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ABSTRACT 

MECHETER, IMENE, N., Masters: 

January: 2017, Masters of Science in Computing 

Title: Modeling and Simulation of Bio-pathways Using Hybrid Functional Petri Nets 

Supervisors of Thesis Sebti, Foufou and Rachid, Hadjidj. 

The study of biological systems is growing rapidly, and can be considered as an 

intrinsic task in biological research and a prerequisite for diagnosing diseases and drug 

development. The integration of biological studies with computer technologies led to a 

noticeable development in this field with the appearance of many powerful modeling and 

simulation techniques and tools. The help of computers in biology resulted in deeper 

knowledge about complex biological systems and biopathways behaviors. Among 

modeling tools, the Petri Net formalism plays an important role. Petri Net is a powerful 

computerized and graphical modeling technique originally developed by Carl Adam Petri 

in 1960 to model discrete event systems. With its various extensions, Petri Nets find 

applications in many other fields including Biology.   The extension known under the name 

Hybrid Functional Petri Net (HFPN) was developed specifically to model biological 

systems. Traditionally, biological processes are captured as systems of ordinary differential 

equations. However, HFPNs offer a much more elegant and versatile approach to represent 

these processes more accurately. In fact, these nets allow to capture phenomena which are 

impossible to capture with ordinary differential equations, while being more intuitive to 

understand and model with.  In this work we propose an approach to automatically translate 

a system of ordinary differential equations representing a biological process into a HFPN. 

The resulting HFPN not only preserves the semantics of the original model, but is also 
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more humanly readable thanks to the use of a novel technique to connect its components 

in a smart way. To validate our approach, we implemented it as an extension to the tool 

Real Time Studio (an integrated environment for modeling, simulation and automatic 

verification of real-time systems), and compared our simulation results with those obtained 

by simulating systems of ordinary differential equations on MATLAB. 
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Chapter 1 

1. Introduction  

Computer sciences and information technology lead the evolution of different 

research areas toward a computerized world. Biology is one of the most sophisticated 

fields that needs the help of computer sciences to solve the complexity of biological 

systems and bio-pathways. The following sections present a brief about biological 

systems, bioinformatics, computational biology and computer modeling. 

1.1 Biological Systems 

Systems Biology is an interdisciplinary field that aims at analyzing and 

understanding the functioning of integrated biological processes instead of individual 

biological components [1]. Living organisms interact with each other and build complex 

biological systems that have various tasks and functionalities.  Thousands of complex 

interactions take place on numerous metabolic and signaling biopathways. Although still 

there is no clear agreement among researchers on a single precise definition of 

biopathways, in general, biopathways represent a series of interconnected cellular events, 

such as signal transduction, enzymatic reaction events, and genetic regulation events [2]. 

These interconnected events describe the interactions of molecular entities such as genes, 

proteins and metabolites. 

The study of biological systems and their complex pathways has evolved rapidly 

and has become the primary focus of molecular biology [2]. The complexity of these 

studies led to the creation of new fields called Bioinformatics and Computational Biology. 
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1.2 Bioinformatics and Computational Biology 

The fields of Bioinformatics and Computational Biology originate from the 

integration of life sciences with computer sciences. Both fields make life sciences data 

more understandable with a vision to providing qualitative results and decisions. According 

to the NIH Biomedical Information Science and Technology Initiative Consortium each 

field is defined as follows: 

Bioinformatics: “Research, development, or application of computational tools and 

approaches for expanding the use of biological, medical, behavioral or health data, 

including those to acquire, store, organize, archive, analyze, or visualize such data ” [3]. 

Computational Biology: “The development and application of data-analytical and 

theoretical methods, mathematical modeling and computational simulation techniques to 

the study of biological, behavioral, and social systems” [3]. 

Nowadays, computer science is leading a vast range of scientific research areas. 

One main reason behind the development of the Bioinformatics and Computational 

Biology fields is the huge need for computer systems and software tools in biological 

research to solve problems related to the complexity of biological systems and pathways. 

This evolution will efficiently and expeditiously help humans to capture and understand 

how complex interactions and behaviors of biological processes take place. Therefore, we 

can say that modeling a biological system is equivalent to developing a computer program. 

1.3 Modeling 

The first question that may come to one’s mind when reading about modeling is 

“What do we expect to obtain from a model?” A model is a way to combine system details 
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into a structure that presents the system in a more understandable way and provides more 

insights and knowledge about the system’s working mechanism. In bioinformatics and 

computational biology, modeling helps in understanding the mechanisms of diseases, in 

personalizing drug regimens and developing better drugs. Nowadays, many studies focus 

on developing and adapting existing modeling and simulation tools to biological systems.  

Traditionally in biology, models are represented as systems of differential equations in 

which equations provide deep insights by representing many details and produce 

quantitative analysis results [4]. However, this modeling approach can be complex for a 

biologist to compute or analyze in order to understand the model interactions and 

behaviors.  

Different modeling and simulation formalisms have been developed and applied to 

various types of biological systems. These models help capture the behavior of complicated 

systems for study, learning or research purposes. For instance, Boolean networks [5,6], 

stochastic modeling [4], State charts [7], process algebras [8, 9], and Petri Net [10] 

formalisms are of relevance in thin context and will be presented in Chapter 2. 

In this work, we use an extension of the Petri Net formalism called Hybrid 

Functional Petri Net (HFPN) [11] to model biological pathways by converting a system of 

ordinary differential equations into a human readable Petri Net representation. The HFPN 

formalism is considered as one of the most appropriate and representative technique for 

modeling and simulating biological systems. This formalism offers a graphical and 

mathematical representation, and is mainly used in computer science to model systems 

with concurrent properties.  More details about Petri Nets and their available extensions 

and tools are discussed in Chapter 2. 
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2. Problem Statement 

Traditionally, different biopathways models are represented using systems of 

ordinary differential equations. However, this modeling technique is not easily understood 

by simple biologists as it requires a good background in mathematics.  In addition, 

differential equations are not expressive enough to fit the modeling requirements of all 

aspects found in biological systems. In fact, biological pathways are composed of 

sophisticated interactions that require a more powerful modeling and simulation technique, 

in addition to using the aid of computer technology. 

