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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced on

31 December, 2019, and was identified as the causative agent of the global

COVID-19 pandemic, leading to a pneumonia-like disease. One of its

accessory proteins, ORF6, has been found to play a critical role in immune

evasion by interacting with KPNA2 to antagonize IFN signaling and production

pathways, resulting in the inhibition of IRF3 and STAT1 nuclear translocation.

Since various mutations have been observed in ORF6, therefore, a

comparative binding, biophysical, and structural analysis was used to reveal

how these mutations affect the virus’s ability to evade the human immune

system. Among the identified mutations, the V9F, V24A, W27L, and I33T, were

found to have a highly destabilizing effect on the protein structure of ORF6.

Additionally, the molecular docking analysis of wildtype and mutant ORF6 and

KPNA2 revealed the docking score of - 53.72 kcal/mol for wildtype while,

-267.90 kcal/mol, -258.41kcal/mol, -254.51 kcal/mol and -268.79 kcal/mol

for V9F, V24A, W27L, and I33T respectively. As compared to the wildtype the

V9F showed a stronger binding affinity with KPNA2 which is further verified by

the binding free energy (-42.28 kcal/mol) calculation. Furthermore, to halt the

binding interface of the ORF6-KPNA2 complex, we used a computational

molecular search of potential natural products. A multi-step virtual screening

of the African natural database identified the top 5 compounds with best

docking scores of -6.40 kcal/mol, -6.10 kcal/mol, -6.09 kcal/mol, -6.06 kcal/

mol, and -6.03 kcal/mol for tophit1-5 respectively. Subsequent all-atoms

simulations of these top hits revealed consistent dynamics, indicating their

stability and their potential to interact effectively with the interface residues.

In conclusion, our study represents the first attempt to establish a foundation
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for understanding the heightened infectivity of new SARS-CoV-2 variants

and provides a strong impetus for the development of novel drugs

against them.
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Introduction

SARS-CoV-2 (severe acute respiratory syndrome corona virus 2),

was reported as an etiological agent causing a worldwide pandemic of

covid-19 pneumonia-like disease, which emerged in Wuhan, China

on 31 December, 2019 (1). According to the latest updates, as of 15

April 2022, the global confirmed cases are about 504 million and

6,197,159 deaths. The disease symptoms range from mild to acute,

though cases with no symptoms have also been documented (2).

SARS-CoV-2 is a positive-sense, enveloped, single-stranded RNA

virus belonging to the Riboviria kingdom, Nidovirales order,

coronaviridae family, Betacoronavirus Genes and SARS-related

coronavirus species (3). The viral genome of approximately 30 kb

in size consists of a 5’ and 3’ untranslated region (4). The 5’ end of the

genome contains the genetic information for 16 nonstructural

proteins (Nsp1-Nsp16) (5), while the 3’ end encodes 4 structural

proteins (M, N, S, E) and 8 accessory proteins (ORF3a, ORF3b,

ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF10) (6, 7). The NSPs

(nonstructural proteins) help in replication, structural proteins are

accountable for virion formation while accessory proteins are

responsible for virus-host interaction, facilitating pathogenesis,

infection, and in vitro viral replication (8).

The type 1 interferon pathway serves as the initial defense

mechanism of the host’s innate immune response against viral

infections. In the case of coronavirus, the virus produces double-

stranded RNA (dsRNA) that is detected by pattern recognition

receptors (PRRs). This recognition event leads to the activation of

IRF3 (IFN regulatory factor-3), triggering a cascade of immune

responses (9). Phosphorylated IRF3 undergoes dimer formation

followed by nuclear translocation, activation of IFN-I genes, and

stimulation of the secretion of interferon a/b (10, 11). Interferon

plays a vital role against viral infection by inducing antiviral

activities (12). IFNARs (interferon receptors) are activated by

secreted interferon a/b that induce activation of STATI and

STAT2 (13). STAT1 and STAT2 interact with IRF9 to form the

ISGF3 complex, which translocates into the nucleus, and stimulates

the activation of many interferons stimulated genes (ISGs) by

binding with ISREs that ultimately elicit an efficient antiviral

response (14).

Corona-virus developed diverse strategies to counteract the IFN

pathway and to antagonize the IFN response by targeting distinct

steps in the IFN production pathway (15). Among SARS CoV-2
02
accessory proteins, ORF6 (accessory protein open reading frame 6)

is a small polypeptide of about 7-kDa that is composed of 61 amino

acids, shows 69% sequence similarity with ORF6 of SARS-CoV, and

has been exhibited to antagonize host antiviral responses and also

contributes in viral infection pathogenesis. ORF6 protein targets the

interferon production pathway by binding with karyopherin

(KPNA2). KPNA2, encodes importin alpha 1, to which ORF6

could bind. Several levels of regulation take place at nuclear

import of the ISGF3 complex. Normally, the ISGF3 complex

(activated STAT1) exposes NLS (nuclear localization signal) on its

surface, recognized by KPNA1 which recruits KPNB1 for nuclear

transport of complex (ISGF3:KPNA1) via nuclear pore (16). In

SARS-CoV-2 infected cells ORF6 is present at the Golgi apparatus/

Endoplasmic reticulum membrane. The ORF6 C-terminal amino

acids directly interacted with KPNA2 which recruits KPNB1 from

the cytoplasm to the membrane complex and causes the depletion

of free unbound KPNB1 consequently, restraining nuclear transport

of ISGF3 complex. ORF6 binding to KPNA2 indirectly block the

transport of ISGF3:KPNA1 into the nucleus leading to the

inhibition of STAT1 nuclear translocation resulting in the

suppression of the interferon pathway (17). ORF6 also restrains

IFNb production through binding with import factor KPNA2,

inhibiting IRF3 nuclear transport (18). Taken together, ORF6

binding with KPNA2 inhibits the nuclear transport of STAT1 and

IRF3, resulting in the suppression of the host immune system.

