
Case Studies in Construction Materials 17 (2022) e01580

Available online 17 October 2022
2214-5095/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Evaluation and calibration of dynamic modulus prediction models 
of asphalt mixtures for hot climates: Qatar as a case study 

Ahmad Al-Tawalbeh a, Okan Sirin a,*,1, Mohammed Sadeq b, Haissam Sebaaly c, 
Eyad Masad d 

a Department of Civil and Architectural Engineering, Qatar University, P.O.Box 2713, Doha, Qatar 
b Seero Engineering Consulting, P.O.Box 201257, Doha, Qatar 
c Department of Civil Engineering, University of Pretoria, Private Bag X20 Hartfield, 0028 Pretoria, South Africa 
d Mechanical Engineering Program, Texas A&M University at Qatar, P.O.Box 23874, Doha, Qatar   

A R T I C L E  I N F O   

Keywords: 
Hirsch model 
Alkhateeb model 
Dynamic modulus 
Mechanistic-Empirical Pavement Design 
Qatar 

A B S T R A C T   

The dynamic modulus (|E∗|) of asphalt mixtures is one of the most important inputs in 
Mechanistic-Empirical (ME) pavement analysis and design. Several models have been developed 
to predict the dynamic modulus based on mixture volumetrics and material properties. This study 
aimed to calibrate and validate two commonly used models (i.e., Hirsch model and Alkhateeb 
model) for predicting the dynamic modulus of asphalt mixtures in Qatar. Based on the study 
outcomes, the Hirsch model was found to have a high prediction performance of asphalt mixture 
moduli before calibration with a coefficient of determination (R2) of 87.2 % between predicted 
and measured values. This R2 value improved slightly after calibration to 89.2 %, Alkhateeb 
model, on the other hand, had a coefficient of determination of 70.8 % before calibration, which 
also improved to 89.2 % after calibration. The moduli predicted by the Hirsch model before and 
after calibration were employed in this study to perform a mechanistic-empirical analysis of the 
performance of various typical pavement sections in Qatar. According to the findings, the per
centage change in the predicted fatigue damage due to the use of the calibrated Hirsch model 
reached more than 50 % with an average value of 17.33 %, while the percent change in rutting 
reached 14 % with an average value of 3.65 %. These results highlight the importance of using 
locally calibrated models for the dynamic modulus in order to improve performance predictions.   

1. Introduction 

Dynamic modulus (|E∗|) of asphalt mixtures is an important parameter in pavement design as it is used as the main input for the 
Mechanistic-Empirical (ME) pavement design method. Furthermore, the dynamic modulus is used to determine the layer coefficients 
of asphalt layers in the AASHTO 1993 empirical design method [1,2]. However, the cost and time duration required for experimentally 
determining the dynamic moduli have been a barrier for its use by pavement designers and researchers. In addition, materials may not 
be readily available during the pavement design stage to prepare mixtures and experimentally measure their dynamic moduli. As a 
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result, several studies have concentrated on constructing predictive equations that estimate the dynamic modulus based on the vol
umetrics of the mix and the properties of its components (e.g., asphalt binder and aggregate) [3–7]. Various models have been 
developed and evaluated, each with its own set of assumptions, prediction approaches, and accuracy. Several dynamic modulus 
prediction models (e.g., Hirsch Model, Alkhateeb Model, Witzack 1-37A, and Witzack 1-40D) have been widely used in practice [8]. 
Hirsch and Alkhateeb models were developed based on the interactive physical behavior between asphalt binder and aggregate with 
regression and statistical fitting. They have more straightforward formulations and require fewer inputs than the Witzack 1-37A and 
Witzack 1-40D models, which are entirely based on multivariate regression analysis [9]. 

Hirsch model was utilized to determine the sensitivity of the dynamic modulus to volumetrics [10]. Christensen et al. [3] compared 
various Hirsch model versions and recommended a specific formulation that is the most used today. It is a semi-empirical model that is 
developed based on mechanics concepts of composite materials and regression results [11]. However, the Hirsch model’s empirical 
part, based on a conventional mixtures’ dataset, requires further calibration using local sets of measurements to enhance the accuracy 
of the model. 

Alkhateeb model assumes that asphalt mixture’s performance is a combination of series and parallel composite models. The dataset 
used in the original model development includes modified and unmodified asphalt mixtures with a wide range of binder performance 
grades [4]. Two follow-up studies revealed that Alkhateeb model produced biased predictions at low temperatures [12,13]. 

Several researchers evaluated Hirsch and Alkhateeb models using the results of testing local asphalt mixtures [8,14,15]. You
sefdoost et al. [12] evaluated Hirsch, Alkhateeb, Witzack 1-37A, and Witzack 1-40D dynamic modulus prediction models for 
Australian asphalt mixtures. The study concluded that both the Alkhateeb and Hirsch models underpredict the dynamic moduli of 
Australian asphalt mixtures. Robbins and Timm [8] conducted a study to evaluate Witzack 1-37A, Witzack 1-40D, and Hirsch models 
for South-eastern United States asphalt mixtures and concluded that the Hirsch model underpredicts the dynamic modulus at 4.4 ◦C 
(40 ◦F) and 37.8 ◦C (100 ◦F) and over-predicts at 21.1 ◦C (70 ◦F). 

Far et al. [13] studied the Alkhateeb, Hirsch, Witzack 1-37A, and Witzack 1-40D models and developed an Artificial Neural 
Network (ANN) dynamic modulus prediction model. According to the study, in comparison to the 1-40D Witzack and Hirsch models, 
the Alkhateeb model showed a considerable bias at low temperatures. Furthermore, both the modified Witzack and Hirsch models 
exhibited substantial bias at high temperatures, as well as insensitivity to volumetric parameters. 

