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Optimal piezoelectric shunt 
dampers for non‑deterministic 
substructure vibration control: 
estimation and parametric 
investigation
Asan G. A. Muthalif1* & Azni N. Wahid2

Piezoelectric (PZT) shunt damping is an effective method to dissipate energy from a vibrating 
structure; however, most of the applications focus on targeting specific modes for structures vibrating 
at low-frequency range, i.e. deterministic substructure (DS). To optimally attenuate structures 
vibrating at high-frequency range, i.e. non-deterministic substructure (Non-DS) using a PZT shunt 
damper, it is found that the impedance of the PZT patch’s terminal needs to be the complex conjugate 
of its inherent capacitance paralleled with the impedance ‘faced’ by its non-deterministic host 
structure underline moment actuation. The latter was derived in terms of estimation of the effective 
line moment mobility of a PZT patch on a Non-DS plate by integrating the expression of driving point 
moment mobility of an infinite thin plate. This paper conducts a parametric investigation to study the 
effect of changing the size, quantity and configuration of the PZT patch to the performance of the 
optimal PZT shunt dampers in dissipating the energy of its non-deterministic host structure. Results 
are shown in terms of energy reduction ratio of the thin plate when attached with optimal PZT shunt 
damper(s).

Substructures which experience long-wavelength deformation are called deterministic (DS) and their response 
can be described mathematically, while non-deterministic substructures (Non-DS) experience short-wavelength 
deformation and very sensitive to structural uncertainties which makes it hard to be modelled. In Statistical 
Energy Analysis (SEA), modal overlapping factor (MOF) is used to categorize the Non-DS and DS; it is essen-
tially the average number of resonances that fall within the half power bandwidth of a single resonance (degree 
of modal overlap). The expression is1–3:

where ω in rad/s, n and η refers to modal density and loss factor, respectively. Surface area, density, thickness and 
flexural rigidity are denoted as A, ρ, h and D, respectively. The response at MOF < 1 exhibit distinctly visible modal 
responses which can be simulated using the finite element method (FEM). Response that lies at 1 < MOF < 2 is 
categorized as mid-frequency range and MOF > 2 is categorized as high-frequency range. At high frequency 
range, small structural uncertainties can cause a big difference in the vibration response1,4,5 and modal response 
does not exhibit individual resonant but rather broader peaks6 (Fig. 1) which makes it hard to be controlled. 
In addition to that, higher computational time and cost is needed to capture the short-wavelength response at 
higher frequency region. Physically, short wavelength vibration can transmit through tiny structural cracks 
which eventually causes failure. Hence, it is essential to be able to model high frequency in order to control 
vibration of Non-DS.

Various works on high-frequency vibration analysis focused on finding the best model to predict the dynamic 
properties of high-frequency vibration to understand its behavior. However, there are not many research done 
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based on high-frequency vibration control which specify the range of frequency to be controlled in line with SEA 
context i.e. frequency with respect to MOF. One of the methods to analyze high-frequency vibration response is 
by using the Hybrid Modelling method8 which combines deterministic modelling approach (FEM) with statistical 
modelling method (SEA), where components in complex built-up structures are grouped into DS and Non-DS, 
and these are coupled together to calculate the response for the whole structure.

An attempt to develop active control for structures vibrating at the high-frequency range has been discussed 
in work by Muthalif6 where they used a skyhook damper (equivalent to point force) to dissipate energy from 
a non-deterministic thin plate. The optimal value for the skyhook damper constant is achieved by doing the 
Hybrid Modelling equation’s first derivative. The work has proved that ‘impedance matching’ method is valid 
for a successful energy dissipation from a Non-DS that is by making the impedance of the skyhook damper to 
be the complex conjugate of the impedance ‘seen’ by the non-deterministic plate at the point junction. As an 
extension of the work, this paper will attempt to dissipate energy from a thin plate vibrating at high-frequency 
range in a passive manner since the traditional passive control has better control effect in dealing with high-
frequency vibration9–12. Compared to active feedback control, PZT shunt damping is more attractive in terms 
of being entirely passive without a power supply requirement, ensuring stability and therefore more practical 
to be implemented in the field11,13. The majority of shunt circuit configurations also do not require a parametric 
model of the plant; therefore, it is more convenient to design and tune10,14.

