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SARS-CoV-2, also referred to as severe acute respiratory syndrome coronavirus
2, is the virus responsible for causing COVID-19, an infectious disease that
emerged in Wuhan, China, in December 2019. Among its crucial functions,
NSP6 plays a vital role in evading the human immune system by directly
interacting with a receptor called TANK-binding kinase (TBK1), leading to the
suppression of IFNβ production. Consequently, in the present study we used the
structural and biophysical approaches to analyze the effect of newly emerged
mutations on the binding of NSP6 and TBK1. Among the identifiedmutations, four
(F35G, L37F, L125F, and I162T) were found to significantly destabilize the structure
of NSP6. Furthermore, the molecular docking analysis highlighted that the
mutant NSP6 displayed its highest binding affinity with TBK1, exhibiting
docking scores of −1436.2 for the wildtype and −1723.2, −1788.6, −1510.2,
and −1551.7 for the F35G, L37F, L125F, and I162T mutants, respectively. This
suggests the potential for an enhanced immune system evasion capability of
NSP6. Particularly, the F35G mutation exhibited the strongest binding affinity,
supported by a calculated binding free energy of −172.19 kcal/mol. To disrupt the
binding between NSP6 and TBK1, we conducted virtual drug screening to
develop a novel inhibitor derived from natural products. From this screening,
we identified the top 5 hit compounds as the most promising candidates with a
docking score of −6.59 kcal/mol, −6.52 kcal/mol, −6.32 kcal/mol, −6.22 kcal/mol,
and −6.21 kcal/mol. The molecular dynamic simulation of top 3 hits further
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verified the dynamic stability of drugs-NSP6 complexes. In conclusion, this study
provides valuable insight into the higher infectivity of the SARS-CoV-2 new variants
and a strong rationale for the development of novel drugs against NSP6.
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Introduction

In the 21st century, the frequent emergence of coronaviruses,
specifically within the Orthocoronavirinae family, has had
devastating global consequences (Zhu N. et al., 2020; Perlman,
2020). The current pandemic caused by SARS-CoV-2, which
originated in Wuhan, has profoundly impacted societies and
economies worldwide (Zhu Z. et al., 2020). COVID-19, the
disease caused by SARS-CoV-2, has become a multi-wave
pandemic, affecting people with a wide range of symptoms, from
mild to severe respiratory illnesses, such as sore throat, fever,
headache, dry cough, and breathing difficulties. In severe cases,
the virus can significantly impair lung function and even lead to
fatalities (Wu and McGoogan, 2020; Zhou et al., 2020). Recently,
there have been reports of new strains of the virus in various regions
of the world, which are showing increased transmissibility and
virulence (Gorbalenya et al., 2020; Harrison et al., 2020; Suleman
et al., 2023a; Sayaf et al., 2023). These emerging variants are more
infectious, spread more easily, and cause more severe illness. The
rapid global spread of SARS-CoV-2 and the emergence of these new
variants pose a significant risk to public health. As a result, scientists
worldwide are exploring various strategies to combat SARS-CoV-2,
such as utilizing integrated multi-omics technologies to develop
innovative and potent vaccines and medications (Gu et al., 2021; Li
et al., 2023; Panahi et al., 2023).

SARS-CoV-2 possesses a genome of approximately 29.9 kb in
length and contains at least 14 open reading frames (ORFs)
responsible for encoding various viral proteins (Wu et al., 2020).
Within this genome, there are 4 structural proteins, 7 accessory
proteins, and 16 non-structural proteins (Xia et al., 2020). Notably,
two large overlapping ORFs, namely, ORF1a and ORF1b, are located
in the 5-proximal two-thirds of the genome. These ORFs encode
continuous polypeptides known as pp1a and pp1ab, which undergo
cleavage by viral proteases to produce the 16 non-structural proteins
(nsp1-16), collectively forming the replicase (Sundar et al., 2021).
The non-structural proteins are mainly associated with viral
replication while the structural proteins are accountable factors of
infection and also responsible for the virion assembly (Chen et al.,
2020; Sundar et al., 2021). The accessory proteins are linked with
viral pathogenesis and infection (Xia et al., 2020). NSP6 is classified
as one of the non-structural proteins, with a genome size of
approximately 34 kDa, and it is characterized by a highly
conserved C-terminus and an eight transmembrane helicase
structure (Giovanetti et al., 2020). NSP6 along with the
NSP3 and NSP4 is accountable for the formation of replicase
organelles or replication-transcription complexes, which hold
significant importance in the virus’s life cycle and its ability to
cause infections (He et al., 2016; Oudshoorn et al., 2016).

The initial defense against viral infections, including
coronaviruses, relies on the innate immune system’s production

of interferons (IFNs). This response is triggered when specific
patterns found in pathogens, called pathogen-associated
molecular patterns (PAMPs), such as viral mRNA, are
recognized. Key sensors, RIG-I and MDA5, are responsible for
detecting these PAMPs (Acharya et al., 2020; Li et al., 2020; Park
and Iwasaki, 2020). Once activated, RIG-I and MDA5 bind to the
CARD domain of the mitochondrial antiviral signaling protein
(MAVs). This activation leads to the recruitment of downstream
signaling components, including IKKε and TBK1, to the
mitochondria. These downstream components then
phosphorylate IRF3 and IRF7, which form dimers and
translocate to the nucleus. Inside the nucleus, IRF3 and
IRF7 initiate the expression of IFN-I genes (Larson et al., 2003;
Kawai and Akira, 2007; Liu et al., 2015; Rashid et al., 2021). IFN-I
induction triggers antiviral activity within cells, inhibiting viral
replication. One mechanism by which IFN-I accomplishes this is
by stimulating the activity of dsRNA-activated kinase. This well-
coordinated immune response plays a pivotal role in protecting host
cells from viral infections (Balachandran et al., 2000; Malathi et al.,
2007). Corona-virus developed diverse strategies to counteract the
IFN pathway and to antagonize IFN response by targeting distinct
steps in the IFN production pathway (Rajsbaum and García-Sastre,
2013). Earlier investigations have established that NSP6 can hinder
the production of IFN-b (Xia et al., 2020; Shemesh et al., 2021). To
pinpoint the specific step in the production of IFN-b that
NSP6 affects, scientists studied various components of the RIG-1
pathway. The results indicated that when the IFN-b promoter was
induced by IKKε, TBK1, or MAVS, the luciferase activity was
suppressed. This suggests that NSP6 may inhibit IFN-b
production by targeting IRF3 or other component(s) situated
upstream of IRF3 in the signaling pathway. Additionally, the
study demonstrated that NSP6 can influence the phosphorylation
of TBK1 and IRF3. When NSP6 was overexpressed and followed by
poly (I:C) transfection, IRF3 phosphorylation was reduced by
approximately 57%, but TBK1 phosphorylation remained
unaffected. This indicates that NSP6 likely binds to TBK1,
leading to decreased IRF3 phosphorylation, which ultimately
results in a reduction of the IFN-b production (Xia et al., 2020;
Rashid et al., 2022).