Solatifar [15] compared the performance of six dynamic modulus prediction models (Hirsch, Witzack 1-37A, Witzack 1-40D, 
Alkhateeb, Global, and Simplified Global). The study used a published database of 1320 dynamic modulus test points of 66 asphalt 
mixtures evaluated by the University of Maryland at a wide range of frequencies and temperatures. The main outcome was a 
descending order of the six investigated models based on prediction performance, where Hirsch and Alkhateeb models came as fourth 
and fifth, respectively. The conclusion was that all models could be used to determine the dynamic modulus with proper calibrations 
using local materials and mixtures. 

Several studies calibrated the Hirsch and Alkhateeb models to improve the prediction performance. Robbins and Timm [8] replaced 
the regression constant of 4,200,000 with the local aggregate Young’s modulus and used error minimization to find new fitting factor 
values. The research demonstrated a slight improvement of 1.4 % in R2 for Hirsch model prediction and concluded that local cali
bration is not required in this case. Shen et al. [16] calibrated the Hirsch model to better fit a number of asphalt mixtures by replacing 
the regression constant of 4,200,000 with 4,800,000. In addition, the research defined new regression constants (0.2, 600, and 0.56) 
instead of the values (20, 650, and 0.58) used in the original model. This calibration improved the overall prediction performance of 
the Hirsch model; however, the modified version overpredicted the dynamic modulus at high testing temperatures. 

Khattab et al. [17] evaluated Witzack 1-37A and 1-40D dynamic modulus prediction models to study the implementation of 
AASHTOWare-Pavement ME Design in Saudi Arabia. This study involved 25 different HMA mixtures, and the results showed that the 
performance of the two models is sensitive to temperature and the binder type. The study concluded that both models have biased 
predictions at low temperatures. At high testing temperatures, both models had a lower bias. 

El-Badawy et al. [18] applied the Artificial Neural Network (ANN) technique for E* prediction based on 25 asphalt mixtures and 
considered the inputs of Witzack 1-37A, Witzack 1-40D, and Hirsch models. After determining the most sensitive inputs using global 
sensitivity analysis (GSA) and commercially available software, ANN models were found to be more accurate than conventional 
models. The study concluded that the Hirsch model lacks parameters representing the aggregate characteristics, negatively affecting 
the model accuracy. 

Moussa and Owais [5] developed a Deep Convolution Neural Networks (DCNNs) technique based on six convolution blocks and 
applied it to Witzack 1-37A and Witzack 1-40D. The study concluded that the developed models based on machine learning have a 
higher performance than conventional prediction models. In another research [6], a prediction model-based Deep Residual Neural 
Networks (DRNNs) technique was developed based on comparing 8191 combinations of inputs. The results showed that the DRNNs 
model outperformed the conventional E* prediction models (Witczak 1-37A, Witczak 1-40D, and Hirsch). 

Cooper et al. [19] conducted a study to evaluate the effect of dynamic modulus values on pavement performance predictions. For 
this purpose, ten mixtures were sampled during the design, production, and construction stages. Consequently, Mechanistic-Empirical 
(ME) pavement analysis was conducted using AASHTOWare. The analysis showed that rutting distresses were sensitive to the dynamic 
modulus. Moreover, it was found that the difference in the predicted alligator cracking between plant-produced laboratory-compacted 
(PL) specimens and field cores of the same mixture reached 60 % due to the change in the dynamic modulus. Cheng et al. [20] 
conducted a study to evaluate the effect of the loading mode on the dynamic modulus value and, consequently, on the predicted 
pavement performance. The study considered three loading modes: uniaxial compression (UC), indirect tension (IDT), and four-point 
bending (4PB). It was found that field strain responses vary significantly when using different types of dynamic modulus in the MEPDG 
procedure. 
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Qatar has witnessed exponential growth in all infrastructure sectors and wide expansion in road networks for the past two decades. 
During this development, the need to provide value-engineered and sustainable pavement structures has become a priority. Qatar 
Highway Design Manual (QHDM) [21] and Interim Advice Note No. 101 [22] of the Public Works Authority (PWA) of Qatar have 
recommended using the Hirsch model to predict the dynamic modulus of asphalt layers. Since the Hirsch model was developed based 
on the USA mixtures [3], the prediction performance of the Hirsch model of Qatar-based mixtures required further verification and 
possibly recalibration of the model. 

This paper aims to validate and calibrate Hirsch and Alkhateeb models using Qatar’s local materials and climate. Additionally, this 
study assesses the sensitivity of the calibrated models’ to material properties, temperature, and frequency. This is followed by studying 
the effect of calibration on the fatigue and rutting performance of Qatar’s typical pavement structures. 

2. Models description 

2.1. Hirsch model 

The development of the Hirsch model considers the binder and aggregate to be connected through a combined series and parallel 
models, as shown in Eq. (1) [7]. 

|E∗|m = x(E1V1 +E2V2)+ (1 − x)
(

V1

E1
+

V2

E2

)− 1

(1)  

Where: 

|E∗
|m = Predicted asphalt mixture dynamic modulus 

x = Percent of series behavior in the mixture 
E1 = Aggregate modulus 
V1 = Aggregate volume 
E2 = Binder modulus 
V2 = Binder volume 

Eqs. (2)–(4) represent the version of the Hirsch model that considers a mixture of volumetric components and binder properties [3, 
7]. 

|E∗|m = Pc
[

4, 200, 000
(

1 −
VMA
100

)

+ 3|G∗|b

(
VFA ∗ VMA

10, 000

)]

+(1 − Pc)

⎡

⎢
⎣

1 −
VMA
100

4, 200, 000
+

VMA
3VFA |G∗|b

⎤

⎥
⎦

− 1 (2)  

Where: 

Pc =
(20 + a)0.58

650 + (a)0.58 (3)  

where: 

VMA = Voids in the mineral aggregate (%) 
VFA = Fraction of aggregate voids filled with asphalt (%) 
|G∗|b = Dynamic modulus of the binder (asphalt) (psi) 

a =
VFA ∗ 3|G∗|b

VMA
(4) 

The constants (20, 0.58, and 650) are fitting parameters obtained from regression analysis and fitting with measured moduli of 
asphalt mixtures [10]. The constant (4,200,000) is an assumed aggregate young’s modulus (in psi). The constant (3) multiplied with 
the |G∗|b is obtained by assuming that asphalt is an incompressible material with a Poisson’s ratio (v) of 0.5 substituted in the elastic 
modulus (E) equation: E = 2 (1+v)|G∗|b, where (|G∗|b) is the binder modulus [10]. 