Various studies reported that ORF6 antagonizes the IFN

production pathway to escape human immune response through

interaction with the KPNA2 complex (17, 18). Since various

mutants were therefore emerging, it is important to explore

whether these mutants counteract IFN production and promote

the pathogenesis of viral infection by altering the structure stability

and binding affinity of ORF6 with KPNA2. In the present study, we

used biophysical analysis and comparative binding techniques to

reveal the effect of newly emerged and deleterious mutations in

ORF6 on immune evasion by physically interacting with KPNA2.

The binding interfaces of ORF6 and KPNA2 were targeted to

identify novel drugs that could disrupt their interaction, thereby

controlling the evasion of the human immune system mediated by

ORF6. Furthermore, the molecular dynamics simulation technique

was used to check the stability of drug-ORF6 complexes.
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Materials and methods

Sequence retrieval and
Mutation identification

The sequence of SARS-CoV-2 ORF6 protein (ID: P0DTC6) and

the crystal structure of KPNA2 (PDB ID: 1EFX) protein were

retrieved from UniProt online database (https://www.uniprot.org/)

(19, 20). To detect single nucleotide substitutions in the ORF6

protein, we uploaded the sequence in FASTA format to the

GISAID database (https://www.gisaid.org/). By comparing the

submitted sequence with the reference sequence hCoV-19/Wuhan/

WIV04/2019 (accession no MN996528.1), the server identified novel

mutations and provided information about the positions of the

substituted amino acid residues (21).
3D structure modeling and validation

The function of a protein is determined by its three-

dimensional (3D) structure, which influences its interactions with

other molecules in the body. In order to obtain the 3D structure of

ORF6, the protein’s sequence was submitted to the Robetta server

(https://robetta.bakerlab.org/) for structural modeling. The Robetta

server utilizes Continuous Automated Model Evaluation (CAMEO)

and has consistently demonstrated high precision and reliability

since 2014 (22). To assess the quality of the modeled protein

structure, it was subsequently subjected to validation tools,

namely ProSa-Web (https://prosa.services.came.sbg.ac.at/

prosa.php/) (23) and PDBsum (http://www.ebi.ac.uk/thornton-

srv/databases/pdbsum/) (24). These online tools analyze the

protein structure based on various quality scores.
Structure and sequence-based protein
stability analysis

To accurately predict the effects of mutants on protein stability,

the mCSM server was employed, which utilizes a graph-based

signature approach (http://biosig.unimelb.edu.au/mcsm/). For every

single mutation, DDG and RSA (relative solvent accessibility) values

were calculated (25). For predicting the effect of alteration on

dynamics and protein stability, through the NMA (Normal-Mode

Analysis) approach, DynaMut2 (http://biosig.unimelb.edu.au/

dynamut2) server was utilized. The aforementioned servers

required a 3D structure of protein and mutations list for predicting

mutational impact on protein structural stability. The DDG (Gibbs

free energy) value was estimated, the value less than zero (DDG< 0.0

kcal/mol) shows destabilization however, the value greater than zero

(DDG > 0.0kcal/mol) shows stabilization (26). Furthermore, to find

the effect of mutation on the structural stability based on protein

sequence, we used the I-Mutant2.0 (http://folding.biofold.org/i-

mutant/i-mutant2.0.html) server. The server needs a modified

protein sequence and wild-type (WT) residue position to find the

consequences of the exchange of amino acids on protein. Positive
Frontiers in Immunology 03
Gibbs free energy (DDG) signifies high stability while negative DDG
signifies low stability (27).
Variant modeling and superimposition

The wild-type structure of ORF6 underwent a minimization

process, which aims to lower the energy of the protein structure.

This procedure was performed using Chimera software, a molecular

graphics and modeling program developed by the University of

California, San Francisco (28). Additionally, the same software was

utilized to model the highly deleterious and destabilizing mutations

predicted in the wild-type ORF6 protein structure. Afterward, to

check the structural variances between theWT and variants protein,

PyMOL software was utilized to superimpose each mutant on the

WT ORF6 structure and calculated the RMSD (root mean square

deviation) value.
Protein-protein docking and binding free
energies calculation

To check the effect of mutations on the binding affinity of ORF6

with the KPNA2, we performed molecular docking by using the

HDOCK server (29). This server uses the hybrid algorithm of

template bases modeling and ab initio free docking and provides

the top ten complex models with the highest scores. The scoring is

based on an empirical potential made up of docking score and Ligand

RMSD, with Vander Waals energy playing a minor role. For each

interaction, the top-rank model was selected on the basis of a lower

energy score (30). To visualize the results of interactions such as salt

bridges, non-bonded contacts, and hydrogen bonds, the PDBsum

online server was utilized. To determine the binding free energies of

both wild-type and mutant ORF6 complexes, we employed the MM/

GBSA approach. This approach is known for providing dependable

estimates of binding free energies for a wide range of biological

complexes (31). The calculation of binding free energies was carried

out using the MMGBSA.py script, which considers contributions

from electrostatic interactions, van der Waals forces, solvent-

accessible surface area (SA), and generalized Born model (GB).