The role of NSP6 has been revealed in various studies which
inhibit the induction of interferon-beta through interacting with
Tank Binding Kinase 1 and escape the immune system (Guo et al.,
2021; Vazquez et al., 2021). Considering the importance of NSP6 in
human immune evasion, the present study was carried out to
investigate the effect of newly emerged and deleterious mutations
on NSP6-TBK1 bonding network and evasion of human immune
system. Furthermore, we used the virtual drugs screening against
the binding interface of NSP6 and TBK1 to halt the binding,
thereby controlling the evasion of the human immune system
mediated by NSP6. The molecular dynamics simulation approach
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was further used to verify the stability of top hit drugs and
NSP6 complexes.

Materials and methods

Sequence retrieval and analysis

The protein sequence of SARS-CoV-2 NSP6 (ID: P0DTD1)
and the crystal structure of TBK1 (ID: Q9UHD2) were obtained
from the UniProt database (https://www.uniprot.org/)
(Consortium, 2019). GISAID (Global Initiative on Sharing All
Influenza Data) is a database and platform designed for sharing
and analyzing genomic data of influenza viruses and other
emerging infectious diseases. To identify single nucleotide
substitutions in the NSP6 protein, we submitted the sequence in
FASTA format to the GISAID database (https://www.gisaid.org/).
By comparing the submitted sequence with the reference sequence
hCoV-19/Wuhan/WIV04/2019 (accession no MN996528.1), the
server detected new mutations and provided information on the
positions of the amino acid residues that were replaced (Kalia et al.
, 2021).

Molecular modeling and structural
validation

The protein sequence of NSP6 was used as input for the 3D
structure modeling process using AlphaFold 2.0. AlphaFold 2.0 is an
advanced protein folding prediction system developed by
DeepMind, an artificial intelligence research lab owned by
Alphabet Inc. It employs deep learning techniques to predict the
3D structure of proteins based on their amino acid sequences
(Jumper et al., 2021). We performed further validations using
ProSA-web (https://prosa.services.came.sbg.ac.at/prosa.php) and
PROCHECK (https://saves.mbi.ucla.edu/). These validations
involved analyzing the Ramachandran plot to ensure proper
distribution of residues and bond angles (Laskowski et al., 1993;
Gopalakrishnan et al, 2007). After constructing the structure, it
underwent validation and minimization procedures before further
processing.

Mutational impact on structure stability

Protein structure stability is of paramount importance for
various biological processes and functions. Proteins are
fundamental building blocks of living organisms, and their
structure directly influences their ability to perform specific tasks
within cells and organisms. Therefore, to analyze the effect of
identified mutations on the structure stability of NSP6, we used
the I-Mutant 2.0 serve (https://folding.biofold.org/i-mutant/i-
mutant2.0.html). The server needs wild type and mutant protein
residue position for determining the impact of substitution of amino
acid on protein. A positive value of ΔΔG show high stability and
negative value shows less stability (Calabrese et al., 2009). However,
for structure-based protein stability, the DynaMut2 server (http://
biosig.unimelb.edu.au/dynamut2) was used for finding the effect of

alteration in dynamics and protein stability through the Normal
Mode Analysis approach. The ΔΔG value less than zero indicates
destabilization while a value higher than zero indicates stabilization
(Rodrigues et al., 2021). Finally, the destabilizing mutations
shortlisted by the aforementioned two servers were subjected to
the mCSM server to determine the effect of mutants on protein
stability by using a graph-based signature (http://biosig.unimelb.
edu.au/mcsm/stability). By analyzing the RSA (Relative Solvent
Accessibility) and ΔΔG (difference in free energy) values for each
mutation, the mCSM gained valuable insights into how these
mutations affected the stability of the proteins under
investigation (Pires et al., 2014).

Mutants generation and variation analysis

The chimera software, a molecular graphics and modeling
program developed by the University of California, San Francisco
was used to insert the newly identified highly destabilizing
mutations in the wildtype structure of NSP6 protein (Webb and
Sali, 2016). Furthermore, the mutant structures of NSP6 were
subjected to a minimization process which lower the total energy
of a protein structure. Following the stability analysis, we used the
PyMOL software to compare the structural differences between the
wildtype and NSP6 and its variants. We achieved this by
superimposing each mutant onto the WT NSP6 structure and
then calculating the RMSD (root mean square deviation) value.
This allowed us to quantify and understand the extent of structural
variations introduced by themutations in comparison to the original
protein structure.

Bonding network and its free energy
calculation

The ClusPro server (https://cluspro.org) is a widely utilized tool
for conducting protein-protein docking. Its user-friendly interface
only requires two files in Protein Data Bank (PDB) format to initiate
the docking process (Kozakov et al., 2017). In this study, we
employed the ClusPro server to perform molecular docking
between WT NSP6 and various mutants with the TBK1 protein.
The server provides the ten best complex models ranked by low
energy score as the output of the docking simulation. To visualize
the binding interface in terms of hydrogen bond, salt bridge, and
non-bonded contacts between the NSP6 and TBK1 complex, we
used the PDBsum online server (http://www.ebi.ac.uk/thornton-srv/
databases/pdbsum/Generate.html) (Mohammad et al., 2021).
Furthermore, we used the MM/GBSA approach to assess the
binding free energies of both wild-type and mutant
NSP6 complexes. This method is renowned for its reliability in
estimating binding free energies for diverse biological complexes
(Rashid et al., 2022). The computation of binding free energies was
conducted using the MMGBSA. py script, which considers various
factors, including electrostatic interactions, van der Waals forces,
solvent-accessible surface area (SA), and the generalized
Born model (GB).