3. Objective and Significance 

The main objective of this work is to develop an approach to convert models written 

as systems of ordinary differential equations into semantically equivalent Hybrid 

Functional Petri Net models.  The resulting models should be humanly readable, in the 

sense that resulting Petri net components should clearly map to the different elements and 

mechanisms involved in the modeled system.  

Such an approach can help biologists and researchers minimize the time spent to 

understand models, identify different diseases mechanisms, enhance research outcomes, 

and ultimately develop new drugs. These factors would definitely lead to better quality of 

life and health. Additionally, translated models can be enhanced and extended thanks to 

the expressiveness of the HFPN formalism.  
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4. Main Contributions 

In this thesis, an automatic conversion approach is developed to translate a system 

of ordinary differential equations representing a biopathway into a HFPN model.  The 

resulting model is semantically equivalent to the original model and more intuitive to 

understand thanks to a novel approaches to connect places and transitions.  Our approach 

is general enough, and can be used to convert models to equivalent HFPN models, even if 

they do not represent biopathways.   

To validate our approach, we implemented it as an extension to the tool Real-Time 

studio [12], were translated models can be simulated for further studies and observations. 

5. Document Overview 

This document is organized as follows: the literature review and background are 

presented in chapter 2. Chapter 3 is devoted to the implementation and methodology used 

in this work. Chapter 4 demonstrates obtained results and how they have been evaluated. 

The discussion, future directions and conclusion are presented in Chapter 5. 
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Chapter 2 

1. Literature Review 

The vast and growing amount of biological data requires combined efforts from the 

fields of biology, mathematics and computer sciences in order to produce powerful 

formalisms and representations that help to deal with this rapid development. Due to 

different properties and complex behaviors of biological systems, a variety of modeling 

formalisms with different features and extensions have been developed, backed by 

computer tools to support their use. These formalisms and techniques can be classified into 

different categories such as verbal models, conceptual or diagrammatic models, physical 

models and formal models [13]. Each category offers deterministic or stochastic modeling 

capabilities, as well as qualitative or quantitative analysis capabilities. In the literature, 

there are several techniques that have been introduced, such as ordinary differential 

equations, Boolean modeling, states machines, stochastic models, state charts, discrete 

event modeling (e.g. Petri Nets) and many others that will be discussed in the following 

sections. 

1.1 Modeling and Simulation Formalisms of Biological Systems 

Systems of Ordinary Differential Equations 

This technique is a traditional representation that has been widely used to represent 

many biological models. Ordinary Differential Equations (ODE) are used to model real 

system that evolves in time. Hence, it is a suitable choice for quantitative modeling of many 

biological processes such as biochemical networks [14].  
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Stode [15] is a software tool developed for the stochastic simulation of biochemical 

models represented as systems of ordinary differential equations. The modeling approach 

is based on constructing a set of differential equations, then solving them to produce a time-

course of concentrations of system reactants. The results can be used for predictions and 

comparisons with experimental results. E-Cell [16] is another tool that provides users with 

the ability to define biological model functionalities, then simulate the model by 

numerically integrating differential equations described in the reaction rules, which gives 

the possibility to observe dynamic changes in the behaviors of cell systems. 

Ordinary differential equations are in the core of the well-known  System Biology 

Markup Language (SBML) [17 , 18] which is a standard XML-based format developed to 

represent various biological models, such as cell signaling pathways, metabolic pathways, 

gene regulation, and others. This free and open standard representation helps modelers use 

structure-related methods to formalize any reaction [19]. 

Despite their widespread use, ordinary differential equations are not powerful 

enough to represent all aspects of a biological system [5]. In fact purely mathematical 

models such as ODE are less flexible than computational models which are able to model 

biological systems at different levels of abstraction [1]. 

Boolean Networks  

Boolean Networks [5, 6] is a discrete dynamic modeling approach. This technique 

is highly useful as it allow for a qualitative dynamic description of system behavior without 

the need for kinetic parameters. Boolean Networks are mainly used to model biological 

networks where biological components are defined as binary nodes and their regulations 
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are represented by directed edges. The state of a node in the network can be determined by 

another node thorough Boolean functions. Although Boolean models construction is 

simple, it leads to emergent dynamic behaviors in the model and provides important 

insights into biological systems. BooleanNet [20], BoolNet [21], SimBoolNet [22] and 

ChemChains [23] are existing software tools used for Boolean network modeling of 

biological systems. 

Statecharts  

Statecharts [7] is a computer visual language initially designed to study reactive 

systems, such as automotive and aerospace systems. Statecharts can be used to model 

natural and living systems thanks to structure definition allowing to use classes of objects 

that can be connected with each other to specify a precise state. Statecharts are modular 

and multi-level hierarchical models where one can modify objects, connections, states and 

transitions at any level. Using Statecharts it is possible to build any object from a lower 

scale object and observe the behavior at any level. This formalism is has a graphical 

representation and is most suitable for multi-scale modeling. It can be executed and 

simulated with a complete mathematically precise dynamic semantics. The most relevant 

tool for Statecharts in systems biology is Rhapsody [24].  This tool allows models to be 

fully executable with the ability to display Statecharts in a useful way. In addition to that, 

modelers can check the consistency of a chart against the model itself. 

Rule based Systems 

Rule-based modeling [8, 9] is a well-known framework in biology systems 

modeling thanks to its notation which is quite similar to the representation of chemical 
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reactions in biological systems. Also, it is considered a good approach to the problem of 

multi-state components in biological models. The main property of this modeling technique 

is that rules are independent and can be modified easily.  The reactions rules are defined as 

high-level transformations of classes of species into biochemical networks. This technique 

is user-friendly because the syntax of the model can be saved in human readable text and 

visualized using graphical representations. BIOCHAM [25] is a rule-based tool for 

modeling biochemical systems with unique features for developing and correcting models. 

Process Algebras 

Process algebra [8, 9] is a family of formal languages for modeling concurrent 

systems including systems biology where biological species can be modeled as processes. 