2.2. Alkhateeb model 

Alkhateeb model [4] has also been used in pavement analysis and design as it requires a small number of inputs to predict the 
dynamic modulus |E∗| or |G∗|. This model was developed based on the law of mixtures considering the three-phase system of aggregate, 
binder, and air voids. Alkhateeb determined the fitting parameters using mixtures from the State of Virginia in the USA. The set of 
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mixtures included the aged and modified binders. Eq. (5) represents the Alkhateeb model [4]. 

|E∗|m = 3
(

100 − VMA
100

)

⎛

⎜
⎜
⎜
⎝

(
90 + 1.45 |G∗|b

VMA

)0.66

1100 +
(

0.13 |G∗|b
VMA

)0.66

⎞

⎟
⎟
⎟
⎠
|G∗|g (5)  

Where: 

VMA = Voids in the mineral aggregate (%) 
VFA = Fraction of aggregate voids filled with asphalt (%) 
|G∗|b = Complex modulus of the binder (asphalt) (psi) 
|G∗|g = Dynamic shear modulus of binder in the glassy state in Pa (assumed to be 109 Pa) 

2.3. Models comparison 

Table 1 shows the main inputs for Hirsch and Alkhateeb model based on the reviewed literature. Al-Khateeb et al. [4] stated their 
dataset contains a wide range of both modified and unmodified materials relative to the dataset used for calibrating the Hirsch model. 

3. Qatar climate conditions 

The climate condition is an essential input in determining the properties of pavement materials. Qatar has a hot desert climate with 
high humidity levels during the summer. According to the Qatar Meteorology Department, Doha has a low average annual rainfall 
precipitation of 79 mm [24]. Fig. 1 shows the climatic temperature in Qatar for the period 1962–2013 collected in Doha city station 
[25]. 

There is no significant deviation in the overall terrain and environment of the State of Qatar; thus, the data collected from Doha 
station represents the entire country’s climate. Fig. 1 shows that the lowest temperature throughout the year is 13.5 ℃. This explains 
that the State of Qatar does not experience air temperatures of 4 or 5 ℃, which are typically used in dynamic modulus testing to 
construct the master curve. 

4. Binder and mixture master curves 

The master curve equation of the binder dynamic modulus and mixture dynamic modulus considered in this study is represented in 
Eq. (6) [26]. 

log |M∗| = δ +
⍺

1 + e − β − Ɣ.log fr
(6)  

Where |M∗| is the modulus value of either the mixture |E∗| or binder |G∗|; (δ, ⍺, β, and Ɣ) are the fitting parameters; and fr is the 
reduced frequency defined in Eq. (7) [26]. 

fr = f .a(T) (7)  

Where a(T) is the temperature shift factor coefficient that can be calculated using Eq. (8) [26]. 

log(a(T) ) = a1

(
T2 − T2

ref

)
+ a2

(
T − Tref

)
(8)  

Where (a1 and a2) are the temperature shift factors and (T and Tref ) are the actual temperature and reference temperature, 
respectively. 

Binder master curve parameters are collected from two studies conducted in Qatar [27,28] in order to find the |G∗|b that needed to 

Table 1 
Main inputs for the Hirsch and Alkhateeb models.  

Criterion Hirsch model Alkhateeb model 

Prediction type Semi-empirical [10] Semi-empirical [4] 
Number of Test points 206 [3] 150 [4] 
Number of Mixes 18 [3] 6 [4] 
Type of Binders 2 Unmodified and 2 Modified [3] 6 Types of Modified and Unmodified [4,12] 
Aggregate Gradation 1 Dense, 3 Fine, and 1 Coarse [3] 1 Dense [4,12] 
Aging Short-term Aged [23] Short-term Aged [4,12] 
Testing Waves Haversine [23] Haversine [4] 
Assumed Mechanical Response Two Phases in parallel and series [3] Three phases in parallel [4]  
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predict the binder dynamic moduli in both Hirsch and Alkhateeb models at different frequencies and temperatures. The collected 
binder types represent the country’s most common binders used in recently constructed road projects. The dataset includes unmodified 
binder, Polymer Modified Binder (PMB) containing styrene-butadiene-styrene (SBS), Crumb Rubber Modified Binder (CRMB), and 
Reclaimed Asphalt Binder (RAB) with different mixing percentages mixed with unmodified PEN 60/70 (PG64S-22) binder. All ma
terials are approved for use in Qatar depending on the type of pavement structure and loading level. The dataset represents a wide 
range of Superpave PG grading. The binder types and relevant master curve coefficients are presented in Table 2. 