The binding free energies calculated mathematically by the
following equation:
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“ΔG bind( ) � ΔG complex( ) − ΔG receptor( ) + ΔG ligand( )[ ]

To obtain the individual contributions to the total free energy,
we used the following equation:

″G � Gbond + Gele + GvdW + Gpol + Gnpol″

Targeting of NSP6-TBK1 binding interface by
virtual drug screening

ANPDB (African Natural Products Databases) is an
accumulation of medicinally important natural compounds,
therefore, the South African natural product database was
downloaded in a 3D structure data file (3D-SDF) from the
ANPDB website (http://african-compounds.org/anpdb/). Initially,
a computational screening of this database was performed using the
FAF-Drugs 4 web-server to identify non-toxic drug-like molecules
that adhere to Lipinski’s rule of 5 (Lagorce et al., 2017). Lipinski’s
Rule of 5 predicts drug-likeness based on molecular properties: a
molecule with no more than 5 hydrogen bond donors, 10 hydrogen
bond acceptors, a molecular weight under 500, and a partition
coefficient log p less than 5 is more likely to have favorable
pharmacokinetic properties and oral bioavailability, increasing its
potential as a successful drug candidate. The filtered database was
then screened against the binding interface of NSP6 and TBK1. For
this screening, AUTODOCK Vina 2.0 was employed, initially using
16 exhaustiveness settings for rapid screening. The top hits from this
step were selected, and a more detailed screening was carried out
using 64 exhaustiveness settings to eliminate false positive results.
Next, the top 10% of drugs were selected for induced fit docking
(IFD) by using the AutoDockFR (Ravindranath et al., 2015),
AutoDockFR typically employs force fields like AMBER or
CHARMM, simulation protocols such as molecular dynamics
(MD), and scoring functions like AMBER scoring or force-field-
based scoring for Induced Fit Docking (IFD) simulations. We used
the default parameters for the IFD docking. This technique
accommodates receptor flexibility and facilitates a covalent
docking. After this process, the MD (Molecular Dynamics)
simulations were conducted on the final top 3 hits.

Molecular dynamics simulation

The Amber20 package was employed for conducting molecular
dynamics (MD) simulations, focusing on assessing the stability of
the complexes formed between top hit drugs and NSP6. The
simulations used the antechamber force field for parameterizing
the molecules (Maier et al., 2015). The solvation of each system was
achieved using the TIP3P model, and to neutralize the systems, To
neutralize the system charge Na+ and Cl + ions were inoculated
(Price and Brooks, 2004). The MD simulations were conducted in
multiple stages, starting with energy minimization to optimize the
initial structures. The energy minimization protocol consisted of
9,000 cycles, with the first 6,000 cycles utilizing the steepest descent
minimization (Meza, 2010), followed by the remaining 3,000 cycles
using the conjugate gradient minimization (Watowich et al., 1988).
This step aimed to eliminate any unfavorable clashes within the

system after neutralization. Subsequently, the systems were heated
to a temperature of 300K and then equilibrated at constant pressure
(1 atm) to achieve a stable starting point for the production phase of
the simulation. The production step was then run for a duration of
100ns to gather data for analysis. To accurately account for long-
range electrostatic interactions, the particle mesh Ewald method was
employed (Petersen, 1995; Salomon-Ferrer et al., 2013).
Additionally, the SHAKE algorithm was used to treat covalent
bonds, ensuring efficient treatment of these interactions during
the simulations (Kräutler et al. 2000). The post-simulation
analysis was performed by using the CPPTRAJ and PTRAJ
packages of amber20. These packages were utilized to examine
the dynamic stability, residual fluctuation, compactness, and
hydrogen bonding network of the complexes (Roe and
Cheatham, 2013). To assess the structural dynamic stability, the
Root Mean Square Deviation (RMSD) was computed. However, the
Rg (radius of gyration) was employed to calculate the structural
compactness. On the other hand, to analyze the fluctuation at the
residues level we calculated the Root Mean Square
Fluctuation (RMSF).

Results and Discussion

The global pandemic caused by the SARS-CoV-2 genome has
become a major cause for concern across the world. Significant
efforts are underway to identify a potential molecular drug to
combat the virus (Martin and Cheng, 2022). Recently, multiple
regions have reported the presence of novel strains of the virus
which are demonstrating heightened transmissibility and virulence
(Gorbalenya et al., 2020; Harrison et al., 2020; Suleman et al., 2023a;
Sayaf et al., 2023). These emerging variants exhibit increased
infectivity, spread more readily, and lead to more severe illness.
The rapid worldwide dissemination of SARS-CoV-2 and the
appearance of these new variants present a substantial threat to
public health. In several studies, the function of NSP6, a non-
structural protein of SARS-CoV-2, has been revealed to hinder
the induction of IFNβ by interacting with Tank Binding Kinase 1
(TBK1), allowing the virus to evade the human immune system
(Guo et al., 2021; Vazquez et al., 2021). Recognizing the significance
of NSP6 in immune evasion, our current research aimed to examine
the impact of newly emerged and harmful mutations on the NSP6-
TBK1 binding network and its implications for escaping the human
immune response. Additionally, we conducted virtual drug
screening targeting the binding interface of NSP6 and TBK1 to
disrupt the interaction and potentially control the evasion of the
human immune system facilitated by NSP6. Finally, we use the
molecular dynamics simulation approach to confirm the stability of
identified drugs and NSP6 complexes. Figure 1 illustrates the
comprehensive workflow of the current study.

