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Introduction: Diabetes Mellitus (DM) is characterized by impaired ability to metabolize glucose for use in cells for 
energy, resulting in high blood sugar (hyperglycemia). DM impacted 463 million individuals worldwide in 2019, 
with over four million fatalities documented. Blood glucose levels (BGL) are usually measured, as standard 
protocols, through invasive procedures. Recently, Artificial Intelligence (AI) based techniques have demonstrated 
the potential to estimate BGL using data collected by non-invasive Wearable Devices (WDs), thereby, facilitating 
monitoring and management of diabetics. One of the key aspects of WDs with machine learning (ML) algorithms 
is to find specific data signatures, called Digital biomarkers, that can be used in classification or gaging the extent 
of the underlying condition. The use of such biomarkers to monitor glycemic events represents a major shift in 
technology for self-monitoring and developing digital biomarkers using non-invasive WDs. To do this, it is 
necessary to investigate the correlations between characteristics acquired from non-invasive WDs and indicators 
of glycemic health; furthermore, much work is needed to validate accuracy. 
Research Design & Methods: The study aimed to investigate performance of AI models in estimating BGL among 
diabetic patients using non-invasive wearable devices data An open-source dataset was used which provided BGL 
readings, diabetic status (Diabetic or non-diabetic), heart rate, Blood oxygen level (SPO2), Diastolic Blood 
pressure, Systolic Blood Pressure, Body temperature, Sweating, and Shivering for 13 participants by age group 
taken from WDs. Our experimental design included Data Collection, Feature Engineering, ML model selection/ 
development, and reporting evaluation of metrics. 
Results: We were able to estimate with high accuracy (RMSE range: 0.099 to 0.197) the relationship between 
glycemic metrics and features that can be derived from non-invasive WDs when utilizing AI models. 
Conclusion: We provide further evidence of the feasibility of using commercially available WDs for the purpose of 
BGL estimation amongst diabetics.   

Introduction 

Background 

Diabetes Mellitus (DM), a metabolic condition characterized mostly 
by the impaired ability of the body to utilize glucose for cellular energy 
and hence high blood glucose (BG) levels, affected 463 million in
dividuals worldwide in the year 2019 (reference?). It is forecasted that 
10.2% of the global population will be suffering from the disorder by the 
year 2030 and expected to increase to 700 million by 2045 [1]. Main
taining a normal range of blood glucose is important as consistently high 

levels can be a cause of major complications for diabetic patients such as 
heart attacks, stroke, kidney failures, vision loss, and nerve damage. 

BG monitoring techniques have come a long way, it is now common 
amongst diabetes to self-monitor using electronic glucose meters, but 
these are invasive devices requiring users to self prick their fingertips in 
order to draw blood. As this is a recurrent procedure, it can cause stress 
and suffering not least due to the risk of infections [2]. 

Smartphones and other smart gadgets have further improved 
accessibility to monitoring devices. Continuous glucose monitoring 
(CGM) devices are readily available along with a handheld monitoring 
screen or via an app, but these normally still require the use of an 
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external attachable sensor. Furthermore, such sensors are often semi- 
invasive, requiring connectivity range via Wi-Fi or Bluetooth to an 
external device or smartphone app [3,4]. 

For AI techniques to be effective the correct algorithm for the data in 
question needs to be applied. Only then it is possible to give advanced 
and clinically useful analytics to digest important data from the vast 
volumes of continuous data provided by WDs. Machine learning (ML) is 
technically a subset of AI, it is sometimes used interchangeably with AI. 
Briefly, the term AI is used when computers are made smarter, and ML is 
a collection of AI algorithms that discover patterns from data while 
having the capacity to self-learn so that it grows smarter over time 
without human involvement. There are two categories of classifications 
for ML algorithms: classical and modern. Classical methods demand less 
training data and computing resources for pattern recognition than 
modern approaches. Traditional techniques, on the other hand, 
frequently outperform modern approaches. Deep learning (DL) is a 
subset of AI, DL is a modern ML methodology in which algorithms mimic 
the brain’s neural networks to train with or without supervision; 
nevertheless, unlike classic ML approaches, which are easier to under
stand, DL approaches can be “black box”. 