Twenty asphalt mixtures master curves are collected from several research studies [27–29] and construction projects in Qatar. The 
collected data set included mixtures used in the Wearing Course (WC) and Asphalt Base Course (ABC) with 19 and 25 mm Nominal 
Maximum Aggregate Size (NMAS), respectively. The asphalt mixtures represented the materials and designs used in the country and 
were tested based on Qatar Construction Specification (QCS 2014) [30]. The binder content percentage (BC%) of the collected data 
ranges between 3.4 % and 4.3 %, while the Air Void ratio (Va) of the test specimens ranges between 5.2 % and 7.0 %. The master curve 
coefficients of the collected mixtures are presented in Table 3. The composition and volumetrics of these collected mixtures are shown 
in Table 4. 

5. Model calibration 

For the validation and calibration of the Hirsch and Alkhateeb models, 393 measured dynamic moduli for 20 mixtures are used for 
comparison with the predicted values from the two models. As shown in Table 5, a wide range of frequencies and temperatures are 
represented in the collected dataset. 

After comparing the Hirsch and Alkhateeb models’ predicted dynamic modulus values versus the measured ones, the coefficient of 
determination (R2) and Se/Sy values were computed as goodness-of-fit measures using Eqs. (9)–(11) [12]. 

R2 = 1 −
(n − k − 1)
(n − 1)

(
Se

Sy

)2

(9)  

Where: 

n = Number of testing points 
k = Number of regression coefficients in the prediction model 
Se = Standard error of estimation 
Sy = Standard deviation of the measured values 

Fig. 1. Climatic temperature normals in Qatar for the period 1962–2013 (Qatar Meteorology Department: Doha Station).  

Table 2 
Binder types and coefficients of binder master curves.  

Binder type Binder grade Master curve coefficients 

δ α β Ɣ a1 a2 Tref (◦C) 

Unmodified PEN 60/70a  -0.7380  8.8480  -0.0330  0.5880  0.0010  -0.1690  46.0 
PMB PG 76E-10  -0.9450  10.4730  0.0960  0.3080  0.0007  -0.1430  46.0 
CRMB PG 76E-10  1.5470  7.3020  0.5445  0.3925  0.0008  -0.1511  21.0 
15 % RAB PG 70S-22  0.0000  8.4598  0.0954  0.4221  0.0007  -0.1438  46.0 
25 % RAB PG 70S-22  0.0514  8.3672  0.2467  0.4401  0.0007  -0.1438  46.0 
35 % RAB PG 70S-22  0.7145  7.9034  0.0001  0.4414  0.0007  -0.1437  46.0  

a PEN 60/70 binder is equivalent to grade PG64-22. 
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Table 3 
Coefficients of mixture master curves.  

HMA no. Master curve coefficients 

δ α β Ɣ a1 a2 Tref (◦C) 

1  1.3309 3.1640  1.1334  0.3973  0.000610  -0.164685  20 
2  1.8844 2.4852  1.0388  0.5557  0.000720  -0.164155  20 
3  1.2225 3.1417  1.2301  0.5229  0.001994  -0.216857  20 
4  -7.9430 12.8600  2.3860  0.1690  0.000831  -0.178000  21 
5  -2.1850 6.9960  1.6330  0.2560  0.000737  -0.172243  20 
6  -2.3190 6.9330  1.8690  0.2780  0.000899  -0.180347  20 
7  -2.2800 6.8980  1.7860  0.2660  0.000948  -0.174775  20 
8  -2.2210 6.8700  1.7580  0.2660  0.001050  -0.184469  20 
9  -2.2280 6.7510  2.0530  0.2750  0.000920  -0.176847  20 
10  -2.4620 7.0660  1.8630  0.2810  0.001206  -0.192653  20 
11  -2.2700 6.9550  1.8850  0.2370  0.000952  -0.176755  20 
12  -2.1560 6.8590  2.0260  0.2650  0.001154  -0.191043  20 
13  -0.3760 4.9740  1.5660  0.2910  0.000510  -0.151924  20 
14  -2.1410 6.7370  1.7590  0.2730  0.000720  -0.161181  20 
15  -2.3330 6.8840  2.0900  0.3700  0.001066  -0.178346  20 
16  -2.2560 6.8740  2.1550  0.2720  0.000691  -0.169981  20 
17  4.3980 -1.8998  -0.1937  -0.5781  0.000376  -0.137171  20 
18  4.3755 -2.0522  -0.6525  -0.5910  0.000664  -0.150427  20 
19  4.4333 -2.2062  -0.6040  -0.4591  0.000118  -0.124096  20 
20  4.4018 -1.9586  -0.7128  -0.4767  0.000263  -0.134852  20  

Table 4 
Mixtures composition and volumetrics at test conditions.  

HMA no. Binder type Binder grade Mixture rule NMAS [mm] Aggregate type BC% Va [%] VMA [%] VFA [%] 

1 PMB PG76E-10 ABC  25 Gabbro  4.10  6.10  16.20  62.60 
2 PMB PG76E-10 WC  19 Gabbro  4.30  6.00  15.80  61.90 
3 Unmodified PEN60/70 ABC  25 Gabbro  3.40  6.65  15.00  55.70 
4 CRMB PG76E-10 ABC  25 Gabbro  3.90  6.70  16.10  58.40 
5 Unmodified PEN60/70 WC  19 Gabbro  3.90  6.20  15.80  60.80 
6 Unmodified PEN60/70 WC  19 Gabbro  3.80  6.50  15.90  59.10 
7 Unmodified PEN60/70 WC  19 Gabbro  3.40  6.40  14.70  56.50 
8 Unmodified PEN60/70 WC  19 Gabbro  3.60  6.50  15.50  58.10 
9 Unmodified PEN60/70 WC  19 Gabbro  3.90  6.70  16.50  59.40 
10 Unmodified PEN60/70 WC  19 Gabbro  4.10  5.20  14.60  64.40 
11 PMB PG76E-10 WC  19 Gabbro  4.30  6.10  15.30  60.10 
12 PMB PG76E-10 WC  19 Gabbro  4.10  6.00  14.40  58.30 
13 PMB PG76E-10 WC  19 Gabbro  4.10  5.20  14.20  63.40 
14 PMB PG76E-10 WC  19 Gabbro  4.00  5.90  14.80  60.10 
15 PMB PG76E-10 WC  19 Gabbro  4.30  6.00  15.70  61.80 
16 PMB PG76E-10 WC  19 Gabbro  4.30  5.70  15.00  62.00 
17 Unmodified PEN60/70 ABC  25 Gabbro  3.90  6.90  14.70  53.20 
18 15 % RAB PG70S-22 ABC  25 Gabbro  3.70  6.80  14.70  53.40 
19 25 % RAB PG70S-16 ABC  25 Gabbro  3.50  6.90  14.70  53.10 
20 35 % RAB PG76S-10 ABC  25 Gabbro  3.50  6.90  15.40  55.20  