This technique is able to provide formal specification without any uncertainty about the 

interactions and communications between concurrent processes. The application of process 

algebra in systems biology is largely focused on signaling pathways. Beta Workbench [26] 

is a scalable modeling tool based on process algebra that has been developed for biology 

from the very beginning. The main goal of this tool is to facilitate modeling of biological 

systems at different levels of abstractions, providing various features such as typed and 

dynamically varying interfaces of biological components, sensitivity-based interaction, 

spatial information, and hybrid parameters specification. 

Stochastic models   

Stochastic models [4] is another approach used in biology modeling, such that the 

state of a system is describe by a vector, where  each one of its elements represents the 

number of molecules of a specific species at a certain time. The state of the system can 
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evolve based on the sequence of reactions. The sequence and time of reactions are 

determined probabilistically. Therefore, a stochastic differential equation is used to capture 

the probability distribution over the system states at each time point.  

Most modeling approaches can be adapted to be used to study stochastic effects in 

different biological systems, such as stochastic Boolean networks and stochastic Petri Nets 

[27]. Different languages are used to describe the stochastic dynamics of systems. For 

instance, k language [4] is used to describe large biopathways. For slightly smaller systems, 

one may choose stochastic simulations where Gillespie’s algorithm and its variants are 

often used [4].  

Stochastic simulations are useful to study the behavior of a system if there is a lack 

of knowledge. The overall behavior of the system can be analyzed after running a large 

number of simulations [27]. Authors in [28] performed a comparison between a 

deterministic and stochastic simulation of a Petri net model that was originally presented 

expressed as a system of differential equations. 

The Petri Nets formalism 

The Petri Net formalism [10] is another powerful modeling tool that is extensively 

used in the computational biology field. This formalism is used to model concurrent 

activities and will be discussed in detail in the background section.  

There are many databases that store biopathways in different formats to be used as 

inputs for Petri Net-based tools to perform modeling and simulation.  Formats that are often 

mentioned in the literature include:  

 System Biology Markup Language (SBML) [18]. 
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 BioModels Database [29, 30] with various formats such as SBML, BioPax [31] and 

XPP [32, 33].  

 Standard Petri Net Markup Language (PNML) [34]. 

 Integrated databases to a unified format [35]. 

 Data format translators, such as KEGG translator [16]. 

 Blenx: Simulation programming language systems [36]. 

Tools such as Snoopy [37, 38] provides translation from SBML to different 

extensions of Petri Nets in a snoopy-based XML format. Also, Cell Illustrator [39] 

translates SBML and BioPax formats to CSML [39], which is an XML-based format for 

Cell Illustrator tool. The MPath2PN application [40] applies an automatic 

transformation of metabolic pathway models in KGML format [35] into Petri Nets markup 

language (PNML). PNML [34] is the standard format for Petri Nets, so it can be used as 

an input for many Petri Nets modeling and simulation tools.  The source of the metabolic 

pathways is publicly available databases such as KEGG [41]. The translation is 

implemented using extensible Stylesheet Language Transformation (XSLT). 

1.2 Transformation from Differential Equations to Petri Nets 

Many models in system biology are represented with ordinary differential equations 

(ODE), which require kinetic information in order to perform different analysis. This 

mathematical representation provides accurate and quantitative results. However, Petri 

Nets have an advantage over ordinary differential equations for several reasons. For 

instance, the Petri Net formalism can provide more quantitative and qualitative information 

than complex ODE models, while ordinary differential equations are restricted to modeling 
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dynamic changes only.  Additionally, Petri Nets provide a graphical and human readable 

representation of the system being modeled, which helps in monitoring the model dynamic 

behaviors and observe its structural characteristics. Finally, Petri Nets are able to easily 

model both deterministic and stochastic processes [42]. [43] Explains in more details how 

Petri Nets are more expressive than ODE. 

Authors in [33] proposed a translation from a system of ODE to a Continuous Petri 

Nets (CPN) model which is represented by a markup language called Abstract Petri Net 

Notation (APNN) [44]. The uniqueness of this transformation is based on conditions that 

have been taken into account to derive an algorithm that ensures the existence of only one 

Continuous Petri Net representation for each system of ordinary differential equations. This 

uniqueness allows for a conversion in both directions. Models created using this translation 

are suitable for quantitative and stochastic analysis.  

Another study in [43] proposed a translation from ordinary differential equations to 

Timed Continuous Petri Net (TCPN) with product semantics [45].  The first step of 

translation is shifting the ODE behavior to the first orthant, then translating each term of 

the differential equation into TCPN elements taking into account semantic connections.  

In [42], authors illustrated the power of Petri Nets in a bone remodeling system as 

an event-driven tool where it is possible to dynamically and graphically represent a system 

of discrete interactions and behaviors. Actual bone remodeling processes in living tissues 

are represented using discrete events, as opposed to ODE which can only be useful for 

modeling continuous time frame interactions.  

For some cases and for some specific models, ODE models can be preferred for 

observing some behaviors and performing quantitative analysis. For instance, an ODE 
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system is a natural choice for quantitative modeling of biochemical networks. In [14], 

authors integrated Petri Nets and ODE models for a deep analysis of large models. This 

integration is achieved by deriving the continuous ordinary differential equations model 

from the analysis of a discrete Petri Net model of a specific system. 

2. Background 

2.1 Petri Nets Modeling 

The Petri Net formalism [10] is a formal method used to model and analyze 

complex concurrent systems and offering an elegant graphical representation. A Petri Net 

can be seen as a bipartite graph with two types of nodes: places and transitions, connected 

by directed arcs. The role of places is to hold tokens (data such as species) that can be 

consumed or produced based on the firing of transitions. Tokens are produced in a place 

when an input transition is fired, and consumed when an output transition is fired. A 

transition represents an event that may occur in the modeled system. Petri Nets provides 

a natural framework in which quantitative and qualitative analysis are integrated in one 

formalism.  