Wearable Devices (WDs) are an emerging technology, due to their 
non-invasive nature using biosensors requiring no input from users other 
than the wearing of devices such as smartwatches and wristbands, with 
the additional advantage of being considered stylish and fashionable, 
has meant high rates of user acceptance. Although in its infancy, studies 
have reported on the efficacy of sensors combined with Artificial Intel
ligence (AI) algorithms in commercially available WDs for the purpose 
of diabetes monitoring [5,6]. Near-infrared (NIR) accelerometer sensors, 
Galvanic skin response (GSR), electrocardiogram (ECG), and photo
plethysmography (PPG) sensors are already incorporated into WDs. 
Because WDs are in close proximity to the user, they have an advantage 
over external sensor-driven devices when it comes to monitoring phys
iological indications like skin temperature and heart rate. This is espe
cially useful for anticipating and monitoring diabetes-related metrics. 
The ability to generate digital biomarkers to monitor glycemic events 
represents a major shift in technology for self-monitoring and devel
oping digital biomarkers using non-invasive WDs. To do this, it is 
necessary to investigate the correlations between characteristics ac
quired from non-invasive WDs and indicators of glycemic health. 

This study sought to examine the performance of AI algorithms in 
estimating BG levels among diabetic patients using WD generated data. 
We investigated the relationship between glycemic metrics (blood 
glucose level) in terms of their performance, and features that can be 
derived from non-invasive WDs. 

When it comes to the application of AI to biosensor data for the 
purpose of diabetes, there is literature applying ML and DL techniques 
for the purpose of blood glucose estimation (prediction or forecasting) 
[5–15], diagnostics solutions [15–19], glucose level monitoring [14, 
20-26], Self-Administration and monitoring [27–30], prevention [31, 
32] and classification [33–36]. Unfortunately, the number of 
peer-reviewed studies is still low as WDs are yet in their infancy. There is 
tremendous potential to enhance the quality of life for diabetic patients 
by utilizing ML and DL algorithms from the emerging field of AI and 
appropriately organizing and processing massive volumes of 
non-invasive WD data. By conducting the analytics within this study, we 
hope to further encourage research in this field by reporting on the ac
curacy of ML and DL techniques. Our goal in this study is to highlight the 
accuracy of each chosen ML model, furthermore, running a combination 
of ML and DL techniques on the same datasets, collected each through 
invasive/ non-invasive wearables respectively, delivers a clearer picture 
on how each model performs in terms of accuracy of BG level estimation. 

Related work 

Previous studies have highlighted the need for studies to validate the 
ML approaches on clinical data from WDs [37]. Several previous studies 

report BG levels from WD data and the application of AI algorithms for 
estimation purposes (including forecasting/prediction, as these terms 
are often used interchangeably) [38]. Classical ML approaches were 
previously deployed in six studies [7-10,20,31], most of which used 
ensemble boosted trees, namely Random Forest (RF) [5,7-10,20]. From 
the studies that applied Modern approaches, Artificial Neural Networks 
type Convolutional Neural Network (CNN) was used [11,21,39]. The 
best models identified among some previous studies from classical 
models were RF [8–10] and CNN in Modern [11,21,39]. Clarke grid 
error (CGE) [7,8,10,11,21,39,40] and Root mean square error (RMSE) 
[7-9,27,33] were the most commonly used evaluation metrics in many 
of these studies. These studies reported RMSE values ranging from 
0.357–25.621 and CGE from 56.52% to 95%. Outlining that in general 
high accuracy is achievable using WD sensors. 

Methods 

Experimental design 

Given previous studies that have looked at glucose levels using AI 
models for determining blood glucose values [38], we hypothesized that 
we could report levels of accuracy for two ML and two DL models, 
further validating the usability and accuracy of data acquired through 
WDs, especially under the consideration that traditionally, the data 
provided for the training of these models was only acquired by using 
invasive methods such as CGMs or finger prick methods. The proposed 
predictive analysis system for BG level estimation is illustrated in Fig. 1 
and described in the sections that follow. The system comprised of a 
detailed diabetes dataset, collected through wearable CGM and Smart 
Band, was used for the Predictive Analysis of DM after being run through 
various Feature Engineering Steps. The prediction results were validated 
using RMSE and MAE error calculation metrics. 