The following equation was used to calculate the binding

free energies:

“DG(bind) = DG(complex) − ½DG(receptor) + DG(ligand)�
To calculate each component of the total free energy

individually, we employed the following equation:

“G = Gbond + Gele + GvdW + Gpol + Gnpol ”
Virtual drug screening against the binding
interface of ORF6 with KPNA2

African natural product database was downloaded in 3D-SDF

format (3D-structure data file), from the ANPDB website (African-
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natural product databases) (http://african-compounds.org/anpdb/)

(31). ANPDB is an accumulation of medicinally important natural

compounds. Before the screening of these databases, the FAF-Drugs

4 web server was used to get only drug-like non-toxic molecules that

follow Lipinski’s rule of five (32). Subsequently, filtered databases

were screened against the binding interfaces of the ORF6-KPNA2

complex. Before the screening, the drugs were changed to pdbqt

format. AutoDock Vina was utilized for virtual drug screening, to

screen the best drug-like molecules. Initially, 16 exhaustiveness was

used for fast screening, after that 64 exhaustiveness was used for

screening to reassess the best compounds and to eliminate false-

positive results. For IFD (induced fit docking) the top 10% of drugs

were selected from each database and screened by utilizing

AutodockFR, which assists in covalent docking and facilitates

receptor flexibility (33). Subsequently, the best final hits were

processed for MD simulation analysis.
Molecular dynamics simulation

The Amber20 package was used for molecular dynamics (MD)

simulation to examine the top-hit drugs and ORF6 complexes’

stability (34) using the antechamber force field (35). TIP3P was

utilized for the solvation of each system, and for system neutralization

counter ions were added (36). MD simulation was carried out in

several steps such as energy minimization, heating, equilibrium step,

and production step. After neutralization, for bad clashes elimination

the protocol of energy minimization was utilized that consists of 9000

cycles, first 6000 cycles use the steepest descent minimization (37)

while the rest 3000 cycles use conjugate gradient minimization (38).

Subsequently, the system was heated up to 300K and then

equilibrated the system at constant pressure (1atm). Afterward, for

100 ns production step was run. Long-range electrostatics

integrations were detected through the particle mesh Ewald

method (34, 39). SHAKE algorithm was utilized to treat the

Covalent bonds (40). Molecular dynamics simulation and

trajectories were performed by PMEMD.CUDA and Amber20

CPPTRAJ packages, respectively. In the analysis of the complexes

formed by the top hits and ORF6, the CPPTRAJ and PTRAJ packages

were employed. These packages were utilized to examine the dynamic

stability, compactness, and hydrogen bonding network of the

complexes (41). To assess the structural dynamic stability, the Root

Mean Square Deviation (RMSD) was computed. The RMSD value

was determined by employing the mathematical formula below.

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=0½mi*(Xi − Yi)
2�

M

s

However, the Rg (radius of gyration) was employed to calculate

the structural compactness.
Results and discussion

With the passage of time, SARS-CoV-2 has undergone various

mutations and become a more pathogenic and infectious strain
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until now (42). Mostly these mutations take place in the accessory,

non-structural, and structural proteins, and have a direct impact on

the infectivity, severity, and clinical outcomes of the virus (43).

However, some proteins show resistance to mutation while others

are prone to mutations (44). Among the accessory proteins of

SARS-CoV-2, ORF6 was found to be the most pathogenic and

mutational-prone protein. Multiple research studies have indicated

that ORF6 plays a role in evading the human immune response by

interacting with the KPNA2 complex, thereby antagonizing the

interferons (IFNs) pathway (17, 18). As different mutants of ORF6

are continually emerging, it is crucial to investigate whether these

mutants undermine IFN production and enhance the pathogenesis

of viral infections by altering the stability of ORF6’s structure and its

binding affinity with KPNA2. Consequently, this study was

designed to examine the impact of recently identified mutations

on the binding interaction between ORF6 and its target protein

KPNA2 in the immune evasion pathway. Additionally, the study

aimed to identify potential drugs that could target the binding

interface of ORF6-KPNA2 and potentially mitigate the immune

evasion properties of SARS-CoV-2. The overall workflow is shown

in the Figure 1.
Identification of newly emerged mutations
in ORF6 protein

To identify the newly emerged mutations in the ORF6 protein,

the sequence of ORF6 (ID: PODTC6) was retrieved from the

UniProt database (19, 20) and submitted to the online database

GSAID. The aforementioned database identified the newly emerged

mutations in the ORF6 protein sequence by comparing it with the

human coronavirus strain reported at Wuhan, China. The novel

strain consists of 13 mutations (H3Y, D6Y, Q8H, V9F, T21I, V24A,

W27L, I33T, N34S, K42N, D53G, D53Y, D61Y) existed on the

ORF6 protein. the graphical representation of identified mutations

is shown in Figure 2.
Impact of mutation on the structural
stability of ORF6 protein