The behavior of a Petri Net is controlled by the firing rules of its transitions.  The 

firing of a transition depends on the marking of its pre-places. If all pre-places are 

sufficiently marked, a transition is enabled and can be fired. Both the firing of a transition 

and the movement of tokens from one place to another change the marking of connected 

places. The behavior of a net is determined by the continuous firing of transitions [37].  

Petri Nets [46] combine the following interesting features: 
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Readability: Petri Nets representation is easily comprehensible. Although it does 

allow unambiguousness, it still provides clear and readable details at different levels of 

abstractions with different resolutions of details.  

Executability: Petri Nets can be executed with any suitable tool such as Snoopy 

[43, 44], in order to provide a comprehensive visualization that allows users to study the 

behavior of a system.  

Causality: The structure of connections between Petri Net’s elements define the 

causality relationship among its different components.  

Static analysis: Petri Nets allow for a variety of static analysis techniques such as 

liveness [11] and boundedness [11]. 

The use of Petri Nets in biology was suggested for the first time in [47] to 

qualitatively analyze metabolic pathways. The Petri Net extension that was proposed 

could be used to model biological processes. Some of the currently available Petri Nets 

extensions are: colored, timed, stochastic, continuous, hybrid, extended hybrid, 

functional and hybrid functional. Each extension is defined as follows: 

Colored Petri Nets: This extension [11] can be used to model large systems using 

different categories of tokens called Colors.  With this extension it is possible to represent 

different dynamic behaviors modeled as different colors in the same model. 

Timed Petri Nets: Time Petri Nets [46] are characterized by transitions associated 

with firing delays. This extension is suitable to model real time systems. 

Stochastic Petri Nets:   This extension [48] was proposed to model stochastic 

systems in biology in order to reduce the model implementation delays. In stochastic Petri 

Nets, the firing of a transition is not instantaneous. A random delay is computed based on 
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a probabilistic distribution. This delay is interpreted as the reaction rate. Stochastic Petri 

nets is mainly used when quantities of molecules are represented using discrete amount 

[11]. 

Continuous Petri Nets: This extension [11] places and transitions handle 

continuous quantities instead of discrete tokens. Continuous places are marked with real 

numbers called marks, while continuous transitions are associated with variables called 

speed. A transition’s speed defines the rate of quantity transformation. 

Hybrid Petri Nets: In hybrid Petri Nets [11], discrete and continuous processes 

can be combined within one model. Continuous elements model continuous changes, 

while discrete elements model discrete changes often associated with delays. This 

extension is well suited to model complex biological systems and processes. 

Extended hybrid Petri Nets: This modeling extension [49] includes new 

stochastic transitions in addition to discrete and continuous transitions, and can be used 

to model and simulate different systems, including biological processes.  

Functional Petri Nets: The idea behind this extension [46] is to use state-

dependent functions to dynamically adjust the weight of arcs. This supports the idea of 

self-modifying nets. 

Hybrid Functional Petri Nets: This type of Petri Nets [11] is developed to help 

model biological processes more accurately. New types of arcs are introduced, such as 

inhibitory and test arcs. Many biological systems have been modeled and simulated using 

this powerful combination of hybrid and functional Petri features. Genomic Object Net 

[50, 51] is a commercial bio-simulation software tool developed for biologists based on 

Hybrid Functional Petri Net architecture.  
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Many other tools based on the various Petri Net extensions also exist. For 

instance, Snoopy [37, 38] is a unified Petri Net tool to design, simulate and animate tokens 

interactions. Models created can be hierarchically structured to simplify building large 

models. This framework comprises different Petri Net classes, such as qualitative, 

continuous, stochastic and hybrid Petri Nets. These different models can be converted 

into each other. The three main features of Snoopy are extensibility, adaptability, and 

platform independence.  Another tool is SimHPN [52] which is a MATLAB embedded 

package for hybrid Petri Nets that offers various simulations and analysis capabilities.   

2.2 Why Petri Nets? 

The main power of Petri Nets is the ability to represent concurrent processes in a 

simple way. This powerful technique encompasses nearly all other formalisms 

(qualitative, quantitative, discrete, continuous, deterministic or stochastic). Furthermore, 

a major reason for selecting Petri Net as a modeling approach in our work is its 

expressiveness and graphical representation [49]. In fact, Petri Nets have the capability 

to integrate qualitative and quantitative analysis, and offer various features useful to 

model biological systems and processes such as executability, causality and static 

analysis.  In the field of computational biology, Petri Net components can be easily 

mapped to the components of a biochemical network.  Molecular species (metabolites, 

enzymes) can be represented by places where the input of each place corresponds to a 

reactant and the place’s output identifies the reaction products. Petri Nets transitions are 

mapped chemical reactions, while arcs connecting places with transitions with a token 

value that indicates the stoichiometry reactions. The number of tokens of each place 
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indicates the amount of substance of each species [40]. This resemblance between Petri 

Nets and chemical reactions makes Petri Nets a well-known formalism in the 

computational biology field. 
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Chapter 3:  

1. Methodology  

The main purpose of this work is to develop an automatic smart translation of a 

biopathway process modeled as a system of ordinary differential equations to an equivalent 

Hybrid Functional Petri Net model, to take advantage of available simulation tools as well 

as taking advantage of the better expressiveness of the Petri Net formalism. In this chapter, 

the implementation phase is divided into sections wherein the techniques and steps applied 

are demonstrated in details.  The biological models we will be considering are taken from 

an online databases of biopathways available for researchers to uses for free, and stored in 

XPP files format [53]. 

1.1 Data Source: BioModels Database 

Among the various existing databases of biological models, BioModels database 

[29, 30] is selected as the data source for this work. This database is a web-based 

repository of computational models of different categories of biological processes such 

as metabolic process, cellular process, immune system process, biological regulation, 

multi-organism process and others. These models are either published in the literature or 

automatically generated from pathway resources such as KEGG [42]. Models are 

categorized into curated and non-curated models.  Curated models are manually curated 

by checking the structure and semantic of each model. However, the semantics of non-

curated published models are not verified yet.  
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Different Formats 

Under the curated models category, each model is available in different file formats 

such as SBML, BioPAX, Scilab, octave/MATLAB file, VCML, and XPP. The reason 

behind choosing this database, is the availability of the XPP format [53] we use in our 

work. This format is generated from SBML models and represents ordinary differential 

equations (ODE) systems. In the evaluation stage of our work, the MATALB format is 

used to validate our approach by comparing the simulation of a model in MATLAB with 

the simulation of its translation from the XPP format to Petri Nets. 