Data collection 

For this study, an open-source dataset was used, titled Dataset for 
People for their Blood Glucose Level with their Superficial body feature 
readings, available on IEEE [41] . The dataset provides Blood Glucose 
level readings, diabetic status (Diabetic or non-diabetic), heart rate, 
Blood oxygen level (SPO2), Diastolic Blood pressure, Systolic Blood 
Pressure, Body temperature, Sweating, and Shivering for 13 participants 
by age group generated by two different WDs. Blood glucose readings 
were gathered through a continuous glucose monitoring kit named 
Freestyle LibrePro [42]. While the rest of the parameters were collected 
through a smart band named Riversong Wave O2 Colored. The duration 
for data collection was one year from June 2020 to December 2021; each 
patient wore the devices for approximately 3 months. The Freestyle 
LibrePro [42] (CGM) patch was updated every 14 days. The data was 
transferred directly from devices to the PC through cable without the 
intervention of any gateway devices. For the non-diabetic patients, only 
the average blood glucose levels over 5 days were reported. Further 
demographics of data including identity were not disclosed in the in
terest of data privacy and ethics. The dataset collected was already 
pre-processed by the authors, so no further pre-processing was carried 
out. 

Sample size 
The dataset contained a sample size of 13 participants of which 8 

males (3 non-diabetics and 5 diabetics), and 5 females (2 non-diabetics 
and 3 diabetics). The ratio of diabetic to non-diabetic within genders 
was 60% to 40%. The age of participants ranged from 9 years to 77 
years. A total of 16,800 data points were available in this dataset. 
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Feature engineering 

Feature extraction 
In order to classify by "Age", we created a new feature called "Age 

group". The age groups were divided into two categories: Young and 
Adult. Ages under and equal to 18 were designated as young, and those 
above 18 as adults (Fig. 2). Age grouping was critical in identifying 
various patterns and trends among different individuals since different 
physiological circumstances of the body alter with age. 

Encoding 
Encoding data on categorical characteristics was done to improve 

model calculations. Label encoding was employed as the encoding 
technique. ’Diabetic/Non-Diabetic’ and ’Age group’ were the category 
characteristics for this dataset. 

Feature selection 
To properly deploy the predictive model, feature selection, or more 

particularly dimension reduction, was performed. A categorization 
model developed using the whole set of data characteristics may pro
duce inconsistent results; hence, it is better to select the most relevant set 
of features that may help achieve a higher degree of true positive rate 
whilst minimizing the false positive rate. There is a variety of feature 
selection approaches used to determine the most useful characteristics; 
these approaches are classified as embedding methods, filter methods, 
and wrapper methods [41]. For this study, the filter strategy was applied 
to identify the most relevant characteristics. The dataset is first sub
jected to a filter-based feature selection approach known as 
Correlation-Based Feature Selection (CFS), which looks for feature 
subsets based on the degree of feature redundancy. The assessment 
procedure seeks for subsets of characteristics that are substantially 
associated with the target class separately but have minimal 
inter-correlation. The relevance of a collection of features increases as 

Fig. 1. The proposed predictive Analysis System illustrates the proposed predictive analysis system for BG level estimation. The system comprised of a detailed 
diabetes dataset, collected through wearable CGM and Smart Band, and used for the Predictive Analysis of DM after being run through various Feature Engineering 
Steps. The prediction results were validated using RMSE and MAE error calculation metrics. 

Fig. 2. Age group division.  
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the correlation between features and target class develops and reduces 
as the inter-correlation grows. 

Artificial intelligence (AI) algorithms 

Model selection/development 
We applied four different models: 2 ML models (RF and SVR) and 2 

DL models (MLP and Fuzzy Logic). All training and testing were being 
performed on each subset accordingly. The dataset was divided into 
training and testing with a ratio of 80:20. To develop personalized 
models for the age groups. For all models, the root RMSE and MAE were 
calculated to assess performance. 