It is intriguing to know the effect of changing certain physical parameters of the PZT patch to the optimal 
PZT shunt dampers’ performance in dissipating the energy of its non-deterministic host structure. This paper 
investigates the effect of changing the size, quantity, and configuration of the PZT patch, respectively, in reducing 
its non-deterministic thin plate’s energy. Firstly, the PZT shunt damper’s optimal circuit impedance to maximize 
energy dissipation from its non-deterministic host structure (a thin plate is used) needs to be derived. For that 
purpose, the dynamic effect of a PZT patch on a non-deterministic thin plate needs to be known due to its elec-
tromechanical properties and having different forcing distributions compared to a skyhook damper which is a 
straightforward point force mechanical damper. The approach taken here is to model a PZT patch transducer as 
line moment exciter on a randomized thin plate and to estimate its mobility function using infinite mobility term.

This article is organized as follows; “Derivation of optimal impedance for non-DS control” section shows 
the mathematical derivation to obtain the optimal impedance to achieve maximum energy dissipation of a 
Non-DS attached with a PZT shunt damper by utilizing the Hybrid Modelling method equation. “Dynamic 
electromechanical response of a piezoelectric shunt damper on a randomized thin plate” section shows the 
dynamic electromechanical response of a randomized thin plate attached with a PZT shunt damper. “Derivation 
of effective line moment mobility on infinite thin plate” section shows the derivation for the estimation of effective 
line moment mobility to be used in the theoretical optimal shunt impedance equation derived in “Derivation 
of optimal impedance for non-DS control” section. “Simulation studies on parametric investigations” section 
compiles simulation studies on changing the size, quantity, and connection of the optimal PZT shunt dampers, 
respectively, to the energy reduction ratio achieved by the non-deterministic thin plate.

Derivation of optimal impedance for Non‑DS control
In this section, the hybrid FEA-SEA6,8 is utilized to derive the optimal impedance for Non-DS control. The rea-
son is that its modelling approach treats a complex built-up system as a combination of components with fully 
deterministic properties (DS) and substructure that have a high degree of randomness (Non-DS)8,15. Consider 
the simplest form of a built-up structure where a shunted PZT patch is directly attached on a randomized thin 
plate as shown in Fig. 2; the patch with its circuit is treated as a DS and the host substructure as a Non-DS. The 
strategy for Non-DS vibration suppression is pursued by finding the DS’s optimal impedance when the energy 
loss at the DS is maximized, using the first derivative of the hybrid (FE/SEA) method6,16.

The equation used to find the Non-DS energy (SEA part of the hybrid method) for the system in Fig. 2 is8:

No individual modes 
dominated the response 

Individual modes dominated the 
response 

Finite mobility
Infinite mobility

Figure 1.   Typical driving point mobility of a finite rectangular plate with its infinite mobility serves as an 
approximation at the high-frequency range. MOF when unity is also shown7.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4642  | https://doi.org/10.1038/s41598-021-84097-w

www.nature.com/scientificreports/

where η1 and n1 are the loss factor and modal density of the Non-DS,ηd,1 is the loss factor of the DS (the control-
ler), E1n1  is the modal energy of the subsystem and Pin is the power input to the subsystem. If the power input to 
the Non-DS is fixed, then increasing the magnitude of ωηd,1n1 will then decrease the energy of the Non-DS, 
E1
n1
(ωη1n1) which fulfils the control purpose. The first term in Eq. (2) is given by the hybrid method as8:

where Dd,rs is the complex dynamic stiffness matrix for the DS, Dk
dir is the complex direct dynamic stiffness 

matrix at the coupling points (line or area), Dtot is the sum of Dd,rs and Dk
dir , D

−H
tot  is the inverse of hermitian 

transpose for Dtot . The relationship between complex dynamic stiffness to structural impedance is Dd,DS = jωZd 
and Ddir = jωZ∞ where ZD is the impedance of the DS as “seen” by the Non-DS and Z∞ is the infinite plate driv-
ing point impedance at the connection between the DS and Non-DS. While this is unambiguous for a skyhook 
damper which is a mechanical damper with point junction, the impedance expression needs a more precise 
definition for other types of controller; in this case, a PZT shunt damper is an electromechanical transducer and 
has completely different forcing distribution and spatial connection with its host structure.

Consider N number of PZT shunt dampers attached on the Non-DS, the optimal impedance value for each 
of the DS to maximize the value of energy loss, ηd,1 is obtained by doing the first derivative of Eq. (3) concerning 
both the real part and the imaginary part of Dd,k for the kth DS separately, will lead to:

Equations (4) and (5) are the optimal impedance for a DS or specifically, the optimal impedance of the kth 
shunted PZT patch needed to minimize the Non-DS’s energy which is essentially equivalent to the well-known 
‘impedance matching technique’. The equations also illustrate that the optimal gain value for deterministic con-
trollers is independently related to the direct dynamic stiffness of its non-deterministic host structure at their 
respective point/line/area connections. This finding will significantly simplify the controller’s design. Evidently, 
knowing the mobility function of a structure is crucial to determine the optimal controller design for maximum 
energy dissipation from a Non-DS.