Sequence retrieval and mutations
identification in NSP6

The protein sequence of SARS-CoV-2 NSP6 (ID: P0DTD1) and
the crystal structure of TBK1 (ID: Q9UHD2) were obtained from the
UniProt database (https://www.uniprot.org/) (Magrane, 2011;
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FIGURE 1
A comprehensive workflow of the current study.

FIGURE 2
Schematic representation of mutations identified in NSP6 protein.
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Consortium, 2019). Mutation plays a crucial role in determining the
pathogenicity of viruses as it directly affects their capacity to cause
disease in a host organism. Compared to other organisms, viruses
exhibit notably high mutation rates, leading to rapid evolution,
which is a key factor in shaping their ability to cause disease
(Suleman et al., 2023b; Aziz et al., 2023). To identify the newly
emerged mutations in the NSP6 protein, the retrieved sequence was
submitted to the GISAID database which is designed for sharing and
analyzing genomic data of influenza viruses and other emerging
infectious diseases. The GISAID database identified 15 new
mutations (T17I, L22I, F35G, L37F, A88V, S106T, G107S, F108L,
V120L, L125F, V149F, Y153F, I162T, M183I, V190F) in the
NSP6 protein by comparing the submitted sequence with the
reference sequence hCoV-19/Wuhan/WIV04/2019 (Kalia et al.,
2021). Figure 2 illustrates the graphical representation of
identified mutations.

Mutation impact on stability of
NSP6 protein structure

Certain mutations have the potential to substitute a stabilizing
amino acid with a less stable one, causing the protein’s natural
structure to be disrupted. Consequently, the protein may become
less compact and more susceptible to unfolding or misfolding. On
the other hand, there are mutations that can enhance the
interactions between amino acids, leading to improved stability
compared to the wild-type version of the protein. These
beneficial mutations often result in enhanced folding and
thermodynamic stability of the protein (Mou et al., 2021; L et al.,
2020). Various online servers such as I-Mutant 2.0, DynaMut 2, and

mCSM were used to predict the effect of identified mutations on the
structural stability of NSP6 protein. First, the identified 15mutations
were submitted to the I-mutant2.0 server to evaluate the structural
stability of NSP6. I-Mutant2.0 is a tool that uses a support vector
machine (SVM) to predict how single point mutations can impact
the stability of proteins. The tool was trained and validated using
data from ProTherm, the most extensive database of experimental
information on thermodynamic changes in protein stability
resulting from mutations under various conditions (Capriotti
et al., 2005; Suleman et al., 2023a). After analyzing 15 mutations
in the NSP6 protein, I-Mutant2.0 predicted changes in the ΔΔG
values ranging from 0.56 kcal/mol to −4.61 kcal/mol. Among these
mutations, 14 of them (T17I, F35G, L37F, A88V, S106T, G107S,
F108L, V120L, L125F, V149F, Y153F, I162T, M183I, and VI90F)
were associated with decreased stability. However, one mutant
(L22I) exhibited increased stability. Furthermore, to verify the
results generated by I-Mutant2.0 server, we submitted the
aforementioned mutations to the DynaMut2 server.
DynaMut2 sever utilizes a combination of NMA (Normal Mode
Analysis) and graph-based representations of wildtype environment
to investigate how single and multiple point mutations affect the
stability and dynamics of proteins (Rodrigues et al., 2021). Analysis
of 15 variants through DynaMut2 server determined the ΔΔG value
ranging from 0.81 kcal/mol to −1.69 kcal/mol, whereas 14 mutations
(L22I, F35G, L37F, A88V, S106T, G107S, F108L, V120L, L125F,
V149F, Y153F, I162T, M183I and VI90F) decreased structural
stability while 1 mutation (T17I) increased structural
stability (Table1).

Afterward, to shortlist the destabilized mutations identified by
the I-Mutant 2.0 and DynaMut 2 servers we used the mCSM server.
The mCSM server presents an innovative method that utilizes

TABLE 1 List of deleterious mutations prediction by I-Mutant and DynaMut servers.

Index Variants I-Mutant2.0 DynaMut2

PredictedΔΔG Outcome PredictedΔΔG Outcome

1 T17I −0.07 kcal/mol Destabilizing 0.81 kcal/mol Stabilizing

2 L22I 0.56 kcal/mol Stabilizing −0.29 kcal/mol Destabilizing

3 F35G −3.89 kcal/mol Destabilizing −1.82 kcal/mol Destabilizing

4 L37F −0.05 kcal/mol Destabilizing −0.81 kcal/mol Destabilizing

5 A88V −0.58 kcal/mol Destabilizing −0.55 kcal/mol Destabilizing

6 S106T −0.61 kcal/mol Destabilizing −0.07 kcal/mol Destabilizing

7 G107S −0.84 kcal/mol Destabilizing −0.06 kcal/mol Destabilizing

8 F108L −3.31 kcal/mol Destabilizing −0.11 kcal/mol Destabilizing

9 V120L −1.36 kcal/mol Destabilizing −0.05 kcal/mol Destabilizing

10 L125F −1.18 kcal/mol Destabilizing −0.94 kcal/mol Destabilizing

11 V149F −3.68 kcal/mol Destabilizing −0.65 kcal/mol Destabilizing

12 Y153F −0.22 kcal/mol Destabilizing −0.33 kcal/mol Destabilizing

13 I162T −4.61 kcal/mol Destabilizing −1.69 kcal/mol Destabilizing

14 M183I −1.64 kcal/mol Destabilizing −0.32 kcal/mol Destabilizing

15 V190F −2.1 kcal/mol Destabilizing −0.83 kcal/mol Destabilizing
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graph-based signatures for investigating missense mutations. These
signatures encode atomic distance patterns, enabling the
representation of the protein residue environment and facilitating
the training of predictive models (Pires et al., 2014; Pires et al., 2016;
Rodrigues et al., 2019). The top four highly destabilizing mutations
revealed by the mCSM server were F35G, L37F, L125F, and I162T
with ΔΔG values of −1.928 kcal/mol, −1.214 kcal/mol, −1.207 kcal/
mol, and −1.476 kcal/mol respectively (Table 2). Similar approaches
were used by several previous studies for the selection of highly
destabilizing mutations (Suleman et al., 2021a; Suleman et al.,
2022a). To delve deeper into the significance of these mutations
within the immune evasion pathway, we processed it for
further analysis.