Table 5 
Testing temperatures and frequencies of mixtures dataset.  

Group no. HMA no.a Temperature (℃) Frequency (Hz) 

Group 1 1, 2, 3, 4 4, 20, and 45 0.1, 1.0, and 10 
Group 2 5, 6, 7, 8, 9, 10 4, 40, and 40 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 
Group 3 11, 12, 13, 14, 15, 16 4, 20, and 45 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 
Group 4 17, 18, 19, 20 5, 15, 25, 35, 45 0.1, 1.0, and 10.0  

a HMA numbers based on Tables 3 and 4. 
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where: 

Sy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(E∗

mi − E∗

m)
2

(n − 1)

√
√
√
√
√

(10)  

Se =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(E∗

pi − E∗

mi)
2

(n – k − 1)

√
√
√
√
√

(11)  

where: 

E∗
mi = Measured dynamic modulus value 

E∗

m = Average of dynamic modulus measured values 
E∗

pi = Dynamic modulus predicted value 

In order to interpret the computed values of R2 and Se/Sy, the criteria in Table 6 are followed [31]. 
Statistical bias has also been used to determine both models’ predictive performance by finding the slope and intercept of the linear 

trend line of the measured vs. predicted plot. The higher prediction performance would be subjected to a slope closer to One and an 
intercept closer to Zero [15]. 

To calibrate the models, the Excel solver is utilized to minimize the error and maximize the fit (i.e., R2 value). The error is computed 
using Route Mean Square Error (RMSE) formula in Eq. (12) [32]. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(E∗

mi − E∗
pi)

2

n

√
√
√
√
√

(12)  

Where: 

RMSE = Route Mean Square Error 

Based on the error minimization results, new fitting parameters for the Hirsch model (i.e., h1–h3) are determined instead of 20, 650, 
and 0.58, respectively, in Eq. (2). The same approach is followed for the Alkhateeb model to find k1–k6 coefficients instead of 3, 90, 
1.45, 0.66, 1100, and 0.13, respectively, in Eq. (5). 

6. Results and discussion 

The R2 value of prediction performance for the Hirsch model before and after calibration is 87.2 % and 89.2 %, respectively. Figs. 2 
and 3 show measured versus predicted E* before and after calibration of the Hirsch model, respectively. The R2 value of prediction 
performance for the Alkhateeb model before and after calibration is 70.8 % and 89.2 %, respectively. Figs. 4 and 5 show measured 
versus predicted E* before and after calibration of the Alkhateeb model, respectively. 

Table 7 shows the goodness-of-fit measures and their correlation for both Hirsch and Alkhateeb models before and after calibration. 
Table 8 shows bias measures for both Hirsch and Alkhateeb models before and after calibration. 
As presented in Tables 7 and 8, the Hirsch model shows high prediction performance without calibration with an R2 value of 

87.2 %. After calibration, the R2 value improved slightly to 89.2 %. This improvement of 2 % in R2 value matches the study of Robbins 
and Timm [8] for the southeastern United States asphalt mixtures that used a similar error minimization approach to improve the 
Hirsch model R2 value from 89.7 % to 91.1 %. 

Alkhateeb model shows reasonable prediction performance prior to calibration over a wide range of frequencies and temperatures. 
However, the model underpredicts the dynamic modulus (E*) values at a significant number of testing points with exponential trends 
resulting in a low R2 value of 70.8 %. The calibration of the model improved the R2 value to become 89.2 %. The predictive per
formance of both the Hirsch and Alkhateeb models comes contrary to Yousefdoost et al. [12] study, which concluded that the Hirsch 

Table 6 
Statistical criteria for correlation between measured and predicted E*.  

Criteria R2 (%) Se/Sy 

Excellent > 90 < 0.35 
Good 70–89 0.36–0.55 
Fair 40–69 0.56–0.75 
Poor 20–39 0.76–0.90 
Very Poor < 19 > 0.90  
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Fig. 2. Predicted vs. measured E* before calibration – Hirsch model.  

Fig. 3. Predicted vs. measured E* after calibration – Hirsch model.  

Fig. 4. Predicted vs. measured E* before calibration – Alkhateeb model.  

Fig. 5. Predicted vs. measured E* after calibration – Alkhateeb model.  
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and Alkhateeb models do not fit well for Australian asphalt mixtures. 
Sensitivity analysis was conducted for the calibrated Hirsch and Alkhateeb models to investigate the sources of prediction errors 

and relate the results to the local Qatar conditions. R2 and Se/Sy were calculated for the prediction performance for both Hirsch and 
Alkhateeb models by varying one factor of binder type, temperature, or frequency at a time while keeping the other factors constants.  
Tables 9 and 10 present the R2 values of the Hirsch and Alkhateeb models for several binder types, respectively. Tables 11 and 12 show 
the R2 of the Hirsch and Alkhateeb models, respectively, for several testing temperatures. 