The stability of a protein is the primary factor that affects the

function, structure, and regulation of the protein (45). Mutation in

the corresponding protein mainly affects their stability and can also

cause protein malfunction. Mutation such as amino acid

substitution promptly disrupts protein interaction with other bio-

molecules, and can also affect protein fold, dynamics, function, and

stability (46, 47). For understanding the role of mutation in causing

disease the prediction of dynamics and stability of a protein is

significant. Gibbs free energy (DDG) stimulated by mutations was

predicted, for the estimation of changes in the stability of protein

upon mutation (26). Various computational approaches have been

developed to estimate the mutational impact on protein stability by

using protein structural or sequence information (48, 49). In the

current study, various online servers such as DynaMut2, mCSM,

and I-Mutant 2.0 were used for the prediction of protein functional
frontiersin.org
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and structural stability that alter upon mutation. Analysis of 13

variants through I-mutant 2.0 online server determined the DDG
value ranging from 1.73 kcal/mol to -2.36 kcal/mol, whereas six

mutations (N34S, D53G, D53Y, D6Y, D61Y, H3Y) increase

structural stability while seven mutations (K42N, V9F, Q8H,

I33T, W27L, V24A, T21I) decrease structural stability (Table 1).

These mutations were also analyzed by DynaMut2 server for further

estimation of destabilizing variants. Analysis of 13 mutations

through DynaMut2, it has been observed that DDG value ranges

from 1.49 kcal/mol to -1.39 kcal/mol. Out of thirteen variants, seven

mutations (N34S, V9F, Q8H, I33T, W27L, V24A, T21I) were found

to have a destabilizing effect on the structure of ORF6 protein while

six mutations (K42N, D53G, D53Y, D6Y, D61Y, H3Y) have

stabilizing effect, that enhance the stability of protein

structure (Table 2).

Furthermore, to narrow down the list of highly destabilizing

mutations identified by the DynaMut2 and I-Mutant 2.0 were

further analyzed by mCSM. Among the destabilizing mutations,

the variants such as V9F with DDG value of -1.143 kcal/mol, I33T

with DDG value of -1.504 kcal/mol, W27L with DDG value of -1.18

kcal/mol, and V24A with DDG value of -1.253 kcal/mol, were

reported as highly destabilizing variants that affect the structural

stability of ORF6 protein. Although, mutations such as N34S, Q8H,

and T21I with DDG values of -0.871, -0.632, and -0.074 kcal/mol
Frontiers in Immunology 05
respectively, were reported as destabilizing variants that influenced

minute changes in protein structure (Table 2). Similar approaches

were used by several previous studies for the selection of highly

destabilizing mutations (50, 51). To check the significance of these

highly destabilizing mutations in human immune evasion, we

further processed it to check its effect on the binding network of

ORF6 and KPNA2.
Variants Modeling of ORF6 protein and its
superimposition on WT ORF6

The three-dimensional (3D) structure of a protein plays a

crucial role in determining its function and how it interacts with

other molecules in the body. To determine the 3D structure of the

ORF6 protein, its amino acid sequence was submitted to the

Robetta server (https://robetta.bakerlab.org/) for structural

modeling (Figure 3A). This server takes the protein sequence as

input and generates five different models (22). To identify the best

model among the generated structures, we utilized validation tools

such as ProSa-Web (23) and PDBsum (24). First, the protein

structures were subjected to Ramachandran analysis, and selected

the model with the highest percentage of residues in the favorable

region and the fewest outliers (Figure 3B). This selection process
FIGURE 2

Schematic representation of mutations identified in ORF6 protein.
FIGURE 1

The overall workflow, including step-wise approaches used in this study.
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ensured that the chosen model exhibited a conformation that was

most likely to be biologically relevant and structurally sound.

Moreover, we employed the ProSA-web tool to assess the quality

of the best models and identify any potential errors. The resulting Z

score from ProSA-web analysis was -1.73, which falls within the

range expected for normal protein structures of similar size (52)

(Figure 3C). Subsequently, to assess how selected destabilizing

mutations (V9F, V24A, W27L, I33T) influenced the binding

affinity between ORF6 and KPNA2, we incorporated these

mutations into the wild-type ORF6 protein using Chimera

software for modeling (Figures 3D–G).

To evaluate the structural differences between the generated

mutants and the wild-type ORF6 protein, their respective structures

were superimposed, and the root-mean-square deviation (RMSD)

values were calculated (Figure 4). The RMSD values indicated

significant differences between the mutants and the wild-type

protein, with values of 0.64 Å, 0.68 Å, 0.59 Å, and 0.21 Å for the

V9F, V24A, W27L, and I33T mutants, respectively. The identified

mutations led to changes in the protein’s secondary structure and
Frontiers in Immunology 06
conformation, highlighting the significance of examining how they

might affect the binding affinity between ORF6 and KPNA2.