NSP6 protein modeling and RMSD analysis
by superimposition

The 3D structure of a protein is of paramount importance for its
function, as it directly influences how the protein interacts with
other molecules and performs its specific biological tasks. Proteins
are essential macromolecules in living organisms, and their
functions are highly dependent on their unique 3D shapes.
Consequently, to model the 3D structure of NSP6, we used the
AlphaFold 2.0 which employs deep learning techniques to predict
the 3D structure of proteins based on their amino acid sequences
(Jumper et al., 2021). The 3D structure of NSP6 protein is shown in
Figure 3A. To verify the predicted NSP6 protein model, we used the
Ramachandran and ProSA-web analysis. The Ramachandran
analysis indicated that 84.3% of the amino acid residues were
situated in the most favored regions, with 15% found in
additional allowed regions, and only 0.7% located in the
disallowed regions (Figure 3B). Furthermore, the ProSA-web
analysis yielded a Z score of −3.29 for the predicted
NSP6 protein structure, a value well within the expected range

for normal protein structures of similar size (Suleman et al., 2022b)
(Figure 3C). Finally, the shortlisted destabilizing mutations (F35G,
L37F, L125F and I162T) were modeled in the wildtype structure of
NSP6 by using the Chimera software (Figures 3D–G).

The structural variances between the wild-type ORF6 protein and
the generated mutants were assessed by superimposing their respective
structures, and the Root Mean Square Deviation (RMSD) values were
determined. The calculated RMSD values (0.26 Å, 0.31 Å, 0.43 Å, and
0.27 Å) for the F35G, L37F, I162T, and I125F mutants indicated
significant differences compared to the wild-type protein (Figures
4A–D). These mutations led to changes in the secondary structure
and overall conformation of the protein, highlighting the need to
investigate their potential impact on the binding affinity between
NSP6 and TBK1. Consequently, structural procedures such as
molecular docking, were utilized to find out the effect of these
mutations on downstream immune escape mechanism.

Molecular docking of wildtype and mutant
NSP6 with TBK1

Molecular docking is a versatile and powerful tool for studying
protein-protein interactions, providing valuable insights into
biology, drug discovery, and personalized medicine. Its
computational nature allows researchers to explore a wide range
of interactions and structural conformations, complementing
experimental approaches and guiding further studies. The
function of NSP6, a non-structural protein of SARS-CoV-2, has
been revealed to hinder the induction of IFNβ by interacting with
Tank Binding Kinase 1 (TBK1), allowing the virus to evade the
human immune system (Guo et al., 2021; Vazquez et al., 2021).
Consequently, we used the molecular docking approach to check
the effect of identified variants (F35G, L37F, L125F, and I162T) on
the binding affinity of NSP6 and TBK1. The predicted docking
score for the wildtype-TBK1 complex was recorded to be −1436.2.
The binding interface analysis by PDBsum revealed the formation
of 6 hydrogen bonds, 1 salt bridge, and 147 non-bonded contacts.
The residues involved in the hydrogen bonds formation were
Arg357-Met47, Gly722-Arg93, Gly721-Arg93, Lys692-Asn264,
Trp445-Asn40 and Met690-Arg233 however, the salt bridge was
formed between Glu696 and Lys63 (Figure 5A; Supplementary
Figure S1A). Furthermore, the analysis of F35G-TBK1 complex by
ClusPro server showed a docking score of −1723.2 while the
interaction interface analysis revealed the formation of
15 hydrogen bonds, 7 salt bridges, and 250 non-bonded
contacts. The key hotspot residues Asn725-Asp133, Asp720-
Gly135, Asp720-Lys285, Asp727-Arg129, Leu729-Arg129,
Asp148-Tyr175, Glu147-Lys61, Glu147-Tyr242, Phe88-Tyr224,
Glu561-Arg187, Arg573-Glu195 and Glu572-Thr206 were
involved in the hydrogen bonds formation (Figure 5B;
Supplementary Figure S1B). The docking score of −1788.6 was
recorded for the L37F-TBK1 complex however, the interface
analysis showed the presence of 12 hydrogen bonds, 4 salt
bridges, and 303 non-bonded contacts. The key amino acid
residues Leu717-Gln249, Asp720-Lys285, Leu723-Asp133,
Arg724-Asp133, Arg724-Ile284, Arg724-Leu275, Leu729-Val278,
Asp727-Arg129, Glu147-Tyr175, Phe88-Tyr224, Glu561-Arg187
and Glu572-Thr206 formed the hydrogen bonds while,

TABLE 2 List of deleterious mutations prediction by mCSM server.

Index Variants ΔΔG mCSM Outcome

1 F35G −1.928 kcal/mol Destabilizing

2 L37F −1.214 kcal/mol Destabilizing

3 A88V −0.449 kcal/mol Destabilizing

4 S106T −0.365 kcal/mol Destabilizing

5 G107S −0.598 kcal/mol Destabilizing

6 F108L −0.822 kcal/mol Destabilizing

7 V120L −0.326 kcal/mol Destabilizing

8 L125F −1.207 kcal/mol Destabilizing

9 V149F −0.794 kcal/mol Destabilizing

10 Y153F −0.529 kcal/mol Destabilizing

11 I162T −1.476 kcal/mol Destabilizing

12 M183I −0.597 kcal/mol Destabilizing

13 V190F −0.962 kcal/mol Destabilizing
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FIGURE 3
Structural modeling and variants generation of NSP6 protein. (A) Represents the AlphaFold generated wildtype NSP6, (B) represents Ramachandran
plot analysis. (C) Represents ProSA-web analysis (D) showing F35G protein model, (E) showing L37F protein model, (F) showing L125F protein model. (G)
Showing I162T protein model.

