blends [28] intelligent ANN-RSM 
[29], dual-fuel engine [30], Taguchi L16 orthogonal array [31], and 
optimal blending ratio [32]. Ramadhas et al. applied multi-layer feed 
forward neural network for predicting the cetane number using fatty 
acid compositions of biodiesel and predicted the values of CN using 
ANN. They have compared the experimental values with numerical and 
found that the predicted values are in agreement with experimental 

Nomenclature 

Abbreviations Full-form 
CN Cetane Number (No.) 
D Diesel, (B0) 
Exp. and Est. Experimental and Estimated 
F Flash point (deg.C) 
HV Heating Value (MJ/kg) 
JB (JOME) Jatropha biodiesel (Jatropha oil methyl ester) 
KB (KOME) Karanja Biodiesel (Karanja oil methyl ester) 
MB (MOME) Mahua Biodiesel (Mahua oil methyl ester) 
NB (NOME) Neem Biodiesel (Neem oil methyl ester) 
ν Kinematic viscosity (mm2/s) 
ρ Density (kg/m3)  

Table 1 
Variation of NOx for different biodiesel-diesel blends.  

Blends Utilized Test set-up Testing conditions NOx emissions References    

Trend Variations from neat 
diesel (%)  

Neat JOME Four cylinder, turbocharged, intercooled RPM 2000 with varying BMEP  ↑ 13.9 [14] 

JOME, B5 Four cylinder, turbocharged, intercooled RPM 2000 with varying BMEP ↑ 1.02 [14] 
JOME, B10 Four cylinder, turbocharged, intercooled RPM 2000 with varying BMEP ↑ 2.06 [14] 
JOME, B10 Yanmar TF 120M engine RPM ranges 1000–2400 rpm with full throttle 

condition 
↑ 1.61 [15] 

JOME, B20 Yanmar TF 120M engine RPM ranges 1000–2400 rpm with full throttle 
condition 

↑ 5.46 [15] 

JOME, B20 Mitsubishi Pajero 4D56T engine RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 14.22 [16] 

JOME, B20 Four cylinder, turbocharged, intercooled RPM 2000 with varying BMEP ↑ 4.74 [14] 
JOME, B50 Four cylinder, turbocharged, intercooled RPM 2000 with varying BMEP ↑ 5.71 [14] 
Neat POME Yanmar L48N engine RPM ranges 1800–3000 ↑ 8.60 [17] 
POME, B10 Yanmar TF 120M, single cylinder, Naturally 

aspirated, water cooled 
RPM ranges 1000–2400 rpm with full throttle 
condition 

↑ 4.81 [15] 

POME, B10 Four cylinder, water cooled RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 16.0 [18] 

POME, B10 Yanmar TF 120M engine RPM ranges 1000–2400 rpm with full throttle 
condition 

↑ 4.79 [19] 

POME, B20 Yanmar TF 120M engine RPM ranges 1000–2400 rpm with full throttle 
condition 

↑ 7.91 [19] 

POME, B20 Yanmar TF 120M engine RPM ranges 1000–2400 rpm with full throttle 
condition 

↑ 8.03 [15] 

POME, B20 Mitsubishi Pajero 4D56T engine RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 6.91 [16] 

POME, B30 Yanmar TF 120M engine RPM ranges 1000–2400 rpm with full throttle 
condition 

↑ 10.72 [19] 

5% JOME + 5% POME +
90% diesel 

Greaves Cotton Ltd. Engine BP ranges 0.5–2.5 kW ↑ 5.3 [20] 

10% JOME + 10% POME 
+ 80% diesel 

Greaves Cotton Ltd. Engine BP ranges 0.5–2.5 kW ↑ 9.2 [20] 

50% JOME + 50% POME Yanmar TF 120M engine RPM ranges 1000–2400 rpm with full throttle 
condition 

↑ 28.0 [19] 

80*% POME + 20% 
methyl oleate (MO) 

Yanmar L48N engine RPM ranges 1800–3000 ↑ 10.60 [17] 

70% POME + 30% MO Yanmar L48N engine RPM ranges 1800–3000 ↑ 12.61 [17] 
60% POME + 40% MO Yanmar L48N engine RPM ranges 1800–3000 ↑ 13.50 [17] 
50% POME + 50% MO Yanmar L48N engine RPM ranges 1800–3000 ↑ 14.90 [17] 
MOME, B10 Four cylinder, water cooled RPM ranges 1000–4000 in a step of 500 rpm 

with full throttle condition 
↑ 13.0 [18] 