Further investigation using the above derivation also reveals that the theoretical energy ratio between a bare 
plate and a controlled plate using optimized DS, hereby defined as Eratio,Inf  becomes6:

where N is the quantity of the optimized controller; in this case, it is the PZT patch with its terminal connected 
to an optimal shunt impedance. As the frequency is made higher, the energy ratio between a bare plate, Eo and a 
controlled plate, Ec , will approach to unity, EoEc = 1; which implies that control for a Non-DS is ineffective at very 
high frequency. However, the number of controllers, N can be increased to alleviate this drawback.

The optimal shunt circuit for piezoelectric shunt damper.  Figure 3 shows the physical model of a 
PZT shunt damper with circuit impedance Zsh(s) and its equivalent electrical network representation. ZME is the 
mechanical impedance of the patch (its mass and stiffness), Cp is the patch’s inherent capacitance, and Zel is the 
electrical representation of the PZT shunt damper, that is the electrical shunt impedance parallel with inherent 
capacitance impedance of the patch i.e. Zsh||ZCp or:
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Figure 2.   A PZT patch with a shunt circuit, Zsh(s) acting on a non-deterministic plate. The patch can be 
regarded as line moment exciter on the Non-DS, therefore the driving point impedance at line connection needs 
to be established7.
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where XCp = − 1
ωCp

. Since the PZT patch is attached to a non-deterministic thin plate which is equivalent to an 
infinite thin plate17, the mass and stiffness of the patch can be neglected; therefore the DS shown in Fig. 3 consists 
only the patch’s inherent capacitance with its shunt circuit i.e. Zel(s). The mechanical dynamic stiffness matrix of 
the deterministic part of the system can be written as18:

Substituting Eqs. (8) into (7), and using conditions in Eqs. (4) and (5) to obtain maximum energy dissipation 
at the deterministic controller; the optimal shunt circuit, Zsh to be designed can be expressed in terms of complex 
direct dynamic stiffness, Ddir = DRedir + jDImdir , where the following expression is obtained:

The bar sign indirect dynamic stiffness term, Ddir signifies the equivalent electrical dynamic stiffness matrix, 
converted from its mechanical dynamic stiffness matrix, Ddir using some conversion factor:

where the terms ϕMline,k
 and ϕθ̇line,k account for the spatial coupling factor of the PZT patch on the thin plate and 

Ŵ−1 accounts for electromechanical coupling for conversion from mechanical to an electrical parameter. Rewrit-
ing Eq. (9) in terms of infinite mechanical impedance, Z∞ . will produce the following expressions:

where similarly, the bar sign indicates conversion to electrical parameter through some factor:

Equation (11) is, therefore, the optimal shunt impedance for the PZT shunt damper attached on its non-
deterministic host structure to maximize energy dissipation; which is the complex conjugate of its inherent 
capacitance, XCp paralleled with the mechanical-converted-to-electrical impedance ‘faced’ by the Non-DS at 
the junction, represented by the term Z∞ . The derivation of Z∞ will be shown in “Derivation of effective line 
moment mobility on infinite thin plate” section using effective line moment mobility concept.

Dynamic electromechanical response of a piezoelectric shunt damper 
on a randomized thin plate
Equation of motion of a thin plate with a PZT patch shunt damper is derived in this section with reference from19. 
Hagood et al. showed how to use the constitutive equation for PZT material to obtain the general equation for a 
PZT in terms of the external current input and applied voltage. Rearranging the terms, the following is obtained:
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Figure 3.   Physical model of a shunted PZT patch and its equivalent network analog.
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where I is the electric current,σpzt is stress vector for the PZT patch, cE is the modulus of elasticity of the PZT 
patch, e is PZT coupling coefficient matrix and its transpose, et . V is the electric voltage, S is the strain, A is the 
surface area perpendicular to the electrical field, tp is the thickness of the patch, YEL is the electrical admittance, 
Ysh is electrical admittance of the shunt circuit, YD

PZT = sCs
p where Cs

p is the inherent capacitance of the patch at 
constant strain and s is Laplace domain function. The stress expression is updated as:

And the new modulus of elasticity for a shunted PZT patch, cshunt is defined as:

where the matrix of non-dimensional electrical impedance, ZEL is:

Z
EL

= 1 is for open circuit condition.
Hence, the total equation of motion for a thin plate attached with a PZT patch connected to a shunt circuit, 