FIGURE 4
RMSD calculation by superimposing mutants on wildtype NSP6. (A) Represents deviation of F35G mutant. (B) Represents deviation of L37F mutant.
(C) Represents deviation of I162T mutant. (D) Represents deviation of I125F mutant.
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Asp720-Lys285, Arg724-Asp133, Asp727-Arg129 and Glu561-
Arg187 formed the salt bridges (Figure 5C;
Supplementary Figure S1C).

After this, the ClusPro server predicted the docking score
of −1510.2 for the L125F-TBK1 complex. The PDBsum analysis
showed the presence of 14 hydrogen bonds and 180 non-bonded
contacts. The residues involved in hydrogen bonds formation
were Asp148-Arg93, Glu147-Arg93, Arg143-Phe35, Arg143-
Phe34, Gly92-Ile202, Arg27-Tyr85, Arg27-Asn156, Ser12-
Thr206, Asp13-Asn205, Arg25-Asn205, Asn103-Asn40 and
Ser102-Asn40 (Figure 6A; Supplementary Figure S1D). Finally,

the analysis of I162T-TBK1 complex showed the docking score
of −1551.7 however, the binding interface analysis revealed the
existence of 13 hydrogen bonds, 1 salt bridge and 204 non-
bonded contacts. The key residues Ile14-Trp97, Lys567-Arg93,
Tyr563-Arg93, Glu99-Arg93, Tyr564-Arg93, Glu100-Ser89,
Glu100-Trp90, Ser93-Trp90, Arg27-Ser118, Arg143-Tyr38,
Glu111-Tyr38 and Glu147-Ser21 formed the hydrogen while
Glu99-Arg93 formed the salt bridge in the I162T-TBK1
complex (Figure 6B; Supplementary Figure S1E). These results
indicated that the shortlisted NSP6 mutants had significantly
increased the binding affinity of NSP6 and TBK1 as compared to

FIGURE 5
Molecular docking analysis of wildtype and mutant NSP6-TBK1 complexes. (A) Showing the binding residues of wildtype-TBK1 complex. (B)
Showing the binding residues of F35G-TBK1 complex. (C) Showing the binding residues of L37F-TBK1 complex.

FIGURE 6
Molecular docking analysis of L125F and I162T-TBK1 complexes. (A) Showing the binding residues of L125F-TBK1 complex. (B) Showing the binding
residues of I162T-TBK1 complex.
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the wildtype complex. This strengthened interaction has raised
concerns about the potential of SARS-CoV-2 to evade the human
immune system. Among the mutants studied, the F35G variant
demonstrated the highest binding affinity with TBK1, as evident
from the docking score and hydrogen bonding network analysis.
As a result, we chose to concentrate our further investigations on
this specific mutant to explore its potential as a target for drug
discovery and development to halt the interactions between
NSP6 and TBK1.

Binding free energies calculations

Binding free energy calculations are essential for elucidating the
energetics and dynamics of protein-protein interactions. Binding
free energy calculations serve as a validation tool for computational
models predicting protein-protein interactions. Comparing
calculated binding energies with experimental data helps assess
the accuracy of the computational methods used (Khan et al.,
2021; Khan et al., 2022a). Therefore, to validate our docking
results, we used the MM/GBSA approach to evaluate the binding
free energies of both wildtype and mutant NSP6-TBK1 complexes.
According to Table 2, the van der Waals (vdW) energy for the wild-
type NSP6-TBK1 complex was calculated to be −213.46 kcal/mol.
Interestingly, the mutants F35G, L37F, L125F, and I162T showed
significant increases in vdW energy, with values of −279.9 kcal/
mol, −281.93 kcal/mol, −217.48 kcal/mol, and −249.71 kcal/mol,
respectively. This suggests a notable variation in the
NSP6 variants compared to the wild type, aligning with previous
studies on different SARS-CoV-2 variants that also pointed to
increased vdW energy. Another crucial factor, the electrostatic
energy, was reported to be responsible for the enhanced binding
of various variants in prior research (Suleman et al., 2021b; Shafiq
et al., 2022; Suleman et al., 2023b). In the current study, similar
observations were made as the wild type exhibited an electrostatic
energy of −1059.82 kcal/mol. Conversely, the F35G, L37F, L125F,
and I162T variants showed higher electrostatic energies,
measuring −1342.8 kcal/mol, −1371.79 kcal/mol, −595.31 kcal/
mol, and −647.11 kcal/mol, respectively. Regarding the overall
binding energy, the wild-type NSP6-TBK1 complex displayed a
value of −118.12 kcal/mol, whereas the F35G, L37F, L125F, and
I162T mutants had binding energies of −172.19 kcal/
mol, −149.05 kcal/mol, −122.96 kcal/mol, and −116.22 kcal/mol,
respectively (Table 3). The outcomes strongly support the notion
of the mutant F35G having the highest binding free energy,
confirming the results obtained from molecular docking.

Virtual drug screening against NSP6

In the field of drug design, virtual drug screening serves as a vital
tool, enabling researchers to efficiently pinpoint and assess potential
drug candidates prior to undertaking resource-intensive and time-
consuming laboratory experiments. By offering a faster and more
efficient approach, virtual drug screening plays a crucial role in
identifying promising drug candidates and refining their chemical
and biological properties during the drug design process (Maia
et al., 2020; Oliveira et al., 2023). Before initiating the database
screening, Lipinski’s rule of five was applied to filter out drug-like
molecules. Among the total molecules in the database, 723 compounds
successfully met the ADMET criteria. For virtual drug screening,
AutoDock Vina was utilized, revealing docking scores ranging
from −6.69 to −0.23 kcal/mol. Compounds with scores lower
than −6.69 were shortlisted for further analysis. Among these,
38 compounds were subjected to induced fit docking, resulting in
docking scores ranging from −6.7 to −3.6 kcal/mol. The top five hits
were then selected based on their docking scores and hydrogen bonding
network. The top five compounds, namely, 10-[(2Z)-3,7-dimethylocta-
2,6-dienyl]-5, 9,11-Trihydroxy-3,3-dimethyl-pyrano[3,2-a]xanthen-12-
one (C1), 6,11-dihydroxy-9,10-Dimethoxy-3, 3-dimethyl-5-(4-
methylpent-3-enyl) Pyrano [2,3-c] xanthen-7 one(C2),1-(3-acetyl-2-
Hydroxy-4,6-dimethoxy-phenyl)-4,5-Dihydroxy-2-methyl- anthracene
9,10-dione(C3), [(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-Dihydroxy-
chroman-3-yl](C4), and (2S,3S)-2-(3,4-dihydroxyphenyl)-5,7-
dihydroxy-3-[(2R,3R,4R,5S)-3,4,5Trihydroxytetrahydropyran-2-yl] (C5)
with a docking score of −6.59 kcal/mol, −6.52 kcal/mol, −6.32 kcal/
mol, −6.22 kcal/mol and −6.21 kcal/mol respectively were selected for
further analysis. The top hits compounds along with their docking scores
are shown in Table 4.