MOME, B20 Mitsubishi Pajero 4D56T engine RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 18.56 [16] 

KOME, B10 Four cylinder, water cooled RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 9.0 [18] 

KOME, B20 Four cylinder, water cooled RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 12.0 [18] 

NOME, B10 Kirloskar single cylinder, water cooled RPM 1500 rpm with BP ranges from 0.5 to 3.5 
kW 

↓ 21.875 [21] 

(continued on next page) 
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values [33]. Similar work is conducted by Jatinder Kumar et al. for 
evaluating of physicochemical properties of various mixtures of bio-
diesel and diesel. They have applied three different ANN algorithms i.e. 
batch gradient, descent with momentum, Levenberg-Marquardt and 
scaled conjugate gradient and compared the values with experimental. 
They found that LM algorithm gave better results compared to other 
algorithms [34]. Bhatt and Shrivasatava [35] conducted literature re-
view on the application of ANN for predicting the performance of IC 
engine. Ghobadian et al. applied ANN modeling for predicting the 

performance and emission characteristics of CI engine fuelled with 
waste cocking biodiesel using multi-layer perception network model 
(MLP). The values of HC emissions are predicted with an accuracy R =
0.999 [36]. Similar model is applied by Hidayet Oguz et al. [37] for 
predicting the performance of CI engine fuelled bioethanol blends with 
the accuracy of R = 0.9994. Authors also performed experimentation by 
using different alcohol blends with biodiesel and studied how alcohol 
enhance the performance. Combustion and emission characteristics 
[38]. From the literature review it was found that many properties of 
biodiesel and diesel need to be considered because of their impacts on 
engine performance and emission characteristics. The NOx emission 
play an important role in the diesel engine emission category and it is 
affected by several physicochemical and thermal properties of the bio-
diesels. To this aim, the present research work focuses on the physico-
chemical and thermal properties of the multiple biodiesel blends at the 
preliminary level. Further experimentation has been extended for the 
evaluation of emission characteristics of DICI engine using blends under 
consideration. The modelling on nitrogen oxides emission has been 
performed by using artificial neural network (ANN) and results of 
experimentation and estimated (through ANN) are compared. 

2. Experimental program 

2.1. Blends preparation and characterization 

Biodiesels from second generation category are utilized on vol. % in 
preparation of multiple biodiesel-diesel blends. Multiple biodiesels and 
their combinations based on seasonal availability and physicochemical 
and thermal properties are closer to the neat diesel [39]. Total fifteen 
blends including neat diesel are prepared by using four different bio-
diesels [39,40]. Each biodiesel is having constant vol. % proportion in 
the blends category of dual and multiple biodiesel-diesel. The detail 

Table 1 (continued ) 

Blends Utilized Test set-up Testing conditions NOx emissions References    

Trend Variations from neat 
diesel (%)  

NOME, B20 Kirloskar single cylinder, water cooled RPM 1500 rpm with BP ranges from 0.5 to 3.5 
kW 

↓ 8.375 [21] 

NOME, B20 Naturally aspirated, air cooled Load variations ranges within 0–1 ↑ 67.29 [21] 
NOME, B30 Kirloskar single cylinder, water cooled RPM 1500 rpm with BP ranges from 0.5 to 3.5 

kW 
↓ 18.875 [21] 

5% KOME + 5% MOME +
90% diesel 

Four cylinder, water cooled RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 14.0 [18] 

10% KOME + 10% MOME 
+ 80% diesel 

Four cylinder, water cooled RPM ranges 1000–4000 in a step of 500 rpm 
with full throttle condition 

↑ 17 [18]  

Table 2 
Multiple biodiesel-diesel with their % contribution in preparation of blends.  

Blend No. Blend Name Contribution of multiple biodiesel-diesel in vol. % 

Diesel 
(D) 

Jatropha (J) Karanja (K) Mahua (M) Neem (N) 

1 Neat Diesel (B0) 100 – – – – 
2 D90JK10 90 5 5 – – 
3 D90JM10 90 5 – 5 – 
4 D90JN10 90 5 – – 5 
5 D90KM10 90 – 5 5 – 
6 D90KN10 90 – 5 – 5 
7 D90MN10 90 – – 5 5 
8 D90JKMN10 90 2.5 2.5 2.5 2.5 
9 D80JK20 80 10 10 – – 
10 D80JM20 80 10 – 10 – 
11 D80JN20 80 10 – – 10 
12 D80KM20 80 – 10 10 – 
13 D80KN20 80 – 10 – 10 
14 D80MN20 80 – – 10 10 
15 D80JKMN20 80 5 5 5 5  

Table 3 
Characterization of physicochemical and thermal properties.  