Zsh(s) where the impedance is inverse of admittance/mobility ( Zu = 1/Yu) becomes:

where Mplate ,Mpzt and Mptmass are the masses of the thin plate, patch and the distributed point masses for ran-
domization, respectively. Kplate and Kpzt are the stiffness matrices of the plate and PZT patch, respectively. I(ω) 
and Fi(ω) are the current input to the shunt circuit and force input to the system, respectively, Ŵ is the electro-
mechanical coupling matrix and its transpose, ŴT , and εS is the dielectric permittivity at constant strain. Solving 
for modal coordinate, Wmn,s yields:

where �s(ω) is expressed as:

The finite energy ratio between a thin plate attached with an open-circuited PZT shunt damper and a con-
trolled plate with closed-circuited PZT shunt damper can be written as:

where

for open circuit terminal and:

when a shunt circuit with admittance Ysh is connected to the terminal. Equation (21)’s finite energy ratio will be 
compared with its theoretical expression using the infinite model as derived in Eq. (6) for validation.

Derivation of effective line moment mobility on infinite thin plate
Power transmission between the contract region of source and receiver is better approximated using surface 
mobilities. Traditionally, point-like connection with connection area of less than 1/10 of wavelength is assumed 
between isolator and main structure20,21. However, for a PZT patch transducer, dimension of the connection 
area is comparable to the wavelength. The concept of strip mobility is introduced by Hammer and Petersson to 
study power transmission to a thin plate22. Subsequently, surface mobility concept on a circular contact area has 
been developed by Norwood et al.20. Li et al.23 and Dai et al.24 extended the work for square-shaped area to find 
surface mobility using discritized model.

Infinite mobilities model.  A multi-point connection model is employed in this article, where the infinite 
thin plate mobility subjected to PZT induced line moment at edges25 is obtained through the integration method. 
This is termed as effective line moment mobility and requires prior derivation of the effective point moment mobil-
ity. Ljunggeren26 regarded force applied along with an infinite line as infinite point forces and thus derived 
effective point mobility from point excited fields. Using the same principle, effective point moment mobility 
produced by a finite line moment can be obtained.
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The angular displacement at (r,α), in response to a couple of point moment Mu with orientation u which acts 
on a rigid indenter fixed to the plate, is given as (see Fig. 4)21:

where H(2)
i (kBr) is the second kind of Hankel function of the i-th order, Ki(kBr) is the second kind of modified 

Bessel function of the i-th order, kB =
4

√

ω2ρh
D  is the bending wavenumber, r is the distance between the force 

applied and velocity measured, β is the angle between x-axis and moment arm, Mu and α is the angle between the 
x-axis and the radius line that connects point ( x1 , y1 ) and ( x2 , y2 ). The angular displacement at a point resulting 
from line moment excitation with length b-a can be taken as:

where a and b are finite numbers which account for the edge coordinate of the line moment and r is the distance 
between the response point and the moment excitation along the line.

Generally, r can be also be written as r =
√

(

xθ̇u − xMu

)2
+

(

yθ̇u − yMu

)2 ; where (xθ̇u , yθ̇u) and 
(

xMu
, yMu

)

 
are the coordinates of the resulting angular velocity and the point moment, respectively. Since angular velocity 
is taken at one fixed point ( x2, y2 ), then the coordinate of the point moment will be the variable to be integrated 
to produce line moment.

The effective point moment mobility, Ye
i  for the infinite thin plate at a point i on the line moment is, therefore:

where Mu
i  , is the excitation moment at ith connection point (see Fig. 5a), θ ′

u is Eq. (23), xp2−xp1 are the length of 
the patch along x-axis and yp2−yp1 are the length of the patch along the y-axis. Extending the same method to 
PZT patch (considering pure line moments at edges) attached infinite plate, the effective point moment mobility 
at point 

(

xθ̇x1 , yθ̇x1

)

 can be evaluated. The effective line moment mobility, Yeff
∞  can be obtained as a summation of 

Ye
i  for all connection points. In this case, the connection point is assumed to be along the length of the edges of 

the PZT patch (Fig. 5b):
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Figure 4.   Illustrations of sign conventions for resulting angular velocity at point ( x2,y2 ) subjected by a point 
moment excitation at ( x1,y1)7.
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Essentially, Yeff
∞  is the inverse of mechanical impedance as seen by the Non-DS when excited by the line 

moments of the patch i.e. Z∞ = Y
eff
∞ .The theoretical optimal shunt impedance, Zsh as shown in Eq. (11) can 

now be solved incorporating Eq. (27), to maximize energy dissipation from its non-deterministic host structure, 
i.e. a thin plate.