Interaction analysis of top hit compounds

The top 5 hits were analyzed in detail, focusing on the interactions
involving hydrophobic interactions, hydrogen bonds, and salt bridges.
The analysis of tophit1-NSP6 complex displayed a docking score
of −6.59 kcal/mol. This complex formed six hydrogen bonds and
one hydrophobic bond with specific residues within the target
protein. The key residues involved in establishing this bonding
network were Leu239, Thr238, Gly240, Asn232, Arg233, Ser265, and
Asn264 (Figure 7A). Similarly, our analysis of the top hit 2 compound
revealed that it establishes 3 hydrogen bonds and 3 hydrophobic
interaction with specific amino acids in the target protein, including
Arg233, Ser265, Pro262, Val241, and Thr238. The docking score for the

TABLE 3 Binding free energies of wildtype and mutant NSP6-TBK1 complexes.

Complexes vdW Electrostatic GB SA Total binding energy

Wild Type −213.46 −1059.82 1182.2 −27.04 −118.12

F35G −279.9 −1342.8 1484.89 −34.38 −172.19

L37F −281.93 −1371.79 1539.86 −35.19 −149.05

L125F −217.48 −595.31 714.75 −24.91 −122.96

I162T −249.71 −647.11 811.34 −30.74 −116.22
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top hit2 was recorded to be −6.52 kcal/mol (Figure 7B). Furthermore,
the docking score of−6.32 kcal/mol was recorded for the top hit 3-NSP6
complex. The binding interface analysis showed the presence of
4 hydrogen bonds and 3 hydrophobic bonds with amino acids
Val241, Thr238, Arg233, Val60, Ser265 and Asn264 (Figure 7C).

The analysis of top hit 4-NSP6 complex showed the existence of
5 hydrogen bonds, 2 hydrophobic bonds, and 1 salt bridge with amino
acids residues including, Lys63, Ser265, Asn264, Asn232, and Arg233.
The docking score for the top hit 4-NSP6 complex was found to
be −6.22 kcal/mol (Figure 8A). Similarly, in the case of the top hit 5-
NSP6 complex, there were favorable interactions observed with the target
protein. This complex formed 7 hydrogen bonds and 1 hydrophobic
interaction, involving specific amino acids, namely, Leu237, Arg233,
Lys63, Asn264, Ser265, His62, Gln290, and Val241. The docking score

for this interaction was −6.21 kcal/mol (Figure 8B). The results of our
study indicate that these compounds show great promise as potential
drug candidates due to their favorable interactions with the target protein.
These interactions are crucial for enhancing the compounds’ therapeutic
efficacy, making them potentially effective treatments. To further verify
the dynamic stability of durgs-NSP6 complex, we selected the top 3 hits
for the molecular dynamic simulation analysis.

Molecular dynamics simulations analysis of
top hits

The stability of molecular interactions within a binding cavity is
a critical factor in determining the binding affinity of a small

TABLE 4 List of top five hits, along with their 2D-structures and docking scores.

Top
hit#

IDs Drug name 2D-structure Docking
score

1 AN_UY_045_1 10-[(2Z)-3,7-dimethylocta-2, 6-dienyl]-5, 9,11-Trihydroxy-3, 3-
dimethyl-pyrano[3,2-a] xanthen-12-one

−6.59 kcal/mol

2 BMC_00066 6,11-dihydroxy-9,10dimethoxy-3,3-Dimethyl-5-(4-methylpent-3-enyl)
Pyrano [2,3-c] xanthen-7-one

−6.52 kcal/mol

3 SA_0133 1-(3-acetyl-2-Hydroxy-4,6-dimethoxy-phenyl)-4,5-dihydroxy-2-
methyl-anthracene-9, 10-dione

−6.32 kcal/mol

4 WA_0027 [(2R,3R)-2-(3,4- Dihydroxyphenyl)-5,7-dihydroxy-chroman-3-yl] −6.22 kcal/mol

5 WA_0088 (2S,3S)-2-(3,4-Dihydroxyphenyl)-5,7-Dihydroxy-3-[(2R,3R,4R,5S)-
3,4,5-trihydroxytetrahydropyran-2-yl]

−6.21 kcal/mol
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molecular ligand. Simulation trajectories are commonly employed
to analyze this stability, and one of the keymetrics used is the RMSD.
The RMSD provides valuable data on the dynamic stability of the
interacting molecules, shedding light on the strength of their
binding. Understanding a protein’s dynamic nature is crucial, as
it aids in estimating the biological complex stability in a dynamic
environment (Karplus and Kuriyan, 2005). In the current study we
executed 100ns simulation to calculate the RMSD to check the
stability of protein-drugs top hits in a dynamic environment. As
shown in Figure 9, during the 100ns simulation no significant
convergence was observed in the RMSD value of all the three top
hits which indicates the stable behavior of protein-drug complexes.
In case of the top hit 1, the system equilibrated at the 10ns and then
remain stable until the end of simulation with the average RMSD of
5 Å (Figure 9A). However, in case of top hit 2 we reported the lowest
RMSD (3 Å). The system equilibrated at the 3ns and remain
significantly stable till 100 ns (Figure 9B). Finally, the top hit
3 system followed the similar pattern with the average RMSD of
5 Å. In case of the top hit 1 the system equilibrated at 3ns with the

RMSD value of about 4 Å which raised steadily and reached 6 Å at
50 ns (Figure 9C).