Subsequently, we utilized molecular docking, a structural

methodology to investigate the influence of these mutants on the

binding affinity of ORF6 with KPNA2.
Bonding network analysis of wildtype and
mutant ORF6 and KPNA2

The application of molecular docking in studying protein-protein

interactions (PPIs) has proven valuable in understanding the

structure and function of PPIs in disease progression. By utilizing

molecular docking techniques to predict the binding modes and

conformations of proteins involved in PPIs, researchers can gain

valuable insights into the underlying mechanisms of disease

progression (53). ORF6 protein has a key role in the evasion of the

human immune system. ORF6 protein physically binds with KPNA2

to inhibit IRF3 and STAT1 nuclear translocation and hence

antagonize IFN production. Due to the importance of ORF6 and

KPNA2 in immune evasion and regulating IFN signaling and

production pathways, binding analysis for ORF6 WT and its

various mutants with KPNA2 was performed (54). For regulation

and understanding of these biological processes, the crucial steps are

binding efficiencies and structural determination of the particular

interactions. Significantly, binding affinity, which regulates molecular

interactions, discovers whether the complex formation takes place

under certain circumstances (55). To determine the structural

mechanisms of higher pathogenicity of various mutants of SARS-

CoV-2, molecular docking of KPNA2 with WTORF6 and its various

mutants including V9F, V24A, W27L, and I33T was performed by

using the HDOCK server. For the wild type ORF6-KPNA2 complex,

the HDOCK predicted docking score was recorded to be -253.72 kcal/
TABLE 2 A list of mutations, analyzed by mCSM server to identify highly
destabilizing mutations based on DDG value.

Index Variants DDG mCSM Outcome

1 N34S -0.871 Destabilizing

2 V9F -1.143 Destabilizing

3 Q8H -0.632 Destabilizing

4 I33T -1.504 Destabilizing

5 W27L -1.18 Destabilizing

6 V24A -1.253 Destabilizing

7 T21I -0.074 Destabilizing
TABLE 1 List of newly emerged mutations in ORF6, analyzed by DynaMut2 and I-Mutant 2.0.

Index Variants DynaMut2 I-Mutant 2.0

Predicted DDG Outcome Predicted DDG Outcome

1 N34S -0.48 Destabilizing 0.85 Stabilizing

2 K42N 1.14 Stabilizing -1.29 Destabilizing

3 D53G 0.53 Stabilizing 0.38 Stabilizing

4 V9F -0.75 Destabilizing -2.36 Destabilizing

5 D53Y 0.15 Stabilizing 0.92 Stabilizing

6 D6Y 0.35 Stabilizing 0.3 Stabilizing

7 D61Y 0.12 Stabilizing 0.94 Stabilizing

8 H3Y 1.49 Stabilizing 1.73 Stabilizing

9 Q8H -0.09 Destabilizing -1.9 Destabilizing

10 I33T -1.39 Destabilizing -1.7 Destabilizing

11 W27L -0.33 Destabilizing -0.95 Destabilizing

12 V24A -1.25 Destabilizing -1.74 Destabilizing

13 T21I -0.22 Destabilizing -1.12 Destabilizing
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mol. Interaction interface analysis by PDBsum showed that the

complex formed 153 non-bonded contacts and 4 hydrogen bonds.

The residues that formed hydrogen bonds between the WT ORF6-

KPNA2 complex were Gln56-Thr131, Phe2-Gln109, and Gln8-

Asn75 (Figure 5A). However, the predicted docking score for the

V9F-KPNA2 complex was -267.90 kcal/mol. The PDBsum analysis

showed the formation of 224 non-bonded contacts and 5 hydrogen

bonds between the binding interface of ORF6 and KPNA2. The key

residues Phe22-Trp357, Asn28-Glu354, Gln56-Lys102, Glu59-Gln71,
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Lys42-Asn188 formed the hydrogen bonds between KPNA2 and V9F

variant (Figure 5B). Furthermore, the docking score of -258.41kcal/

mol was predicted for V24A-KPNA2 complex, while the analysis of

the binding interface by PDBsum revealed the presence of 5 hydrogen

bonds, 1 salt bridge, and, 176 non-bonded contacts. The residues

Phe22-Asn235, Asn28-Asn239, Gln56-Lys486, Tyr31-Asn241, and

Lys42-Glu396 formed the hydrogen bonds while the residues Lys42-

Glu396 formed a salt bridge between KPNA2 and V24A mutant

(Figure 5C). The results demonstrated that mutants increased the
A B

DC

FIGURE 4

Superimposition of WT ORF6 with ORF6 mutants. (A) Showing RMSD value of V9F, (B) showing RMSD value of V24A, (C) showing RMSD value of
W27L, (D) showing RMSD value of I33T.
A B

D E F G

C

FIGURE 3

ORF6 3D structure validation and mutant modeling. (A) Showing wildtype ORF6, (B) validation by Ramachandran plot. (C) validation by ProSA-web
(D) showing V9F mutant, (E) showing V24A mutant, (F) showing W27L mutant. (G) showing I33T mutant.
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binding affinity of ORF6 with KPNA2 as compared to the wild type,

hence may further accelerate ORF6 protein function to evade host

immune response.