Simulation studies on parametric investigations
To gain more understanding of the behaviour of the effective line moment mobilities, and correspondingly the 
performance of the optimal PZT shunt dampers, the dynamic effects of changing certain parameters of the PZT 
patch to the effective line moment mobility of the non-deterministic thin plate with the corresponding control 
effectiveness of to the resulting shunt circuit will be performed thru parametric investigations. The physical 
parameters investigated include (1) changing the patch dimension using 3 × 3 cm, 5 × 5 cm, 7 × 7 cm, 10 × 10 cm 
patch, respectively, (2) using different numbers of independent shunt dampers on the randomized thin plate and 
(3) using different patch configurations, i.e. PZT shunt dampers connected in series vs. parallel vs. independent.

The finite benchmark model consists of a simply supported thin plate attached with a PZT patch using proper-
ties shown in Table 1. Twenty point masses are distributed randomly (using rand function in matlab) within 90% 
from simply-supported boundaries of the thin plate to create randomness/structural uncertainties; where fifty 
ensembles (location of point masses are changed each time) are taken and then the responses are averaged out to 
get ensemble average. In the simulation, these point masses’ locations are changed 50 times to get 50 ensembles.

The subsequent investigations focused on frequency range where MOF > 2 lies in; this is where the non-
deterministic response characteristics begin to exhibit for the thin plate. According to its frequency range, the 
MOF quantity is equated using Eq. (28) and found out to be > 190 Hz.

Parametric study 1: effect of patch size.  Effect of patch size to the estimation of effective line moment 
mobility, Yeff

∞ .  The following study investigates the effect of using different patch size, i.e. the length of line mo-
ment excitation on the thin plate; to the estimation of effective line moment mobility, Yeff

∞  derived in Eq. (27). A 
square patch with identical properties is used but with different side length for each case, i.e. 3 × 3 cm, 5 × 5 cm, 
7 × 7 cm and 10 × 10 cm.

Figure 6 shows the effect of different patch size (length of line moment) to the estimation of effective line 
moment mobility of the non-deterministic thin plate, Yeff

∞  . The plot highlights that, at a lower frequency up to 
about 500 Hz, the bigger is the patch actuator, the higher effective line moment mobility it produces. This effect 
becomes less important at higher frequencies, where dips beginning to occur earlier w.r.t frequency as patch size 
is increased. This effect is due to two factors. The first factor is the mass effect in which a bigger patch means an 
increase in weight; therefore, the mobility tends to roll off more efficiently for a bigger patch. The second factor 

x

y

x

y
Yeff∞

Ye,∞i

j x1
i ,Mx1

i

(a) (b)

Figure 5.   Illustration of (a) effective point moment mobility at one point on line x1 and (b) effective line 
moment mobility of the infinite thin plate7.

Table 1.   Properties of plate and PZT patch used.

Properties Plate (AL 1100) PZT patch (PZT-5H)

Young’s Modulus 80 × 109 Pa 63 × 109 Pa

Density 2710 kg/m3 7800 kg/m3

Length × width × thickness 0.8 × 0.6 × 0.0007 (m) 5 × 5 × 0.05 cm

Poisson’s ratio 0.33 0.31

Piezoelectric constant, d31 = d32 – − 300 × 010−12 (V/m)
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is the ratio between the bending wavelength (Eq. (29)) and the patch actuator’s size. The smaller is the ratio 
between flexural wavelength and the patch size, the greater is the actuation effect. Up to frequencies where the 
patch’s size equals an integer number of the bending wavelength, the magnitude of mobility rolls off to approach 
zero, this is where the cut-off frequency lies27,28.

(29)� =
2π

kB
=

2π

4
√

ω2ρh/D
.

Figure 6.   The estimation of effective line moment mobility, Yeff
∞  with varying PZT patch dimensions (graph in 

linear scale).

Figure 7.   Bending wavelength for Aluminum plate 800 × 600 × 0.07 mm. The cut off frequencies for different 
patch size (3 cm, 5 cm, 7 cm and 10 cm) are determined.
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Referring to Fig. 7, the cut-off frequencies for patch actuator of size 3 cm × 3 cm, 5 cm × 5 cm, 7 cm × 7 cm and 
10 cm × 10 cm happened around 8120 Hz, 2923 Hz, 1491 Hz and 730 Hz, respectively. These frequencies serve as 
an estimation only due to the complexity of the resulting wave by the line moments in both x and y directions on 
the thin plate; therefore, the dips in Fig. 6 did not occur exactly at the theoretical cut-off frequencies as in Fig. 7. 
Also, note that these values are highly dependent on the material properties of the host structure.