XPP Format: ODE files 

In its structure, an XPP file is composed of series of lines representing declarations 

of parameters, formulas such as ordinary differential equations and auxiliary quantities. 

The syntax of XPP is described in [53].   

1.2 Our translation approach from ODE system to HFPN 

A Hybrid Functional Petri Nets Petri Net can be used to model a biopathway 

process in an intuitive way with places representing variables of the systems while 

transitions represent equations that describe how these variables change over time.   

The HFPN formalism is already known to be more expressive than differential 

equations systems. As a result, various biological systems and processes have already 

been successfully modeled and simulated using HFPNs such as genetic regulation, 

metabolic networks and transduction signal system [11].  
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Authors in [54] transformed two neurobiological models represented by a system 

of ordinary differential equations into a Hybrid functional Petri Nets representation. The 

first model is a phenomenological synapse model and the second one is a molecular-level 

model of the CaMKII regulation pathway. The translation was performed manually using 

an ad-hoc approach by mapping ordinary differential equations Hybrid Functional Petri 

Nets elements. Figure 1 shows the phenomenological synapse model with both 

representations: Ordinary differential equations (left) and Hybrid Functional Petri Nets 

(right).   

 

Figure 1. Translation of differential equations into a Hybrid Functional Petri Net 

representation of the phenomenological synapse model. 

 

Naïve translating from a system of ODEs to a HFPN  

From Figure 1 we can see that the translation from the system of ordinary 

differential equations representing the phenomenological synapse model to a Hybrid 

Functional Petri Net can be conducted as follows:  
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 Each variables appearing on the left-hand side of each differential equation is 

mapped to a continuous place. 

 The right -hand side of any differential equation is processed as follows: 

 Each positive term is mapped to the speed of production of an input 

transition. 

 Each negative term is mapped to the speed of consumption of an output 

transition. 

From these observations we conclude that the system of differential equations should be 

first put in the general Sum of Products form represented in equation (1).  

  
𝑑𝑥𝑖

𝑑𝑡
= ∑ (𝑐𝑖𝑗 𝑥𝑗)𝑛

𝑗=1  + 𝑔𝑖    𝑓𝑜𝑟 (𝑖 = 1. . 𝑛)         (1) 

Where 𝑐𝑖𝑗 (i=1..n, j=1..n) are constant coefficients (possibly null), 𝑔𝑖 (i=1..n) are  

constants (possibly null) and n is the number of variables (or equations) in the system. 

In this form, the right hand side of each differential equation is composed of a sum of 

terms with positive and negative coefficients. If we separate positive and negative terms, 

the system can be rewritten as follows: 

  
𝑑𝑥𝑖

𝑑𝑡
= ∑ (𝑎𝑖𝑗 𝑥𝑗)𝑛

𝑗=1 − ∑ (𝑏𝑖𝑗 𝑥𝑗)𝑛
𝑗=1 +  𝑔𝑖    𝑓𝑜𝑟 (𝑖 = 1. . 𝑛)      (2) 

Where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are positive constant coefficients (possibly null). 

Now, given a system of ODEs in a Sum of Products form, our translation approach 

consists in mapping each variable xi appearing in the left hand side of each differential 
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equation to a place with a similar name in the HFPN translation. The right hand side 

positive terms (including constant 𝑔𝑖 if it is positive) will be mapped to input transitions 

to that place, while negative terms (including constant 𝑔𝑖 if it is negative) will be mapped 

to output transitions from that place. Null terms are ignored off course. The speed of each 

transition is set to be equal the corresponding term.  Figure 2 gives a representation of 

such a transformation for the differential equation: 

 
𝑑𝑥𝑖

𝑑𝑡
= ∑ (𝑎𝑖𝑗 𝑥𝑗)𝑛

𝑗=1 − ∑ (𝑏𝑖𝑗  𝑥𝑗)𝑛
𝑗=1 +  𝑔𝑖      (3) 

Where 𝑔𝑖 is positive. 

 

Figure 2. Petri Net representation of Equation (3) 

Establishing smart Connections  

If each differential equation is translated according to steps described above, the 

resulting HFPN would be semantically equivalent to the original system of differential 

equations, but will consist of many disconnected components not related to each other. 



  
   

23 
 

While this could be fine for simulation purposes, it still misses one very important 

aspect which is: human readability. In fact, with disconnected components it is very 

difficult to understand how the modeled system works so as to draw conclusion and 

extend the model.  Therefore, we propose an additional step to connect related transitions 

to reflect the functioning of the modeled system. This step, consists simply in merging 

any output transition with any input transition if they both have the same speed equation.  

As an example, consider the following system of ODEs: 

𝑑𝑥0

𝑑𝑡
= (𝑎1   ×  𝑥1) −  (𝑏1   ×  𝑥0)       

𝑑𝑥1

𝑑𝑡
= (𝑏1   ×  𝑥0) − (𝑏1   ×  𝑥1)       

After translation we end up with a HFPN with two places x0 and x1, each one of them 

having one input transition and one output transition.  Given that the output transition of 

x0 has  the same speed equation as the input transition of x1, then these two transitions can 

be merged into a single transition (see  figure 3). The impact of this merge on the meaning 

of the network is very important as it allow us to understand that whatever is produced in 

pace x0 is consumed and used to fill place x1.  

 



  
   

24 
 

                     

 

 

Figure 3. Smart Connection of Petri Net Elements 

 

Consequently, the obtained model can interpret much better the biopathway in a 

more meaningful representation where the relation between different places (molecules 

and species) is captured through smart connections.   

2. Implementation 

In the following subsections, the steps taken in order to process an XPP file 

representing a biopathway modeled as a system of ODEs are described, with an 

example in details. 