Afterward, HDOCK predicted a docking score of -254.51 kcal/

mol for the W27L-KPNA2 complex. PDBsum analysis showed

156 non-bonded contacts and 5 hydrogen bonds. The key residues

Asp61-Asn241, Asp61-Ser194, Ile37-Arg101, Ser50-Trp184,

Gln8-Glu91 formed the hydrogen bonds between KPNA2 and

W27L variant (Figure 6A). Finally, for the I33T-KPNA2 complex,

HDOCK predicted a docking score of -268.79 kcal/mol, and

PDBsum analysis revealed the existence of 3 hydrogen bonds

and 239 non-bonded contacts. Between KPNA2 and I33T variant,

the residues Gln56-Lys102, Asn28-Glu354, and Phe22-Trp357

formed hydrogen bonds (Figure 6B). The docking results

indicated that these selected highly destabilizing mutants

significantly increased the binding affinity of ORF6 and KPNA2

as compared to the wildtype complex, which may enhance the

ability of SARS-CoV-2 to evade the human immune system.

Utilizing the docking score and analysis of hydrogen bonding

networks, it was established that among the examined mutants,

the V9F variant displayed the most substantial binding affinity

with KPNA2. As a result, we opted to concentrate our subsequent

analysis on this specific mutant for the purpose of screening

potential drugs. Our focus on the V9F mutant aimed to explore

its viability as a target for drug discovery and development

concerning ORF6-KPNA2 interactions.
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Binding free energies calculation by MM/
GBSA approach

Binding free energy calculations are commonly employed to

accurately assess the binding strength and structure of small

molecules. This calculation plays a vital role in enhancing the

precision and dependability of docking predictions, surpassing

conventional docking and alchemical methods (56). The

approach is widely used to investigate the interaction potency and

uncover key binding properties that govern the overall binding

mechanism (57). Consequently, we employed the MM/GBSA

approach to evaluate the overall binding energy of complexes

formed by the wild type and mutant ORF6-KPNA2. As shown in

Table 3 the recorded Van der Waals energies: -96.39 kcal/mol for

the wild-type complex, -153.43 kcal/mol, -132.63 kcal/mol, -121.63

kcal/mol, and -156.96 kcal/mol for the V9F, V24A, W27L, and I33T

mutants, respectively. In terms of electrostatic energies, the

estimates were 282.69 kcal/mol for the wild-type complex, -68.44

kcal/mol, 463.94 kcal/mol, 416.92 kcal/mol, and -54.34 kcal/mol for

the V9F, V24A, W27L, and I33T mutants, respectively. The results

for total binding free energies indicated -29.92 kcal/mol for the wild

type, and -42.28 kcal/mol, -10.06 kcal/mol, -21.12 kcal/mol, and

-39.04 kcal/mol for the V9F, V24A, W27L, and I33T mutants,

respectively. These findings demonstrate that the mutant V9F

exhibits the highest binding free energy, thereby confirming the

results obtained from molecular docking.
A

B

C

FIGURE 5

Bonding network analysis of wildtype and mutant ORF6-KPNA2 complexes. (A) Represents the wildtype-KPNA2 bonding network. (B) Represents the
V9F-KPNA2 bonding network. (C) Represents the V24A-KPNA2 bonding network.
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Drug screening analysis of V9F mutant
of ORF6

Virtual drug screening is a valuable technique in the field of drug

design as it enables researchers to identify and assess potential drug

candidates before embarking on expensive and time-consuming

laboratory experiments. This approach plays a crucial role in the

drug design process by offering a faster and more efficient means of

identifying potential drug candidates and optimizing their chemical

and biological properties (58, 59). Prior to performing a database

screening, the molecules underwent filtration using Lipinski’s rule of

five to identify molecules with drug-like characteristics. AutoDock

Vina was utilized for computational drug screening, against the

binding interface of ORF6 and KPNA2. Among the 954 molecules,

only 745 compounds passed the ADMET criteria. The first step of

virtual screening reported that the docking score of the 745

compounds ranges from -6.2 to -1.0 kcal/mol. To conduct further

analysis, compounds with a score below -5.0 kcal/mol were chosen.

Based on this criterion, a total of 130 compounds were selected and

subjected to induced fit docking, resulting in docking scores ranging

from -6.4 to -2.9 kcal/mol. Among these compounds, the top 5 hits
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were selected based on their favorable interaction profiles and high

docking scores. The docking scores of top 5 hits, namely 1,3,5-

trihydroxy-6,7-dimethoxy -2,4-bis(4-methylpent-3-enyl) xanthen-9-

one, (3R,5S)-3-[(3S,5S,9R,10S,13S,14R,16S,17R)-16-hydroxy-10,13-

dimethyl-3-[(2R,3S,4S,5R,6S)-3,4,5-trihyd, [(2S,3R,4R,5S,6S)-3,4,5

-trihydroxy-6-[2- (4-hydroxyphenyl) ethoxy]tetrahydropyran-2-yl]

methyl, 3-(3,4- dihydroxyphenyl)-6,8-dihydroxy-2-[(2S,3R,4S,5R)-

2,3,4-trihydroxy-5-methyl-tetrahydropyran-2-y, and 8-oxo-16-

[(2R,3S,4S,5S,6R) -3,4,5- trihydroxy-6-(hydroxymethyl)

tetrahydropyran-2-yl] oxy-hexadecanoic were -6.40 kcal/mol, -6.10

kcal/mol, -6.09 kcal/mol, -6.06 kcal/mol and -6.03 kcal/mol

respectively. The top 5 compounds along with their drug names,

2D structures, and docking score are given in Table 4.
Interaction analysis of top hits compounds

Detailed analysis of the top 5 hits gives information about

hydrophobic interaction, hydrogen bonds, and salt bridges. In the

case of tophit1-ORF6 complex, the bonding network analysis

revealed the docking score of -6.40 kcal/mol with the formation
TABLE 3 Binding free energies analysis of wildtype and mutant ORF6-KPNA2 complexes.