Effect of patch size to the electrical shunt impedance, Zsh.  Subsequently, the effect of changing patch size to the 
controller’s performance is desired. Figure 8 shows the real and imaginary curves of Zsh using relationship in 
Eq. (11) and the estimation of effective line moment mobility, Yeff

∞  as derived in Eq. (27) for different patch size. 
The real value of the shunt impedance is ideally the dissipative element in the circuit. It can be seen that all curves 
eventually level off to its smallest amplitude as the frequency is made higher. The occurrence of dips for a larger 
patch is due to the bending wavelength limitation that happened earlier than the smaller patch.

Figure 9 shows the effect of changing patch size on the shunt damping performance on the non-deterministic 
thin plate in terms of energy ratio as in Eqs. (20) and (6) for the theoretical curve. Relatively, the bigger the 
patch is, the better the shunt performance can be seen, essentially at lower frequency region (MOF < 2). Even 
though the larger patch has a higher value of the dissipative element, Real(Zsh) as shown in Fig. 8, this does not 
significantly reduce the energy of the system at MOF > 2 since the structure consists of both real and imaginary 
impedance value. Therefore, at a much higher frequency, the shunt damping performance levels off to the theo-
retical curve, regardless of the patch size used. Furthermore, given that bigger patch size has a smaller cut-off 

Figure 8.   Real and imaginary values for the impedance of electrical shunt, Zsh using 3 × 3 cm, 5 × 5 cm and 
10 × 10 cm patch. The red vertical line shows the frequency where MOF = 2.

Figure 9.   Uncontrolled/controlled plate energy when attached with optimal PZT shunt damper at different 
sizes, compared with theoretical energy ratio as derived in Eq. (21).
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frequency as demonstrated in Fig. 7, it is not always favorable to opt for a bigger patch for non-deterministic 
control using PZT patch.

From the simulation studies for different patch size, it can be deduced that for actuation and control of Non-
DS using PZT patch, it is crucial to choose patch size that is small enough to have smaller ratio between bending 
wavelength and patch size for higher flexural actuation, and to avoid bending wavelength limitation; but large 
enough to have significant Yeff

∞  magnitude at the frequency range of interest (MOF > 2) of the non-deterministic 
substructure in question, for better control effectiveness.

Parametric study 2: effect of the circuit configuration of piezoelectric shunt damper on the 
non‑deterministic thin plate.  This subsection presents simulation studies on optimal PZT shunt damp-
ers’ control performance on a Non-DS when the patch is connected in series and parallel, respectively. Two 
identical PZT patches are used in this study, as shown in Fig. 10, assuming all PZT properties are the same for all 
cases. For mathematical modelling, consider two identical PZT patches attached at a different location on a thin 
plate, the coupled electromechanical equations of the PZT elements can be written as follows29–31:

The total equation of motion for the thin plate attached with PZT patches and when both are connected to 
an external voltage (actuator mode) is:

where Mtot is the total mass of the system (sum of Mplate ,M1 and M2 ), Ktot is the total effective stiffness of the 
system (sum of Kplate

(

1+ jη
)

 , K1 and K2 ) and fext is an external force applied to the thin plate, Ŵk is the electro-
mechanical coupling for the kth patch, w is displacement and vk is the voltage applied across the terminal for 
patch k. Subscripts 1 and 2 denote PZT patch 1 and 2, respectively.

(30)M1ẅ + K1w − Ŵ1v1(t) = fext(t),

(31)ŴT
1 w + Cp1v1(t) = q1(t),

(32)M2ẅ + K2w − Ŵ2v2(t) = fext(t),

(33)ŴT
2 w + Cp2v2(t) = q2(t).

(34)Mtot ẅ + Ktotw − Ŵ1v1(t)− Ŵ2v2(t) = fext(t),

+

+

―

―

2

1

Figure 10.   Schematic of two PZT patches attached on a thin plate with an external voltage applied at its 
terminals.