Traditional machine learning (ML) algorithms 

Support vector regression (SVR). SVR is a supervised machine learning 
approach for dealing with regression issues and allows for the estimate 
of a real-valued function (e.g., continuous score on a clinical scale). SVR 
is based on the fundamental concept of SVM, which is a sparse kernel 
machine that conducts classification using a hyperplane specified by a 
few support vectors. SVR performs well when dealing with high- 
dimensional data. 

Random forest (RF). RF is a supervised classification technique. RF, also 
known as random decision forests, is an ensemble learning approach for 
classification and regression that works by generating a multi-node de
cision tree network during training and predicting the mode of the 
classes or mean prediction of the individual trees. 

Deep learning (DL) algorithms 

Multi-layer perceptron (MLP). It is one of the most popular, simple, and 
commonly used neural networks. Its network is made up of a collection 
of sensory components that constitute the input layer, one or more 
hidden layers of processing elements, and a set of processing elements 
that create the output layer. The ANN learns the patterns in the input 
data through back propagation technique and can predict both contin
uous and discrete data. Based on the neural organization of the brain, 
the ANN Algorithm represents each cluster by a neuron. Each link is 
assigned a weight that is determined adaptively during learning. We 
employed the ANN Multilayer Perceptron method in this paper. 

Adaptive neuro fuzzy inference system (ANFIS). ANFIS is an AI technique 
that combines the neural networks with fuzzy rule-base and rule- 
implication procedures from fuzzy set theory. ANFIS creates mapping 
based on both human knowledge (in the form of fuzzy if-then rules) and 
a hybrid learning algorithm using specified input/output data values. 
The ANFIS technique is used in modeling and simulation of nonlinear 
functions, regulates one of the most essential parameters of an inference 
machines and estimates a chaotic time series, all of which results in more 
effective, faster reaction or settling times. 

Evaluation metrics 

The models were built utilizing the Python programming language, 
using Python version 3.7.13 with packages including NumPy, pandas, 
skLearn (Scikit-learn), seaborn, and Matplotlib. The tests were executed 
on a computer running the MacOS Monterey operating system with Intel 
(R) Xeon(R) CPU @ 2.20 GHz and 12 GB RAM. 

The quality of the results obtained by various ML algorithms was 
tested in terms of regression error rate measurement, namely root mean 
squared error (RMSE) and mean absolute error (MAE). RMSE is defined 
as the residuals’ standard deviation (prediction errors). Residuals are a 
measure of how far away data points are from the regression line; RMSE 
is a measure of how spread out these residuals are. In other words, it 

indicates how concentrated the data is around the best fit line. 

RMSE =
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MAE is defined as the summation of all absolute errors. The 
discrepancy between the measured and "actual" value is known as ab
solute error. 

MAE =
1
n
∑n

i=1
|yi − ŷi|

Results 

Pre-processing/feature engineering 

The confusion matrix of the correlation (Fig. 3) presents the results 
after feature normalization and additional features extracted. The 
quantitative analysis demonstrates the correlation between the attri
butes and target outcomes. It could be observed that some of the features 
are not highly correlated with the target outcome (BG levels), amongst 
these features that could be observed are Age, Diabetic, Nondiabetic, 
and Age group. Thus, we dropped these columns improve model accu
racy. Likewise, it could be observed that sweating and shivering are 
highly correlated with each other, therefore, we selected one of them to 
remove feature duplication and redundancy. Whilst other independent 
features are correlated with BG levels (dependent variable) both posi
tively and negatively contributing to impact of occurrence. 

Blood glucose estimation models 

Fig. 4 demonstrates the quantitative results for selecting the best 
performing preprocessing and ML model, with the RMSE and MAE 
presented for comparison. Providing an overview of each model’s ca
pacity to achieve the lowest error rate from the suggested pipeline, along 
with the best preprocessing and attribute selection algorithms and the 
number of selected attributes. The examination of Fig. 4 shows evidence 
of improved outcomes from several models when appropriate pre
processing is used. 

All regressors show their best results for the selected features, with 
not much variation in predictions between classical and current models. 
The tree-based regressor, and the RF model, outperformed the other 
models in both the young and adult population datasets. 