Complexes vdW Electrostatic GB SA Total Binding Energy

Wild Type -96.39 282.69 -203.97 -12.25 -29.92

V9F -153.43 -68.44 199.78 -20.19 -42.28

V24A -132.63 463.94 -323.41 -17.97 -10.06

W27L -121.63 416.92 -300.09 -16.32 -21.12

I33T -156.96 -54.34 192.85 -20.58 -39.04
A

B

FIGURE 6

Bonding network analysis of W27L and I33T ORF6-KPNA2 complexes. (A) Represents the W27L-KPNA2 bonding network. (B) Represents the I33T-
KPNA2 bonding network.
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of 4 hydrogen and 4 hydrophobic bonds with the specific residues in

the target protein. The key residues Lys48, Gln51, Leu52, Gln56,

Pro57, and Glu59 were involved in the bonding network formation

(Figure 7A). Next, Interaction analysis of tophit2-ORF6 complex

reported the formation of 4 hydrogen bonds with Tyr49, Gln56,

Glu59, Ile60, and Asp61 residues. Additionally, the compound also

showed the existence of 5 hydrophobic bonds (Figure 7B). The

recorded docking score for tophit2-ORF6 complex was -6.10 kcal/

mol. Furthermore, our bonding network analysis revealed that the

tophit3-ORF6 complex exhibited favorable interactions with the

target protein with 3 hydrophobic bonds and 4 hydrogen bonds

with amino acids Lys48, Tyr49, Glu54, Glu55, Gln56, Pro57, and

Glu59 however, the docking score for the aforementioned complex

was recorded to be -6.09 kcal/mol (Figure 7C). In conclusion, the

above three top hits targeted the important amino acid residues

(Gln56, Glu59) which were involved in the interaction between

ORF6 and KPNA2. Hence, these hits reported better

pharmacological potential for exhibiting higher docking scores

and better interaction paradigms.

Similarly, the analysis of the tophit4-ORF6 complex showed the

formation of 5 hydrogen bonds and 4 hydrophobic interactions

with a docking score of -6.06 kcal/mol. The amino acid residues
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involved in the bonding network formation were Lys48, Tyr49,

Ser50, Leu52, Gln56, and Ile60 (Figure 8A). Finally, the analysis of

the tophit5-ORF6 complex revealed the formation of 3 hydrophobic

bonds and 4 hydrogen bonds with a docking score of -6.03 kcal/mol.

The key residues Tyr49, Ser50, Glu54, Glu55, Gln56, and Glu59

were involved in the bonding network formation in the target

protein (Figure 8B). Our findings indicate that these compounds

hold considerable promise as drug candidates due to their favorable

interactions with specific amino acid residues (Ser50, Gln56, and

Glu59) crucial in the interaction between ORF6 and KPNA2,

potentially enhancing their therapeutic effectiveness. To assess the

dynamic stability of the top hits-ORF6 complexes, we chose the top

three drugs for molecular dynamic simulation analysis.
Molecular dynamics simulations analysis of
top hits

The stability of molecular interactions within a binding

cavity is a critical factor in finding the binding efficiency of

small ligand molecules. To analyze this stability, simulation

trajectories can be employed, and one metric that can be
TABLE 4 List of top 5 hits along with their 2D structures, names and docking scores.

Top
hit#

Drug Name 2D structure Docking
score

1 1,3,5-trihydroxy-6,7-dimethoxy -2,4-bis(4-methylpent-3-enyl) xanthen-
9- one

-6.40 kcal/mol

2 (3R,5S)-3-[(3S,5S,9R,10S,13S,14R,16S,17R)-16-hydroxy -10,13-dimethyl
-3- [(2R,3S,4S,5R,6S)-3, 4,5-trihyd

-6.10 kcal/mol

3 [(2S,3R,4R,5S,6S)-3,4,5 -trihydroxy -6-[2-(4-hydroxyphenyl)ethoxy]
tetrahydropyran-2-yl]methyl

-6.09 kcal/mol

4 3-(3,4-dihydroxyphenyl)-6,8-dihydroxy-2-[(2S,3R,4S,5R) -2,3,4-trihydroxy
-5-methyl- tetrahydropyran-2-y

-6.06 kcal/mol

5 8-oxo-16-[(2R,3S,4S,5S,6R) -3,4,5 -trihydroxy -6-(hydroxymethyl)
tetrahydropyran-2-yl] oxy-hexadecanoic

-6.03 kcal/mol
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calculated is RMSD (root mean square deviation). This metric

provides details on the dynamic stability of interacting

molecules, which can shed light on the binding strength.