2.1 From XPP file to abstract syntax tree 

Models we translate are systems of ordinary differential equations representing 

biopathways and stored in XPP files. Figures 4, 5, and 6 show a full XPP file of the Cell 

Cycle model. The file starts with comments where each commented line in the file starts 
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with ‘#’.  The file combines parameters declaration, variables definition, and ordinary 

differential equations.  The end of the file is indicated by the keyword ‘done’. 

 

Figure 4. The XPP file of the Cell Cycle model (part 1) 

 

 

Figure 5. The XPP file of the Cell Cycle model (part 2) 
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Figure 6. The XPP file of the Cell Cycle model (part 3) 

 

XPP files are first parsed using a parser we wrote in JavaCC following a set of rules 

corresponding to the grammar rules that define the syntax of XPP format. The parser 

generates an abstract syntax tree (AST) following the steps shown in figure 7. 

 

 

Figure 7. XPP parsing steps 
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Each node in the tree has a specific number of children defined in the parser rules. 

Each child node represents a specific element or set of elements in the file such as 

variables, equations, differential equations or constants. The structure of the generated 

abstract syntax tree and its child nodes are shown in figure 8, 9, 10, 11 and 12.   

Figure 8 shows the first level of nodes of the abstract syntax tree, where ASTstart 

is the root of the tree. The children of the root are: 

 ASTparameter node: represents parameters declarations. 

 ASToptionalParameter node: represents optional parameters which start with 

symbol ‘@’. 

 ASTlinearEquation node: represents variables definitions in terms of linear 

equations.  

 ASTdiffrentialEquation node: represents the ordinary differential equations.  

 

 

Figure 8. First level nodes of the generated Abstract Syntax Tree 
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Figure 9 shows child nodes of the ASTparameter node which are: ASTexpression and 

ASTsymbol. The ASTexpression node refers to a term that combines symbols and 

operators where ASTsymbol node defines constants and variables.  

 

 
 

Figure 9. ASTparameter node with two children nodes 

 
 

Figure 10 represents the ASToptionalParameter node which has two children nodes that 

are identical to ASTparameter node’s children. The only difference between the two nodes 

is the occurrence of symbol ‘@’ in the optional parameter.  

 

 
 

Figure 10. ASToptionalParameter node with two children nodes 
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Figure 11 shows ASTlinearEquation node’s children which combines linear expressions, 

symbols, as well as left and right parentheses.  

 

 
 

Figure 11. ASTlinearEquation node with four children nodes 

 
 

Figure 12 shows ASTdiffrentialEquation node’s children. The ASTdiffrentialEquation 

node has a single child which is ASTdiffexp that represents the right-hand side of the 

differential equation. The ASTdiffexp node is defined by three child nodes which are: 

ASTdiffterm, ASTplusOp and ASTminusOp. The ASTdiffterm node can be an 

ASTdiffexp node along with left and right parentheses or an ASTsymbol with division or 

time operators.  
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Figure 12. ASTdiffrentialEquation node with multi-level children nodes 

 

2.2 Tree Processing  

To translate a system of ordinary differential equations to a HFPN, each one of its 

equations needs first to be put into the form of sum of products. This operation is 

performed on the generated parse tree, because traversing the multi-levels nodes of the 

generated abstract syntax tree makes accessing the different parts of each ordinary 

differential equation easy and simple.  

Substituting variables in each ODE term 

In an XPP file only variables appearing on the right hand side of differential 

equations are translated into places in the resulting HFPN. These variables are called 

place variables. All other variables and constants need to be substituted with their 
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corresponding equations and values appearing at the beginning of the XPP files. At the 

end of this process, only place variables are left, while all other variables are substituted. 

Figure 13 shows an ordinary differential equation extracted from BIOMD01 XPP 

file. Figure 14 presents the declarations and constants values of each variable that exists 

in the ODE shown in figure 13.  

 
 

Figure 13. An ordinary differential equation extracted from BIOMD01 XPP file 

 
 
 

 
 

Figure 14. Variables declaration 

 

After applying the substitution of variables and constants values in the ordinary 

differential equation shown in figure 13, the ODE takes the form shown in Equation (4).  

𝑑𝐵𝐿𝐿

𝑑𝑡
= (

1

(1.0𝐸−16)
) × ((1.0 × (1.0𝐸 − 16 × (1500.0 × 𝐵𝐿 − 16000.0 × 𝐵𝐿𝐿))) −
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 (1.0 × (1.0𝐸 − 16 × (30000.0 × 𝐵𝐿𝐿 − 700.0 × 𝐴𝐿𝐿))))      (4) 

 
 

Applying distributive law in each ODE  

Most of ordinary differential equations in XPP files are represented in the form of 

a term multiplied by an expression of a sum of products. To put each ODE in the form of 

a sum of products, the distributive law is applied. The right hand side of the differential 

equation takes the form represented in Equation (5).The application of the distributive 

law on each ODE is achieved by walking the abstract syntax tree nodes up and down in 

order to rewrite the equations in the desired form.  

𝑑𝐵𝐿𝐿

𝑑𝑡
= (

1

(𝑐𝑜𝑚𝑝1)
) × (1.0 × 𝑅𝑒𝑎𝑐𝑡1) +  (

1

(𝑐𝑜𝑚𝑝1)
) × (− 1.0 × 𝑅𝑒𝑎𝑐𝑡2)  (5) 

Forming positive terms  

The last step of data processing is expressing each ODE with positive variables and 

constants. The negative sign of each variable/constant is taken out of the whole term to 

get positive constants and variables in each single term as exemplified in Equation (6).   