Tables 13 and 14 present the R2 of the calibrated Hirsch and Alkhateeb models for several frequencies’ values, respectively. 
Based on the sensitivity analysis results, it can be concluded that the calibrated Alkhateeb model shows equivalent performance to 

the calibrated Hirsch model for all types of binder mixtures. However, uncalibrated models offer the good superior performance of the 
Hirsch model in a PEN60/70 and PG 76E-10 but lower performance in RAB mixtures. This can be because the Alkhateeb model was 
developed using a dataset of aged materials [4]. It is noticed that the calibration reduced the prediction performance of both models for 
RAB mixtures. 

For testing frequency sensitivity, the uncalibrated Hirsch model shows superior performance over the Alkhateeb model, which has 
a significantly increasing bias toward higher frequencies. After calibration, the Alkhateeb model bias at high frequency is reduced 
significantly. 

For temperature sensitivity, both uncalibrated models show poor predictive performance at high test temperatures of 35–45 ℃, 
which improved after calibration. This finding agrees with Far et al. [13], who showed a noticeable bias of the Hirsch model at high test 
temperatures. By examining Fig. 4, Tables 12, and 14, it can be concluded that the uncalibrated Alkhateeb model has a poor prediction 
performance at test temperatures 4–5 ℃ and 10–20 Hz frequencies, which improved after calibration (Fig. 5). This result agrees with 
the studies of Yousefdoost et al. [12] and Far et al. [13]. The Hirsch model’s performance at low temperatures was better than the 
Alkhateeb model, which agrees with Far et al. [13]. However, the low predictability at such low temperatures is not a concern in Qatar 
because these temperatures are rare, as shown in Fig. 1. Tables 15 and 16 show the fitting parameters for Hirsch and Alkhateeb models, 
respectively. 

7. Pavement performance analysis 

This section compares the performance of pavement structures typically used in Qatar, considering the dynamic modulus of the 
Hirsch Model before and after calibration. This was accomplished by evaluating the rutting and fatigue cracking performance using the 
Mechanistic-Empirical Asphalt Pavement Analysis (MEAPA) web application developed by Kutay and Lanotte [33]. This web-based 
application considers the same traffic inputs of the NCHRP 1-37A Mechanistic-Empirical Pavement Design Guide (MEPDG) [34]. 
The climatic model in MEAPA is very similar to the Enhanced Integrated Climatic Model (EICM) in the MEPDG. Eq. (6) presented 
earlier in this paper is considered in the MEAPA application to represent the master curve. The calculation of the loading frequency is 
based on the concepts used by the MEPDG, where the stress pulse is assumed to be haversine, and its duration depends upon the vehicle 
speed and the depth of the point of interest below the pavement surface. The Global Aging System (GAS) model is considered to define 
the effect of aging (due to heat and oxidation) on the modulus of the AC sublayers. In addition, the basic propagation of the thermal 
crack length within the depth of the pavement is found based on a simplified Paris law. MEAPA application has several climatological 
profiles covering several areas and climates worldwide that can be chosen as preliminary analysis to have a more accurate site-specific 
simulation. 

Three pavement structures for different road hierarchies and traffic loading conditions are employed in the analysis to simulate the 
actual pavement structures used in Qatar. Fig. 6 shows pavement structures for the collected three pavement sections for different road 
reliabilities of 75 %, 90 %, and 97 % corresponding to local, arterial, and expressway road hierarchies, respectively, based on Qatar 
Highway Design Manual (QHDM) [21]. The selected three pavement structures have three different traffic loading levels expressed as 
the number of design Equivalent Single Axle Loads (ESALs). Fig. 7 shows a binder-type matrix for the collected pavement structures for 
the asphalt Wearing Course (WC), Asphalt Intermediate Course (AIC), and Asphalt Base Course (ABC) layers. 

Table 7 
Hirsch and Alkhateeb overall models goodness-of-fit values.  

Model Before calibration After calibration 

R2 (%) Correlation Se/Sy Correlation R2 (%) Correlation Se/Sy Correlation 

Hirsch  87.2 Good  0.36 Good  89.2 Good  0.33 Excellent 
Alkhateeb  70.8 Good  0.54 Good  89.2 Good  0.33 Excellent  

Table 8 
Hirsch and Alkhateeb overall models bias measures.  

Model Before calibration After calibration 

Slope Intercept Slope Intercept 

Hirsch  0.848 214.370  0.900  716.980 
Alkhateeb  0.612 1116.100  0.900  652.750  
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In the MEAPA web application, the nearest available climatological profile to the State of Qatar was for Dammam city, located in 
the eastern area of Saudi Arabia. Dammam city is 180 km air distance from Doha city, the capital of the State of Qatar. In order to 
validate the use of Dammam city climatological profile to represent Qatar, monthly mean temperatures data for Dammam was 
collected from the Saudi National Center for Meteorology (NCM) website [35] and compared with the data collected from the Qatar 
Meteorology Department website [25]. Fig. 8 shows the mean monthly temperature normals for Doha and Dammam cities. As shown in 

Table 9 
Binder sensitive predictive performance of the calibrated Hirsch model.  

Binder type PEN 60/70 PG 76E-10 RAB (15, 25, 35) % 

No. of data points 169 164 45 

Calibration Before R2 94.40 % Excellent 86.40 % Good 63.10 % Fair 
Se/Sy 0.24 Excellent 0.37 Good 0.63 Fair 

After R2 94.60 % Excellent 90.50 % Excellent 50.90 % Fair 
Se/Sy 0.23 Excellent 0.31 Excellent 0.73 Fair  

Table 10 
Binder sensitive predictive performance of the calibrated Alkhateeb model.  