(a) (b)

Figure 11.   (a) The two piezoelectric shunt dampers in the parallel configuration on a thin plate and (b) its 
equivalent electrical circuit representation with shunt circuit, Zsh,pa.
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Piezoelectric patches in parallel configuration.  For the first case, consider the two PZT patches are connected in 
parallel with one shunt circuit also connected in parallel as depicted in the following Fig. 11a,b:

For a thin plate attached with two PZT patches connected in parallel, the electrical boundary conditions of 
the system can be written as:

where,

The terms qk , vk , are the charge and voltage at the kth branch, respectively. The voltage, Vpa in Eq. (36) can 
be written as such since the voltage at each branch is the same for the parallel case. Therefore, the energy for the 
thin plate attached with optimal parallel shunt dampers can be deduced to be:

The shunt damping circuit, Zsh,pa in this case needs to be the complex conjugate of the impedance seen from 
the circuit’s point of view, which is the complex conjugate of the electrical-equivalent impedance of the host struc-
ture parallel with the impedance of the piezoelectric patch, XCp,k for every kth patch connection, where all patches 
are connected in parallel. For clarity, Zsh,pa can be written mathematically using the following relationship:

Illustratively, Eq. (39) can be represented as in Fig. 12:
Recall that the term Z∞,k in Eq. (12) is the equivalent electrical impedance converted from its mechanical 

impedance ‘faced’ by the non-deterministic thin plate when being subjected by the excitation of the kth PZT 
patch actuator, Z∞,k.

Piezoelectric patches in a series configuration.  For the second case, consider the two PZT patches are connected 
in series as shown in Fig. 13a,b, and with one shunt circuit.

For a thin plate attached with two PZT patches connected in series, the electrical boundary conditions of the 
system can be written as follows:

where:

(35)v1(t) = v2(t) = vsh(t) = v(t),

(36)qsh(t) = q1(t)+ q2(t),

vsh(t) =− q̇sh(t)Zsh,pa

=− (q̇1 + q̇2)Zsh,pa,

Vsh(s) = −
(

sV1Cp1 + sŴT
1 Wpa + sV2Cp2 + sŴT

2 Wpa

)

Zsh,pa,

Vpa

(

1+ sCp1Zsh,pa + sCp2Zsh,pa
)

= −s
(

ŴT
1 + ŴT

2

)

WpaZsh,pa,

(37)Vpa =
−s

(

ŴT
1 + ŴT

2

)

Wpa
(

1+ sCp1Zsh,pa + sCp2Zsh,pa
) .

(38)EC,pa =
1

2
WT

C,paKplateWC,pa,

(39)WC,pa =

[

s2Mtot + Ktot +
s(Ŵ1 + Ŵ2)

(

ŴT
1 + ŴT

2

)

Zsh,pa

1+ sZsh,pa
(

Cp1 + Cp2

)

]−1

∗ Fext(s).

(40)Zsh,pa = conj[(Z∞,1||ZCp,1)||(Z∞,2||ZCp,2)].

(41)Vsh(t) = V1(t)+ V2(t),

(42)qsh(t) = q1(t) = q2(t) = q(t),

∞,1 ∞,2

Figure 12.   Equivalent electrical impedance representation of PZT shunt dampers connected in parallel.
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The charge, Qse in Eq. (45) can be written as such since the charge qk between Cpk is the same when connected 
in series. After some algebraic manipulation, the energy for a thin plate attached with optimal series shunt damp-
ers can be deduced to be:

The shunt damping circuit, Zsh,se in this particular case needs to be the complex conjugate of the electrical-
equivalent impedance of the host structure parallel with the impedance of the piezoelectric patch, XCp,k for 
every kth patch connection, where all patches are connected in series. For clarity, the following mathematical 
representation can be written:

Illustratively Eq. (48) can be depicted as in Fig. 14.

(43)Vsh(t) = −q̇sh(t)Zsh,se ,

(44)
q1

Cp1
−

ŴT
1 w

Cp1
+

q2

Cp2
−

ŴT
2 w

Cp2
= −q̇shZsh,se ,

(45)Qse

(

1

Cp1
+

1

Cp2

)

−Wse

(

ŴT
1

Cp1
+

ŴT
2

Cp2

)

= −sQseZsh,se ,

(46)Qse =

(

ŴT
1

Cp1
+

ŴT
2

Cp2

)

Wse
(

1
Cp1

+ 1
Cp2

)

+ sZsh,se
.

(47)EC,se =
1

2
WT

C,seKplateWC,se ,

(48)WC,se =






s2Mtot + Ktot +

(Ŵ1−Ŵ2)(Ŵ1−Ŵ2)
T

(Cp1Cp2)
+

�

Ŵ1Ŵ
T
1

Cp1
+

Ŵ2Ŵ
T
2

Cp2

�

sZsh,se

1+ sZsh,se

�

Cp1Cp2

Cp1+Cp2

�







−1

× Fext(s).

(49)Zsh,se = conj[(Z∞,1||ZCp,1)+ (Z∞,2||ZCp,2)].

(a) (b)

Figure 13.   (a) The two piezoelectric shunt dampers in a series configuration on thin-plate (b) its equivalent 
electrical circuit representation with shunt circuit, Zsh,se.