Blend No. (ρ) (ν) (F) (CN) (HV) 

kg/ 
m3 

mm2/s ◦C No. MJ/kg 

1 830 2.50 52 51.15  42.180 
2 833 2.71 59 44.35  41.720 
3 832 2.74 56 44.75  41.830 
4 834 2.65 58 43.83  41.590 
5 833 2.79 57 44.15  41.670 
6 835 2.75 61 43.23  41.430 
7 833 2.77 56 44.14  41.670 
8 834 2.77 57 43.61  41.529 
9 836 2.97 67 42.58  41.257 
10 836 3.06 63 42.29  41.180 
11 837 2.92 66 42.05  41.116 
12 836 3.27 65 42.06  41.120 
13 838 3.17 69 41.24  40.902 
14 838 3.18 64 41.02  40.846 
15 837 3.13 65 41.70  41.025 
Biodiesel limits as per ASTM 

D-6751 
– 1.9–6.0 52 min 40 

min  
– 

Diesel limits as per ASTM D- 
975 

– 1.3–4.1 130 
min 

47 
min  

– 

Uncertainty in % 1.50 1.00 1.00 1.00  1.75  
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nomenclature of multiple biodiesel-diesel blends are given in Table 2. 
The suitability and quality of the biodiesel tested at the preliminary 

level through characterizations. The physicochemical and thermal 
properties are tested as per the ASTM standards. The heating value (HV), 
kinematic viscosity (ν), flash point (F), density (ρ), and cetane number 
(CN) are measured as per the ASTM standards of D-240, D-445, D-93, D- 
941, and D-613. Table 3 provides the physicochemical and thermal 
properties characterization. 

2.2. Experimental analysis 

The experimental analysis has been performed on stationary diesel 
engine test-rig. The experimentation has been performed by using full 
constant speed of 1500 at variable loading from 0 to 100%. Total five 
loading conditions and the data pertaining to performance characteris-
tics such as rpm, temperatures, specific fuel consumption (SFC), etc. 
have been recorded through the data acquisition system of the engine 

Fig. 1. Engine test-rig.  

Fig. 2. Real Photograph of Engine test-rig.  

Table 4 
Technical Specification of DICI engine Test-rig.  

Particulars Specifications 

Manufacturer Kirloskar make TV-1 
Aspiration Type Naturally-aspirated 
Injection Type Direct Injection (DI) 
No. of Cylinder 1 
No. of stroke 4 
Bore × stroke (mm) 80 × 110 
Displacement (cc) 661 
Compression ratio (CR) 17.5 
Rated power (kW) 5.2 kW 
Engine Speed 1500 rpm 
Type of cooling Water-cooled 
Dynamometer Type Eddy current 
Dynamometer rating 7.2 kW  
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test-rig [39,40]. Fig. 1 and Fig. 2 shows the schematic diagram and real 
photograph of engine test-rig. Exhaust emission is measured by using 
Netel make exhaust gas analyser with different sets of condition as 
mentioned above. The Netel make MGA-2 gas analyser measures the 
most common exhaust gas emissions such as NOx, CO, CO2, and HC. 
Technical specifications DICI engine test-rig and the exhaust gas ana-
lyser are mentioned in the Table 4 and Table 5. 

2.3. Artificial neural network (ANN) approach 

Researchers need an option to traditional approaches and methods 
owing to their lack of ability in prediction [40]. The artificial neural 
network (ANN) simply designated as neural network (NN) is getting 
attention and has diversified applications in the field of engineering and 
medical sciences. ANN provides results based on various parameters 

Table 5 
Technical specifications and resolution of exhaust gas analyser.  

Particulars Measurement 
Technique 

Measurement 
Range 

Resolution Accuracy 
(Abs.) 

Accuracy 
(Rel.) 

Make Netel – – – – 
Model No. MGA-2 – – – – 
Operating system Micro-controller driven     
CO NDIR 0–9.99 vol% 0.01% ±0.03% ±3% 
CO2 NDIR 0–20 vol% 0.10% ±0.04% ±4% 
HC NDIR 0–20000 ppm 1 ppm 10 ppm ±5% 
O2 NDIR 0–25 vol% 0.01% ±0.1% ±3% 
NOx Electrochemical 0–5000 ppm 1 ppm 25 ppm ±5%  

Fig. 3. Architecture of ANN model.  