Understanding a protein’s dynamic stability is crucial in

estimating the stability of biological complexes in a dynamic

environment (60). Therefore, we calculated the RMSD over the

100ns simulation to analyze the binding stability of drug-protein

complexes. According to the RMSD values in Figure 9, the top

hits 1-3 exhibited stable behavior during the 100ns simulations.

The top hit 1 system equilibrated at 20ns and remained stable

until the end of the simulation. The top hit 1 declared the most

stable complex in terms of RMSD with no major convergence

was observed (Figure 9A). In the case of a top hit 2, the system

equilibrated at 5ns however the values of RMSD raised gradually

until 60ns. In the top hit 2 system a little convergence was

observed during 10ns and 40ns then the system remained stable

until the end of the simulation (Figure 9B). In the case of top hit

3, the system gained stability at 10ns and remained stable until
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the end of the simulation, however a significant convergence was

noted from 50ns to 70ns (Figure 9C). In summary, top hits 1-3

have stable dynamics and could bind strongly with interface

residues to reduce the binding of ORF6 and KPNA2.

The structure stability of every complex was examined in a

dynamics setting to look into the occurrence of unbinding and

binding events. This was accomplished by calculating Rg (radius of

gyration), structural compactness measurement, over the time of

100ns. The previous studies showed that the protein complexes’

compactness was crucial to their stability (61). Comparing the

results shown in Figure 10 to the Root Mean Square Deviation

reveals a similar pattern in terms of compactness. In the case of top

hit 1, the Rg value showed stable behavior throughout the

simulation time frame with no significant convergence. The

average Rg value of 14 Å was recorded (Figure 10A). Likewise,

the average Rg value of 16 Å was recorded for the top hit 2 system.

In the case of top hit 2, a significant convergence was observed at

various points during the simulation (Figure 10B). Finally, for top
A

B

C

FIGURE 7

Binding modes of top hit 1, top hit 2, and top hit 3. (A) Showing hydrogen bonding network of top hit 1. (B) Showing hydrogen bonding network of
top hit 2. (C) Showing hydrogen bonding network of top hit 3.
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hit 3 the average Rg value was recorded to be around 15 Å however

a little convergence was observed at the later stages of the simulation

(Figure 10C). Changes in the Rg are indicative of unbinding and

binding events between the receptor and ligands. These results

strongly exhibit that top hits 1-3 have substantial pharmacological

activity against ORF6.

Assessing the hydrogen bonds formed during molecular

interactions is a useful approach to evaluating binding affinity

(62). It is essential to comprehend the bonding patterns of
Frontiers in Immunology 12
hydrogen involved in drug-protein interactions to predict the

strength of these interactions accurately (63, 64). Throughout

the simulation, the hydrogen bond numbers were determined for

each trajectory to examine the evolution of the hydrogen

bonding pattern. Each complex’s hydrogen bonding network

was examined over time, and the outcomes are exhibited in

Figure 11. Figure 11 illustrates that the ligand-protein complexes

formed a strong network of hydrogen bonds, indicating stable

interactions between the top-hit drugs and ORF6. The average
A

B

FIGURE 8

Binding modes of top hit 4 and top hit 5. (A) Showing hydrogen bonding network of top hit 4. (B) Showing hydrogen bonding network of top hit 5.
A B

C

FIGURE 9

Dynamics stability analysis of drug-ORF6 complex. (A) Showing the RMSD value of hop hit 1. (B) Showing the RMSD value of hop hit 2. (C) Showing
the RMSD value of hop hit 3.
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hydrogen bond numbers observed in the top three drug-ORF6

complexes were 23, 20, and 25, respectively (Figures 11A–C).

These results support the findings from the molecular docking

and RMSD analyses, providing further evidence of the stability

of the complexes.
Conclusion

In this study, we identified that the mutations V9F, V24A,

W27L, and I33T have a substantial destabilizing effect on the

structure of the ORF6 protein. Moreover, by conducting

molecular docking analysis between the wildtype and mutant

ORF6 and KPNA2, we observed that the V9F, V24A, W27L, and

I33T mutations exhibited a stronger binding affinity with KPNA2

compared to the wildtype ORF6, Notably, the V9F mutation

demonstrated the highest binding affinity, as supported by the

calculated binding free energy of -42.26 kcal/mol. Consequently,
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these mutations could enhance the functionality of the ORF6

protein in evading the host immune response. To counteract this

interaction, we employed molecular screening and simulation

techniques to design novel inhibitors derived from natural

products. Our findings identified five compounds as the most

promising candidates based on favorable docking scores and

binding stability. However, experimental validation is required to

confirm their efficacy. Overall, this study represents the first step

toward understanding the heightened infectivity of new SARS-

CoV-2 variants and provides a strong rationale for the

development of novel drugs targeting these variants.
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FIGURE 10

Compactness analysis of drug-ORF6 complex. (A) Showing the Rg value of hop hit 1. (B) Showing the Rg value of hop hit 2. (C) Showing the Rg
value of hop hit 3.
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FIGURE 11

Bonding network analysis between top hit drugs and ORF6. (A) Showing hydrogen bonds numbers in top hit 1. (B) Showing hydrogen bonds
numbers in top hit 2. (C) Showing hydrogen bonds numbers in top hit 3.
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