𝑑𝐵𝐿𝐿

𝑑𝑡
= (

1

(𝑐𝑜𝑚𝑝1)
) × (1.0 × 𝑅𝑒𝑎𝑐𝑡1) −  (

1

(𝑐𝑜𝑚𝑝1)
) × ( 1.0 × 𝑅𝑒𝑎𝑐𝑡2) (6) 

The final presentation of the ordinary differential equation after applying variables 

substitution and distributive law, as well as forming positive terms is shown in Equation 

(7).   
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𝑑𝐵𝐿𝐿

𝑑𝑡
=× ((

1

(1.0𝐸−16)
) × (1.0 × (1.0𝐸 − 16 × (1500.0 × 𝐵𝐿 − 16000.0 × 𝐵𝐿𝐿)))) −

((
1

(1.0𝐸−16)
) × (1.0 × (1.0𝐸 − 16 × (30000.0 × 𝐵𝐿𝐿 − 700.0 × 𝐴𝐿𝐿))))  (7) 

2.3 Translation from the abstract syntax tree to a HFPN 

The conversion from ODE representation into Hybrid Functional Petri Nets is 

straight forward. First, each place variable is translated into a place with a similar name. 

After that, each positive term appearing on right hand side of a differential equation is 

translated to an input transition to the place corresponding to the place variable appearing 

on the left hand side tor the differential equation. The speed of that transition is set to be 

the term itself. The same is done for each negative term, except that the corresponding 

transition is an output transition to the place.  

By running this process on the ordinary differential equation given in Equation (7), 

the following actions are taken to construct the corresponding Hybrid Functional Petri 

Net model. 

 Create place BLL corresponding to place variable BLL. 

 Create input transition to place BLL with speed: (
1

(1.0𝐸−16)
) × (1.0 × (1.0𝐸 −

16 × (1500.0 × 𝐵𝐿 − 16000.0 × 𝐵𝐿𝐿))) . 

 Create output transition of place BLL with speed: (
1

(1.0𝐸−16)
) × (1.0 ×

(1.0𝐸 − 16 × (30000.0 × 𝐵𝐿𝐿 − 700.0 × 𝐴𝐿𝐿))). 
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Figure 15 shows the created Petri Nets part that corresponds the single ordinary 

differential equation given in Equation (7). 

 

 

Figure 15. HFPN of place BLL and its input and output transitions 

 
 

To illustrate establishing smart connections between transitions, let us consider 

three places BLL, BL, and ALL represented by the three differential equations shown in 

figure 16. These equations are extracted from BIOMD01 XPP file.  

 

Figure 16. Three ordinary differential equations extracted from BIOMD01 XPP file 

 

Figure 17 shows the naïve translation from ordinary differential equations shown 

in figure 16 into Hybrid Functional Petri Nets. Each place is connected to its related 
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transitions, while common transitions appear more than once in the network (e.g. 

transitions t0 and t1).  

 

 

Figure 17. Naive translation of three ODEs into HFPN model 

 
 

After establishing the smart connections, we end up with the more meaningful Petri 

Net illustrated in figure 18. In this Petri net, it is clearer how the different components of 

the models system are related to each other and how they communicate with each other. 
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Figure 18. HFPN with smart connections between places BL, BLL, and ALL 

  

2.4 Extension of the tool: Real time Studio 

To validate our translation approach, we implemented it as an extension to the tool 

Real Time Studio [12]. This tool is a Petri Nets integrated environment used for modeling, 

simulation and automatic verification of real-time systems. In its current version, the tool 

supports two Petri Nets extensions:   Interpreted Time Petri Nets (ITPN) [12] and Hybrid 

Functional Petri Nets (HFPN) [11].  Our extension to the tool enables it to read XPP files 

and translate them automatically to Hybrid Functional Petri Nets.  Input files should 

follow the XPP format available on BioModels database in order to be parsed 

successfully. 
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Chapter 4:  

1. Results  

1.1 Hybrid Functional Petri Net Model 

The approach described in the methodology part is used to generate Hybrid 

Functional Petri Nets from biopathway models under the curated category of BioModels 

database, and stored in XPP files.  

Figure 19 shows the Petri Net model of the biopathway: Nicotinic Excitatory Post-

Synaptic Potential in a Torpedo electric organ [55]. 

 

Figure 19. Hybrid Functional Petri Net model of the biopathway nicotinic Excitatory 

Post-Synaptic Potential in a Torpedo electric organ 
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The HFPN in figure 19 consists of 12 places and 17 transitions which represent 12 

ordinary differential equations (see figure 20). Each equation is composed of positive and 

negative terms that refer to input and output transitions. This model shows different places 

having more than two input/output transitions thanks to the use of smart connections, 

which reduced the number of transitions from 34 to 17, while adding more meaning to 

the network.  

Equations in figure 20 represent the ordinary differential equations of the 

biopathway nicotinic Excitatory Post-Synaptic Potential in a Torpedo electric organ.  All 

these equations are linear and all constant values are defined and declared at the beginning 

of the ODE/XPP file.  

 

dBLL/dt=(1/(comp1))*(( 1.0 * (comp1*(kf_1*BL-kr_1*BLL))) + (-1.0 * 

(comp1*(kf_2*BLL-kr_2*ALL))))           

 

dIL/dt=(1/(comp1))*(( 1.0 * (comp1*(kf_7*I-kr_7*IL))) + (-1.0 * (comp1*(kf_8*IL-

kr_8*ILL))) + ( 1.0 * (comp1*(kf_10*AL-kr_10*IL))) + (-1.0 * (comp1*(kf_15*IL-

kr_15*DL))))             

 

dAL/dt=(1/(comp1))*(( 1.0 * (comp1*(kf_3*A-kr_3*AL))) + (-1.0 * (comp1*(kf_4*AL-

kr_4*ALL))) + ( 1.0 * (comp1*(kf_6*BL-kr_6*AL))) + (-1.0 * (comp1*(kf_10*AL-

kr_10*IL))))              

 

dA/dt=(1/(comp1))*((-1.0 * (comp1*(kf_3*A-kr_3*AL))) + ( 1.0 * (comp1*(kf_5*B-

kr_5*A))) + (-1.0 * (comp1*(kf_9*A-kr_9*I))))      

 

dBL/dt= (1/ (comp1))*(( 1.0 * (comp1*(kf_0*B-kr_0*BL))) + (-1.0 * (comp1*(kf_1*BL-

kr_1*BLL))) + (-1.0 * (comp1*(kf_6*BL-kr_6*AL))))     