Fig. 4. Properties deviation from neat diesel (%) for multiple biodiesel-diesel blends.  
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such as the number of hidden layers, number of neurons in the hidden 
layers, learning rate, momentum and activation factor may be varied 
until the network yields good predictions [33]. The application of ANN 
modeling is also applicable to IC engines for the evaluation of perfor-
mance and emission characteristics. The neural network is consist of 
three layers viz: input, hidden, and output. In addition to this, the suc-
cess of the algorithm is also dependent on user dependant parameters, 
learning rate and momentum constant. Standard algorithms used in 
ANN are back propagation, conjugate gradient, quasi-newton, and 
Levenberg-Marquardt (LM). Back propagation is a popular algorithm 
which has different variants such as gradient descent and gradient 
descent with momentum are often too slow for practical problems 
because it requires small learning rates for stable learning [37]. This 
disadvantages are eliminated by changing the weights. LM method is in 
fact an approximation of the newton’s method. The algorithm uses the 
second-order derivatives of the cost function so that better convergence 
behaviour. LM technique extracts more significant parameter change 
vector and the error during learning is called as root-mean squared 
(RMS) [36]. ANN modelling was applied using feed-forward back-
propagation neural network type with TRAINLM (Levenberg-Marquardt 
backpropagation) and LEARNGDM (Gradient descent with momentum 
weight and bias learning function) as a training of data and adaptation 
learning function. Two layers were utilized with 10 number of neurons 
by performing TANSIG (Hyperbolic tangent sigmoid transfer function) 
and PURLIN (Linear transfer function) transfer function in layer 1 and 
layer 2. The data set was arbitrarily divided into 3 categories with 
percentages of contribution to training (70%), validation (15%) and 
testing (15%). The algorithm makes the use of supervised training 
techniques in which the weights and biases are assigned random initial 
values in training phase. Each input was contributed equally in the 
training phase by pre-processing and scaling within the range of − 1 to 1. 
Gradient descent rule was used for achieving error minimization and 
mean squared error (MSE) used as a performance function [41]. In 
present era of the research, the researchers always try to compare a 
parallel techniques alternative to classical one [40]. Intricate 

engineering problems receive robust solutions by utilizing viable tech-
niques ANN [35]. NOx emissions are optimized by using ANN toolbox 
with the operating procedure defined by [42] and ρ, ν, F, and HV 
considered as a function. Fig. 3. Shows the architectural structure of 
ANN. 

2.4. Uncertainty analysis 

Three runs of test were performed under identical conditions to 
check for the repeatability of all the results. In general, the repeatability 
of the results was found to be within 2%. Each reading of the basic 
quantities measured is the average of three values. Errors and un-
certainties in the experiments can arise from the instrument selection, 
condition, calibration, environment, observation, readings, and plan-
ning of the tests. Uncertainty analysis is needed to prove the accuracy of 
the experiments. An uncertainty analysis was carried out using the 
KLINE and McCLINTOCK (1953) [43]. 

If the result is dependent on ‘n’ independent variables of x1, x2, x3,⋯ 
, xn then, 

R = f (x1, x2, x3,⋯, xn) (1) 

Then uncertainty ‘w’ in measurement of ‘R’ is given by. 

wR =

[(
∂R
∂x1

w1

)2

+

(
∂R
∂x2

w2

)2

+ ⋯ +

(
∂R
∂xn

wn

)2
]1

2

(2) 

Where, 

x1, x2,⋯, xn = Independantvariables  

w1,w2,⋯,wn = Absoluteuncertainty  

wR = Uncertaintyintheresults 

Percentage uncertainties are observed 5.77% using KLINE and 
McCLINTOCK formula. 

3. Results and discussion 

3.1. Blends preparation and characterization 

The physicochemical and thermal properties are found closer to the 
neat diesel for the blends under considerations. The variations in per-
centage deviations of properties from neat diesel are shown in Fig. 4. 
Few of the properties like flash point, viscosity are observed significantly 
higher whereas density found marginally higher than neat diesel fuel. 
Similarly, cetane number found significantly lowered whereas heating 
value found marginally lowered than that of neat diesel fuel. Density +
0.96% higher for blend No. 13 and 14 and an average increment 
observed + 0.58% for all multiple biodiesel/diesel blends. Similarly 
viscosity and flash point observed + 30.80% and + 32.69% higher than 
that of neat diesel and average + 15.68% and + 17.31% increment seen 
in the considered blends. On other hand significant reduction seen in 
cetane number − 19.80% whereas − 3.16% marginal reduction in heat-
ing value observed for the blend No. 14 and an average − 15.84% and 
− 1.84% reduction seen in cetane and heating value. The cetane number 
and the heating value of biodiesel blends decreased due to the unsatu-
ration and self-oxygenation of the biodiesel. 