Binder type PEN 60/70 PG 76E-10 RAB (15, 25, 35) % 

No. of data points 169 164 45 

Calibration Before R2 78.6 % Good 65.9 % Fair 70.8 % Good 
Se/Sy 0.47 Good 0.59 Fair 0.58 Fair 

After R2 95.1 % Excellent 91.1 % Excellent 41.2 % Fair 
Se/Sy 0.23 Excellent 0.30 Excellent 0.83 Poor  

Table 11 
Temperature sensitive predictive performance of the calibrated Hirsch model.  

Temperature 4 and 5 ℃ 15, 20 and 25 ℃ 35, 40, and 45 ℃ 

No. of data points 122 134 137 

Calibration Before R2 35.6 % Poor 42.8 % Fair 17.5 % Very Poor 
Se/Sy 0.81 Poor 0.77 Poor 0.92 Very Poor 

After R2 51.0 % Fair 40.6 % Fair 36.9 % Poor 
Se/Sy 0.71 Fair 0.78 Poor 0.80 Poor  

Table 12 
Temperature sensitive predictive performance of the calibrated Alkhateeb model.  

Temperature 4 and 5 ℃ 15, 20 and 25 ℃ 35, 40 and 45 ℃ 

No. of data points 122 134 137 

Calibration Before R2 -94.8 % Very Poor 53.9 % Fair 15.0 % Very Poor 
Se/Sy 1.41 Very Poor 0.69 Fair 0.93 Very Poor 

After R2 48.6 % Fair 44.4 % Fair 38.4 % Poor 
Se/Sy 0.73 Fair 0.75 Fair 0.79 Poor  

Table 13 
Frequency sensitive predictive performance of the calibrated Hirsch model.  

Frequency (Hz) na Before calibration After calibration 

R2 Se/Sy R2 Se/Sy 

0.1  68  78.30 % Good  0.48 Good  81.90 % Good  0.44 Good 
0.2  39  81.70 % Good  0.45 Good  84.90 % Good  0.40 Good 
0.5  36  88.50 % Good  0.36 Good  90.70 % Excellent  0.32 Excellent 
1  68  89.00 % Good  0.34 Excellent  89.90 % Good  0.32 Excellent 
2  36  90.00 % Excellent  0.33 Excellent  92.80 % Excellent  0.28 Excellent 
5  36  89.40 % Good  0.34 Excellent  92.50 % Excellent  0.29 Excellent 
10  68  83.40 % Good  0.42 Good  83.70 % Good  0.41 Good 
20  39  84.60 % Good  0.41 Good  88.90 % Good  0.35 Excellent  

a n = Number of data points. 
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Fig. 8, Doha and Dammam have similar mean temperature climatological normals with only minor differences. Accordingly, Dam
mam’s climatological profile is considered valid to represent Qatar climate. Table 17 shows the traffic inputs used in the ME analysis on 
the MEAPA website. 

It is to be noted that vehicle class distribution, monthly distribution, and axle load distribution were kept as default in the MEAPA 
software. Table 18 shows the performance results and percent change before and after calibration for pavement structures Type 1, 2, 
and 3. 

As shown in Table 18, the difference in the predicted distress, whether a decrease or increase due to calibration, is more significant 
in the fatigue life predictions than the rutting predictions. For the case of fatigue life, the difference due to local calibrations reached 
more than 50%, with an average value of 17.33 %. This result agrees with Cooper et al. [19] study, which concluded that the predicted 
alligator cracking would change by 60 % with changing the dynamic modulus value. In addition, this result agrees with Cheng et al. 
[20], who concluded that changing the dynamic modulus value in the MEPDG analysis procedure would significantly change the 

Table 14 
Frequency sensitive predictive performance of the calibrated Alkhateeb model.  

Frequency (Hz) na Before calibration After calibration 

R2 Se/Sy R2 Se/Sy 

0.1  68  80.60 % Good  0.46 Good  83.80 % Good  0.42 Good 
0.2  39  80.40 % Good  0.48 Good  86.50 % Good  0.40 Good 
0.5  36  80.60 % Good  0.48 Good  91.20 % Excellent  0.33 Excellent 
1  68  78.70 % Good  0.48 Good  89.00 % Good  0.35 Excellent 
2  36  71.50 % Good  0.59 Fair  92.60 % Excellent  0.30 Excellent 
5  36  63.70 % Fair  0.66 Fair  92.60 % Excellent  0.30 Excellent 
10  68  59.70 % Fair  0.67 Fair  81.70 % Good  0.45 Good 
20  39  47.30 % Fair  0.79 Poor  90.20 % Excellent  0.34 Excellent  

a n = Number of data points. 

Table 15 
Fitting parameters for the Hirsch model (Eq. (2)).  

Fitting factor Before calibration After calibration 

h1 20 348 
h2 650 897 
h3 0.58 0.63  

Table 16 
Fitting parameters for the Alkhateeb model (Eq. (5)).  

Fitting factor Before calibration After calibration 

k1 3.00 6.76 
k2 90.00 92.69 
k3 1.45 2.67 
k4 0.66 0.42 
k5 1100.00 255.69 
k6 0.13 0.01  

Fig. 6. Illustration of three pavement structures.  
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predicted field strains. Accordingly, using locally calibrated is required to give more reliable pavement performance prediction and 
designs. 

Despite that R2 of the Hirsch model prediction performance was improved by around 2 %, which is considered insignificant in 
another study [8], the new dynamic modulus values have changed the predicted performance of pavement structures. This implements 
the importance of investigating the practical effect of the calibration in this area. 

8. Conclusions 

The following conclusions are drawn from the above-mentioned investigation and its findings: 

Fig. 7. Binder type matrix for the collected pavement structures.  

Fig. 8. Mean monthly temperatures for Doha and Dammam cities.  

Table 17 
Traffic load inputs for ME analysis on the MEAPA website.  