 

dB/dt=(1/(comp1))*((-1.0 * (comp1*(kf_0*B-kr_0*BL))) + (-1.0 * (comp1*(kf_5*B-

kr_5*A))))                   

 

dDLL/dt=(1/(comp1))*(( 1.0 * (comp1*(kf_13*DL-kr_13*DLL))) + ( 1.0 * 

(comp1*(kf_16*ILL-kr_16*DLL))))        

 

dD/dt=(1/(comp1))*((-1.0 * (comp1*(kf_12*D-kr_12*DL))) + ( 1.0 * (comp1*(kf_14*I-

kr_14*D))))                
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dILL/dt=(1/(comp1))*(( 1.0 * (comp1*(kf_8*IL-kr_8*ILL))) + (1.0 * (comp1*(kf_11*ALL-

kr_11*ILL))) + (-1.0 * (comp1*(kf_16*ILL-kr_16*DLL))))  

 

dDL/dt=(1/(comp1))*(( 1.0 * (comp1*(kf_12*D-kr_12*DL))) + (-1.0 * (comp1*(kf_13*DL-

kr_13*DLL))) + ( 1.0 * (comp1*(kf_15*IL-kr_15*DL))))      

          

 

dI/dt=(1/(comp1))*((-1.0 * (comp1*(kf_7*I-kr_7*IL))) + ( 1.0 * (comp1*(kf_9*A-kr_9*I))) 

+ (-1.0 * (comp1*(kf_14*I-kr_14*D))))       

 

dALL/dt=(1/(comp1))*(( 1.0 * (comp1*(kf_2*BLL-kr_2*ALL))) + ( 1.0 * 

(comp1*(kf_4*AL-kr_4*ALL))) + (-1.0 * (comp1*(kf_11*ALL-kr_11*ILL))))    
            

 

 

Figure 20.  System of ODE modeling the nicotinic Excitatory Post-Synaptic Potential in 

a Torpedo electric organ 

 

2. Evaluation:  

To validate our approach, we compared simulation results of original models 

written as systems of ODEs with their translations into HFPNs using our approach. The 

simulation of original models is performed using MATLAB, while HFPNS are simulated 

using the tool Real Time Studio.  To illustrate our results, we give in what follows the 

results we obtained when simulating for models of the nicotinic Excitatory Post-Synaptic 

Potential in a Torpedo electric organ shown in figure 19. 

2.1 Real Time Studio Simulation Results 

 The HFPN model  of the nicotinic Excitatory Post-Synaptic Potential in a Torpedo 

electric organ is first generated by translating  its  ODE model using our approach (see 

figure 19). Using a simulation time interval 0.00001 time units, simulation curves 
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representing how quantities associated with place variables change over time are captured 

during four different time periods: 0.005, 0.1, 0.5, and 1.0.  The observation of simulation 

results for different time periods give us a deep understanding about the dynamic changes 

during the simulation process.  

Figure 21 represents the first part of Real time Studio simulation results of 12 place 

variables during 0.005 time units, then, figure 23 shows the continuation of the simulation 

until reaching 0.1 time units. Figure 25 and 27 illustrate the obtained curves during 0.5 

and 1.0 time units respectively.  

2.2 Differential Equations Simulation Results  

Ordinary differential equations are simulated using MATLAB. The MATLAB 

model’s file of each simulated biological system is downloaded from the BioModels 

database. Similarly to Real Time Studio simulation, the outcome of ordinary differential 

equations simulation is represented by a graph that combines all places curves in one 

graph. The same simulation settings of RT Studio tool are applied to MATLAB 

simulation where the simulation interval is set to 0.00001 and the curves changes are 

captured during different time intervals: 0.001, 0.1, 0.5 and 1.0 as illustrated in figure 22, 

24, 26, and 28 respectively.  
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Figure 21. RT Studio Simulation during time unit 0.005 

 
 

Figure 22. MATLAB Simulation during time unit 0.0 
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Figure 23. RT Studio Simulation during time unit 0.1 

 

 
 

Figure 24. MATLAB Simulation during time unit 0.1 
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Figure 25. RT Studio Simulation during time unit 0.5 

 

 

Figure 26. MATLAB Studio Simulation during time unit 0.5 
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Figure 27. RT Studio Simulation during time unit 1.0 

                           

 
 

Figure 28.  MATLAB Studio Simulation during time unit 1.0 



  
   

45 
 

Chapter 5: 

1. Discussion 

The comparison of the two simulation graphs at different time intervals confirms 

that the simulation results of both model’s representations are similar with identical curves 

for all places variables.  Each curve in the graph shows the dynamic changes of each place 

variable in the network corresponding to a specific molecule in the biopathway.  As it was 

previously stated, Hybrid Functional Petri Nets representation are more expressive than  

ordinary differential equations system [56], therefore, it was anticipated to obtain the same 

simulation results for both model’s representations.  

The obtained results confirm that our proposed automatic conversion approach 

from systems of ODEs to Hybrid Functional Petri Nets is correct. Using our translation 

approach, it is now easier for researchers to visualize models of biopathways, which can 

provide them with better insights into their functioning. Additionally, our translation 

approach can be exploited in the field of teaching and learning since HFPNs are more 

intuitive to understand than systems of ODEs.   

2. Future Directions  

This work can be extended to allow conversion from other different representations 

of biopathways such as SBML and BioPax into Hybrid Functional Petri Nets. Additionally, 

our conversion approach can be applied to translate models not necessarily related to 

biology, other field where ODEs are used such as chemistry, physics, mechanics, 

electronics and power systems.  
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3. Conclusion 

In this thesis, an automatic conversion approach is developed to transform 

biopathways presented by ordinary differential equations into Hybrid Functional Petri Nets 

model. The obtained Petri Net model is not only automatically generated, but it also 

preserves the semantics of the translated model. Due to the intuitive representation of Petri 

Nets, the obtained model is human readable. It facilitates capturing and understanding 

complex system behaviors and interactions which is not possible to capture with ordinary 

differential equations. Simulation results validate our approach which can open the door to 

it application in other fields where ODEs are used.  
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