∞1

∞,2

Figure 14.   Equivalent electrical impedance representation of PZT shunt dampers in series.
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Similarly like the parallel case, the term Z∞,k in Eq. (48) is the equivalent electrical impedance converted 
from mechanical impedance ‘faced’ by the non-deterministic thin plate when being subjected by the excitation 
of the kth PZT patch actuator, Z∞,k , at connection k.

Energy reduction ratio of series and parallel compared with independent PZT shunt dampers.  The control per-
formance of the PZT shunt dampers connected in series and parallel as derived previously will be compared 
with independent shunt dampers along with the theoretical energy reduction curve, Eratio,Inf  (Eq. (6)) for com-
parison. Figure 15 compares the energy reduction ratio curve by using two PZT shunt dampers on the non-
deterministic thin plate connected in different configurations; series, parallel and independent, respectively. 
From the simulation results, at earlier frequencies, patches connected in series exhibits better energy reduction 
followed by independent and parallel connection with about the same magnitude. At higher frequency range 
where MOF > 2 lies in, the optimal PZT shunt dampers connected in series and independent seem to lead, spe-
cifically at frequency 400-600 Hz and 900 Hz. However, all configurations eventually level off to the theoretical 
curve at a much higher frequency range, signifying the maximum achievable energy reduction.

From this analysis, since there is no distinctive difference that can be seen in terms of the control perfor-
mance especially where MOF > 2, the circuit impedance Zsh can be designed by using any of the three patch 
configurations. This means that there can be more variety of shunt circuit designs using RLC components in 
various combinations to replicate the theoretical impedance in Eq. (11). However, considering the complexity 
of the circuit needed to be designed as illustrated in Eqs. (39) and (48) when more patch is used, it is deemed 
appropriate to use an independent connection to achieve simplicity and practicality.

Figure 15.   Controlled/uncontrolled plate energy when attached with optimal PZT shunt damper at different 
configurations, compared with theoretical energy ratio as derived in Eq. (21).

Figure 16.   Controlled/uncontrolled plate energy when attached with various quantity of optimal PZT shunt 
dampers, compared with theoretical energy ratio as derived in Eq. (21).
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Parametric study 3: effect of number of distributive PZT shunt damper for energy dissipation 
of the non‑deterministic thin plate.  The following study investigates the effect of using a different num-
ber of independent PZT shunt dampers for controlling the non-deterministic plate. Identical PZT shunt damp-
ers are used for this study (5 cm × 5 cm) distributed evenly across the randomized thin plate.

Figure 16 shows the energy reduction ratio when the non-deterministic plate is attached with 1, 6, 9, 12, 16 
and 30 optimal PZT shunt dampers, respectively. The finite model’s ensemble average seems to agree well with 
the theoretical curve for respective cases as shown in the figure, especially at MOF > 2 range (> 190 Hz). The 
simulation shows that better energy reduction can be achieved when using more PZT shunt dampers on the 
non-deterministic thin plate. However, more patch means adding more weight and stiffness to the structure, 
which is not usually favorable. Therefore, the number of PZT patch used (or generally, number of controllers 
used) needs to be compensated with the desired control effect of the Non-DS.

Conclusions
From this research, the real and imaginary expressions of Z∞,k , that is the impedance ‘faced’ by the non-deter-
ministic thin plate when being subjected by the excitation of line moments in rectangular/square shape distri-
bution is derived using double integration of infinite mobility resulting to effective line moment mobility and 
eventually used in the expression of shunt circuit impedance, Zsh,k . Parametric investigations showed that by 
using more PZT shunt dampers, better energy reduction of the Non-DS could be achieved. Also, larger patch 
produced better energy reduction but by keeping in mind that larger patch means bending wavelength limita-
tion will occur earlier. Also, by using more patches with bigger size means more weight is added to the system, 
which is not desirable. Therefore, the quantity and size of the patch used on the Non-DS need to be compensated 
with the control performance. Also, no conclusive difference can be seen for energy reduction of the plate when 
the patch is connected in series, parallel or independently. Therefore, the shunt circuit can be designed in either 
configuration in the way that is more convenient. However, considering the complexity of the circuit needed to 
be designed as illustrated in Eqs. (39) and (48) when more patches are used, independent PZT shunt damper 
design where each patch is connected to its own shunt circuit is deemed more practical. Last but not least, it is 
important to note that finite energy reduction ratio curves fall under the theoretical curve (Eq. (6)) for every 
case, which means the curve serves as an envelope for the highest energy dissipation attainable from a Non-DS 
when directly attached with optimal controllers.
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