3.2. Discussion on experimental oxides of nitrogen (NOx) 

Higher amount of fuel is injected through the injector nozzle of the 
engine to achieve same power this happens because of higher viscosity 
and density of biodiesel concentration present in the blended fuels [39]. 
Lower heating value and higher amount of injected fuel increases the 
engine mean gas temperature, this attribution leads to increase the NOx 
emission of the engine [40]. NOx increases with increase in the Brake 

Fig. 5. Experimental NOx (ppm) for multiple biodiesel-diesel blends.  
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powers (BPs) of the engine for multiple biodiesel/diesel blends under 
considerations. The highest NOx 1426 ppm observed for blend No. 13 
whereas 1149 ppm observed for blend No. 3 at 3.3 kW BP. Fig. 5 shows 
the variations in experimental (Exp.) NOx of multiple biodiesel/diesel 
blends. 

3.3. Discussion on estimation of NOx using ANN model 

To the authors knowledge numerous authors have estimated engine 
characteristics from speed (rpm), mixtures or blends [44], and loading 
conditions [45]. The present research work focused on estimation of 
NOx using physicochemical and thermal properties as a function. Fig. 6 
provides the comparison of results and data sets fittings for different 
parameters such as training, validation, and testing as R = 0.99976, R =
0.99539, and R = 0.99478 respectively. Further comparison of all pa-
rameters showed an accuracy of R = 0.99731 based on output and 
targets. 

Fig. 7 illustrates the comparison of estimated (Est.), developed 
through ANN and experimental (Exp.) values of NOx for blends under 
considerations. Marginal variations in NOx is observed when estimated 
through ANN and experimental. The absolute error is observed as less 

than 1%. 
Fig. 8 illustrates the deviation of estimated NOx (ppm) compared to 

neat diesel (B0) blend. Significant variations in estimated NOx of mul-
tiple biodiesel-diesel blends compared to neat diesel observed in four 
blends such as blend 3 (+75 ppm) at 2.5 kW BP, blend 7 (+109 ppm) at 
3.3 kW BP, blend 8 (-102 ppm) at 2.5 kW BP and blend 12 (-51 ppm) at 
2.5 kW BP. Remaining 11 blend of multiple biodiesel-diesel have shown 
average % variations within the range of − 4% to + 5% compared to neat 
diesel. This increment of NOx emission have been observed due to 
increment of mean gas temperature of the engine. Highest density and 
viscosity of crude oil than the biodiesel and diesel fuel leads to increase 
in injection pressure and temperatures. 

4. Conclusions 

The experimentation has been performed on DICI engine with con-
stant speed and CR with varying load, and with the help of ANN model 
NOx predicts from physicochemical and thermal properties. Following 
conclusions are drawn from experimental and computational 
investigations: 

Fig. 6. Training, validation, and testing of NOx in ANN model.  
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• The density and viscosity of the blends rise as the concentration of 
biodiesel increases, whereas the cetane number and heating value 
decrease due to unsaturation and self-oxygenation of biodiesels.  

• The concentration of biodiesel in blending plays a crucial impact in 
increasing oxides of nitrogen (NOx) emissions.  

• Oxides of Nitrogen (NOx) increases as biodiesel content, braking 
power, and cylinder temperature increase. 

Fig. 7. Comparison of Exp. and Est. NOx (ppm).  

Fig. 8. Deviation of Est. NOx (ppm) for multiple biodiesel-diesel blends  
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• The oxygenation property of biodiesel and mean gas temperature of 
the engine increases as the proportion of biodiesel in the blends in-
creases, resulting in an increase in NOx emissions.  

• Highest and the lowest NOx observed as 177 and 1406 ppm at 0 kW 
and 3.3 kW BP for blend 1 and 13.  

• Average increase in NOx observed as 18.93% compared to neat 
diesel.  

• ANN model predicts Est. NOx with an accuracy of R = 0.99.  
• The present study has been conducted on low speed engine, a long 

term test and high speed engines should be required to get more 
specific results of NOx emissions. 
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