Traffic parameter Pavement structurea 

Type 1 Type 2 Type 3 

AADTb (veh/day) 220 3344 6672 
Lane Factor 1.00 0.90 0.60 
Distribution Factor 0.55 0.55 0.55 
Speed (kph) 50 60 100 
Analysis Period (yrs) 20 20 20  

a Refer to Figs. 6 and 7 for pavement structures and binder types. 
b AADT stands for Annual Average Daily Traffic. 
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• Hirsch model showed high prediction performance for Qatar asphalt mixtures with R2 value of 87.2 % prior to calibration. 
Alkhateeb model, however, showed lower performance with an R2 value of 70.8 %. The calibration improved the R2 value of the 
Hirsch and Alkhateeb models to 89.2 % for both.  

• The sensitivity analysis showed that the Hirsch and Alkhateeb models had higher performance in PEN60/70 and PG 76E-10 
mixtures and lower performance in RAB mixtures.  

• While the implemented calibration technique improved the overall performance of both models, more bias was introduced for RAB 
mixtures in both models after calibration.  

• Both uncalibrated Hirsch and Alkhateeb models had a low predictive performance at test temperatures higher than 35 ◦C, which 
improved with model calibration.  

• Hirsch model showed consistent performance over-tested frequencies between 0.1 and 20 Hz with an R2 value ranging between 
70 % and 90 %. However, the uncalibrated Alkhateeb model showed significant bias at high frequencies.  

• The uncalibrated Alkhateeb model showed poor performance at low temperatures of 4–5 ◦C and a frequency of 10–20 Hz. This 
performance was improved as a result of the model calibration.  

• Mechanistic-Empirical analysis for pavement structures of Qatar showed significant change in the predicated fatigue distress, 
reaching more than 50 % after considering the calibrated master curve of the asphalt mixtures with an average value of 17.33 %. 
This result confirmed that using the locally calibrated models will give more reliable pavement performance prediction and 
designs.  

• While the calibration changed the R2 value of the Hirsch model only by 2 %, there is a significant change in the predicted pavement 
performance using the MEPDG method. This finding highlights the importance of considering the practical effect of the calibration 
in this area. 
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Table 18 
Percent change in the fatigue and rutting due to Hirsch model calibration.  

Pavement sectiona Fatigue (m/km) Percent change (%) Rutting (cm) Percent change (%) 

Calibration status Before After Before After 

1A  
126.06 

157.50 24.94  0.51  0.58 13.73 

1B  
143.47 

224.51 56.49  0.51  0.53 3.92 

1C  
188.31 

180.30 -4.25  0.53  0.53 0.00 

2A  
662.23 

892.19 34.73  0.71  0.79 11.27 

2B  
870.40 

746.44 -14.24  0.71  0.66 -7.04 

3A  
578.69 

615.22 6.31  0.64  0.64 0.00 

Average ¼ 17.33     3.65  

a Refer to Figs. 6 and 7 for pavement structures and binder types. 
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[32] S. Cano-Ortiz, P. Pascual-Muñoz, D. Castro-Fresno, Machine learning algorithms for monitoring pavement performance, Autom. Constr. 139 (May) (2022), 

104309, https://doi.org/10.1016/j.autcon.2022.104309. 
[33] M.E. Kutay, M. Lanotte, Formulations of the Pavement Performance Prediction Models in the Mechanistic-Empirical Asphalt Pavement Analysis (MEAPA) Web 

Application, 2020, [Online]. Available: 〈https://paveapps.com/meapaapp2/〉. 
[34] National Cooperative Highway Research Program, Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures (Final Report), 

Transportation Research Program, National Research Council, Washington DC, 2004. 
[35] N.C. for Meteorology, KSA Climatological Normals. 〈www.ncm.gov.sa〉, (Accessed 29 April 2022). 

A. Al-Tawalbeh et al.                                                                                                                                                                                                 

http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref1
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref1
https://doi.org/10.1061/(asce)mt.1943-5533.0000518
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref3
https://doi.org/10.1016/j.conbuildmat.2020.120239
https://doi.org/10.1016/j.conbuildmat.2021.123589
https://doi.org/10.1061/(asce)mt.1943-5533.0002099
https://doi.org/10.3141/2210-14
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002099
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002099
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref9
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref9
https://doi.org/10.3141/2127-20
https://doi.org/10.1080/14680629.2012.666641
https://doi.org/10.22075/JRCE.2020.17391.1324
https://doi.org/10.22075/JRCE.2020.17391.1324
https://doi.org/10.3141/2373-10
https://doi.org/10.1016/j.conbuildmat.2014.04.066
https://doi.org/10.1061/(asce)mt.1943-5533.0002282
https://doi.org/10.3141/2507-08
https://doi.org/10.1080/14680629.2021.1924842
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref18
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref19
https://doi.org/10.17226/13949
https://qweather.gov.qa/CAA/ClimateNormals.aspx
https://qweather.gov.qa/CAA/ClimateNormals.aspx
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref20
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref20
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref21
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref21
https://doi.org/10.1080/10298436.2020.1858484
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref23
https://doi.org/10.1016/j.autcon.2022.104309
https://paveapps.com/meapaapp2/
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref25
http://refhub.elsevier.com/S2214-5095(22)00712-4/sbref25
http://www.ncm.gov.sa

	Evaluation and calibration of dynamic modulus prediction models of asphalt mixtures for hot climates: Qatar as a case study
	1 Introduction
	2 Models description
	2.1 Hirsch model
	2.2 Alkhateeb model
	2.3 Models comparison

	3 Qatar climate conditions
	4 Binder and mixture master curves
	5 Model calibration
	6 Results and discussion
	7 Pavement performance analysis
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgments
	References