As shown in Table 1, RMSE values ranged from 0.189 to 0.197 in the 
young group and from 0.183 to 0.193 in the adult group. MAE values 
varied between 0.097 and 0.112 in the young group and between 0.099 
and 0.108 in the adult group. While the best model was RF in both 
groups according to RMSE, the best model is ANFIS in both groups ac
cording to MAE. 

Discussion 

Principal findings 

Although the application of ML and DL models to this dataset gave 
promising results for BG level estimation using WD data, considering 
previous studies reported RMSE values of 0.357–25.621 [7-9,27,33], we 
report RMSE values of 0.099 to 0.197. Nonetheless, these values should 
be treated with caution due to the low number of participants in the 
dataset (13). 

Strengths and limitations 

We use a blend of traditional and deep learning ML models (a 
combination of ensemble (tree based), inference (ANFIS), and linear 
(SVM)) to further validate the performance of blood glucose level 
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estimation using WD data. To the best of our knowledge, no previous 
study reports this combination of models on the WD diabetes dataset. A 
major limitation is the number of participants in the study, however we 
still have a large number of data points, which satisfies the data re
quirements for building ML models. It is also difficult to have a true 
comparison with previous studies as there are many varying factors such 

as device manufacturer, age range of participants, models applied and 
level of optimization of each model, individual device manufacturer’s 
methods of calculating metrics etc. 

Fig. 3. Confusion matrix of attributes correlation presents the results after feature normalization and additional features extracted. It shows the correlation between 
the attributes and target outcomes. For example sweating and shivering are highly correlated whereas age is not. 

Fig. 4. RMSE and MAE plot shows the best model was RF in both groups according to RMSE. RMSE values ranged from 0.189 to 0.197 in the young group and from 
0.183 to 0.193 in the adult group. For MAE the best model is ANFIS in both groups according to MAE. MAE values varied between 0.097 and 0.112 in the young 
group and between 0.099 and 0.108 in the adult group. 
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Practical and research implications 

Practical implications 
BG level estimation using non-invasive WDs is a much welcome 

advancement and the accuracy levels reported provide much welcomed 
confidence in the commercially available bio-signals that can be 
collected with such devices. Although the models applied in this study 
performed well, in particular ANFIS, which is known to be faster than 
other AI models, could provide greater benefits once larger studies are 
conducted to validate its performance. This would lead to the possibility 
of offline WDs having algorithms run directly on the devices with an 
often-limited processing power; hence most devices currently use 
gateway or host devices such as smartphones or cloud spaces for any AI 
calculations. As the technology progresses, we would expect to see more 
applications of AI directly on the WD. 

Research implications 
We have further reported the accuracy of glucose estimation when 

comparing glycemic metrics and features from WDs when AI models are 
applied. Optimizations on larger datasets are needed to further validate 
this finding. More data needs to be made publicly available by re
searchers and manufacturers need to generate more raw data such as 
PPG values and make it available so that researchers can optimize and 
develop more accurate metrics such as BG values. 

In general, the usefulness of such an intelligent system has to be 
understood in the application scenarios. A person with diabetes can rely 
now on the WDs data rather than having to get their finger pricked every 
now and then. On the one hand, this reduces the physical and psycho
logical stress on them. On the other hand, such a non-invasive system 
can provide the BG values with appreciable accuracy at any time. This 
feature can help the patients to fine-tune their diet, lifestyle, or exercise 
patterns according to the readings and predictions from the AI-based 
system, being used. It is a well-known fact in diabetes management 
that prevention is better than intervention. The regular readings can 
steer the management patterns of diabetes and will help the patients 
improve their quality of life. 

Conclusion 

This study provides further support to the feasibility of using 
commercially available WDs for the purpose of BG level estimation using 
noninvasive WDs amongst diabetic patients. We were able to estimate 
with high accuracy (RMSE range: 0.099 to 0.197) the relationship be
tween glycemic metrics, and features that can be derived from non- 
invasive WDs when utilizing AI models. The findings from this study 
should encourage the development of future studies examining the use 
of digital biomarkers for BG level estimation. Due to their commercially 
available and fashionable nature and high user acceptance, WDs could 
represent a major advance in clinical care for diabetic patients. 
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