The findings show that the top hits 1-3 exhibit consistent
dynamics, indicating their stability, and have the potential to
interact with the interface residue in a way that would
effectively hinder the binding of NSP6 to TBK1. The stability of
every complex was investigated in a dynamic environment to
identify binding and unbinding events. This was achieved by
monitoring the radius of gyration (Rg) over time, which served
as a measure of the structural compactness. The degree of
compactness of the protein complexes was found to be a crucial
factor affecting their stability (Khan S. et al., 2022). The results
depicted in Figure 10 exhibit a comparable trend in terms of
compactness when compared to the RMSD. For top hit 1, the
structure remained compact with an Rg value of 21 Å until 18 ns,
after which it gradually decreased to 21.8 Å, although no
substantial convergence was observed during the simulation
time (Figure 10A). Similarly, for top hit 2, an average Rg value
of 21.2 Å was recorded with some convergence observed between

FIGURE 7
Binding interface analysis of top hit 1-3 and NSP6. (A) Represents the binding network between top hit 1 and NSP6. (B) Represents the binding
network between top hit 2 and NSP6. (C) Represents the binding network between top hit 3 and NSP6.
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70ns and 100 ns (Figure 10B). Lastly, top hit 3 followed a similar
Rg pattern as top hit 2, but with a slightly lower Rg value of 20.8 Å
(Figure 10C). The changes in Rg observed in the simulations are
indicative of the binding and unbinding events between the ligands
and the receptor. The observed Rg values suggest that top hits

1-3 exhibit stable binding to the receptor and hold potent
pharmacological activity against NSP6.

Proteins are essential biomolecules that play crucial roles in
various biological procedures in living organisms. Understanding
the flexibility and rigidity of protein residues is crucial for

FIGURE 8
Binding interface analysis of top hit 4 and top hit 5-NSP6 complex (A) represents the binding network between top hit 4 andNSP6. (B) Represents the
binding network between top hit 5 and NSP6.

FIGURE 9
Dynamics stability analysis of drugs-NSP6 complex. (A) Showing the RMSD value of top hit 1 (B) showing the RMSD value of top hit 2. (C) Showing the
RMSD value of top hit 3.
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FIGURE 10
Compactness analysis of drug-NSP6 complex. (A) Showing the Rg value of top hit 1. (B) Showing the Rg value of top hit 2 (C) showing the Rg value of
top hit 3.

FIGURE 11
Fluctuation analysis of drug-NSP6 complexes at residues level.

FIGURE 12
Bonding network analysis between top hit drugs and NSP6. (A) Showing the number of hydrogen bonds in top hit 1. (B) Showing the number of
hydrogen bonds in top hit 2. (C) Showing the number of hydrogen bonds in top hit 3.
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comprehending these processes (Rashid et al., 2021; Shah et al.,
2022). To investigate protein dynamics, scientists employ various
methods, including the calculation of Root Mean Square
Fluctuation (RMSF) of backbone C-alpha atoms. RMSF
analysis provides insights into the degree of flexibility of
different regions of a protein structure. In recent years, RMSF
analysis has been widely utilized in numerous studies to elucidate
the relationship between protein dynamics and function (Rashid
et al., 2021; Khan et al., 2022c). In current study, RMSF was
executed to assess the residual fluctuation of the top hit1-3
complexes. In Figure 11, it can be observed that most of the
residues in the systems are in a state of equilibrium, with a mean
RMSF of approximately 1 Å. The RMSF pattern for each complex
is quite similar, with some fluctuations observed at specific amino
acid residues such as 100, 200, and 240. A higher RMSF value at a
certain residue suggests that the region is more flexible, while a
lower value indicates minimal movement around its average
position throughout the simulation. Importantly, the analysis
of RMSF results indicates that the top three drugs show a higher
binding affinity with the binding interface of human NSP6, as
compared to other drugs.

The evaluation of hydrogen bonds is a frequently used
procedure for analyzing the binding efficiency among interacting
molecules (Chen et al., 2016). It is essential to comprehend the
patterns of hydrogen bonding involved in protein-drug interactions
in order to accurately predict the strength of these interactions
(Jewkes et al., 2011; Chodera and Mobley, 2013). To analyze the
evolution of hydrogen bonding patterns during simulation, the
number of hydrogen bonds was executed for each trajectory. The
hydrogen bonding network for each complex was analyzed over
time, and the findings are presented in Figure 12. As per Figure 12, it
is obvious that all the complexes exhibit a robust hydrogen bonding
network, indicating stable interactions among the identified lead
drugs and NSP6. The hydrogen bonds formed between the top-
ranked drug-NSP6 complexes (top hit 1-3), was found to be 130
(Figures 12A–C). These observations corroborate the outcomes
obtained from molecular docking, RMSD, and RMSF analyses,
providing additional evidence of the stability of the complexes.

Conclusion

In this study, we identified 15 novel mutations in the
NSP6 protein of SARS-CoV-2. Among these mutations, four
(F35G, L37F, L125F, and I162T) were found to significantly
destabilize the structure of NSP6. Furthermore, the molecular
docking analysis revealed the highest binding affinity of mutant
NSP6 and TBK1 as compared to wild type. Particularly, the
F35G mutation exhibited the strongest binding affinity,
supported by a calculated binding free energy
of −172.19 kcal/mol. To disrupt the binding between
NSP6 and TBK1, we conducted virtual drug screening to
develop a novel inhibitor derived from natural products.
From this screening, we identified the top 5 hit compounds
as the most promising candidates, selected based on their
bonding network and docking score. The molecular dynamic
simulation further verified the dynamic stability of the top
3 hits-NSP6 complexes. However, it is essential to conduct

experimental validation to confirm their efficacy. In
conclusion, this study provides valuable insight into the
higher infectivity of the SARS-CoV-2 new variants and a
strong rationale for the development of novel drugs
against NSP6.
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