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ABSTRACT The nonlinearity behaviour of magnetorheological fluid (MRF) can be described using a num-
ber of established models such as Bingham and Modified Bouc-Wen models. Since these models require the
identification of model parameters, there is a need to estimate the parameters’ value carefully. In this paper,
an optimization algorithm, i.e., the Particle Swarm Optimization (PSO) algorithm, is utilized to identify the
models’ parameters. The PSO algorithm distinctively controls the best fit value by minimizing marginal
error through root-mean-square error between the models and the empirical response. The validation of the
algorithm is attained by comparing the resulting modified Bouc-Wen model behaviour using PSO against
the same model’s behaviour, identified using Genetic Algorithm (GA). The validation results indicate that
the application of PSO is better in identifying the model parameters. Results from this estimation can be
used to design a controller for various applications such as prosthetic limbs.

INDEX TERMS Magnetorheological fluid damper, parametric estimation, particle swarm optimization,
genetic algorithm.

I. INTRODUCTION
Magnetorheological fluids (MRFs) are smart materials uti-
lized to implement semi-active systems to enable their
controllability [1]. MRFs have gained massive interests
during the last decades and been incorporated in many
applications, including dampers, control valves, brakes and
clutches [2]–[5]. MRFs are considered highly controllable as
their fluid state can be changed to be semi-solid when sub-
jected tomagnetic fields [6]. For this reason,MRFs have been
incorporated in the implementation of semi-active dampers
for vehicle suspensions. Magnetorheological (MR) dampers
are semi-active control devices that are widely used in various
applications such as transtibial prosthetic limb [7], [8], tremor
attenuation [9], seismic structural control [10], automotive
suspension application [11] and landing gear [12]. Filled
with MR fluid, MR dampers have gained interest due to
their controllability, response time, low power consumption
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and fault-safe characteristics [13]. However, the applications
of MR damper are restricted by its nonlinear hysteresis
force-velocity and force-displacement characteristic. Thus,
to fully utilize the advantages of MR fluid, an accurate math-
ematical model that is able to represent the device fully is
required. To date, various models have been researched and
proposed to represent the hysteretic characteristic of MR
damper. Among them, parametric modelling has been widely
used to describe the damper’s characteristic due to its model
accuracy, effectiveness, and less complexity than other non-
parametric models [13].

Due to the growing interests in MR dampers, various
investigations have been conducted to explore their hysteretic
behavior to improve the control accuracy and consider the
parameter variations in the system to enhance the control
robustness. Choi et al. [14] developed an MR damper with
a hysteresis model to predict the field-dependent damping
force. Song et al. [15] proposed an adaptive control algorithm
for an MR damper system that considers both hysteresis and
the system’s varying parameters. Yu et al. [16] established an
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MR damper with a model-free fuzzy control algorithm and
evaluated the MR suspension system’s effective performance
by road testing. Shen et al. [17] investigated the charac-
teristics of a load-levelling suspension system with an MR
damper system in which the stiffness and damping can be
adjusted by controlling the MR damper. Hong et al. [18]
experimentally investigated an MR damper’s effectiveness
through a nondimensional Bingham model. Choi et al. [19]
presented a controllable MR damper considering both the
field-dependent hysteretic behavior and the suspension sys-
tem’s parameter variation.

Highly nonlinear hysteresis of MRF damper behavior is
one of the challenging aspects that need to be encountered
to model their characteristics. In most cases, metaheuris-
tic optimization methods are widely employed in paramet-
ric identification of highly nonlinear hysteretic of MRF
damper [20]. The optimization is calculated by minimizing
the error between the model outputs and the experimental
data. Among the most preferred algorithm is the Genetic
Algorithm (GA) [21]–[23]. State estimation (SE) is also
considered as a robust estimation method when multiple
conforming gross errors exist, or multiple leverage points
exist. Chen et al. [24] proposed a robust SE method based
on second-order conic programming that ensures an optimal
global solution and has high estimation accuracy. A robust
state estimator was also proposed based on maximum expo-
nential absolute value [25] and other based on weighted
least absolute values that have good robustness and high
efficiency [26]. In the application of MR fluid, bio-inspired
computing optimizing algorithm has gained interest as it is a
promising approach that can be further developed for new and
robust competing techniques. Apart from the Genetic Algo-
rithm, other bio-inspired algorithms, including Grasshopper
optimization algorithm [27], shuffled Frog Leaping Algo-
rithm [28], and Crow Search Algorithm [29] have shown
potential in describing the MR damper used. However, these
algorithms are complicated.

On the other hand, Particle Swarm Optimization (PSO)
offers less complexity and yields a similar accuracy
level [30], [31]. The PSO optimization has been implemented
in various applications, including design optimization of
tuned mass damper [32], and cable-damper systems [33].
Modified PSO was proposed by Pathak and Singh [34]
which generates new swarm positions and fitness solutions
using improved and modified search equations. In this step,
the swarm searches in the proximity of the best solution of the
previous iteration to improve the exploitation behaviour.
The particle swarm employs greedy selection procedure
to choose the best candidate solution [35]. A constriction
factor-based particle swarm optimization (CFPSO) algorithm
was proposed by Pathak and Singh [36]. The addition of
the constriction factor helps in accelerating the convergence
property of CFPSO. Based on the literature survey con-
ducted, the methodology for parametric estimation of the
MRF damper model is still ongoing. Thus, this research dis-
cusses the implementation of PSO for parametric estimation

to be implemented in the MRF damper model. ACO, PSO
and GA are categorized as Metaheuristic methods that do not
rely on the type of the problem. Such search algorithms are
used for complex problems (often involve many variables for
optimization) that are not well suited for standard algorithms.

In this work, a number of established models were inves-
tigated. They are Bingham, Simple Bouc-Wen, Modified
Bouc-Wen, Nonlinear Biviscous and Hyperbolic Tangent
Function. Themodified Bouc-Wenmodel was used to present
the damper. These models’ parameters were then estimated
using Particle SwarmOptimization and comparedwith that of
the Genetic Algorithm to determine which technique is more
efficient. The strategy was to achieve a simulated behavior
that is approximate to the empirical data. This was realized
by minimizing the normalized root-mean-squared error.

In this paper, Section 2 describes the methodology.
Section 3 compares the parametric estimation algorithms’
performance: Particle Swarm Optimization (PSO) and
Genetic Algorithm (GA). This section also compares the
performance of theMRdampermodels. The parametric equa-
tions of the best-suited model are presented. The paper ends
with conclusions from the findings and states possible future
work thereof.

II. METHODOLOGY
A. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) was first introduced by
Eberhart and Kennedy [37]. PSO is classified as stochastic
properties, where the initial value of estimation is random
rather than manually guessing. Also, it reduces the proba-
bility of estimating at a local optimum and offers ease of
utilization, less computation time, high accuracy, and quick
convergence [30], [38], [39].

The algorithm of PSO is shown in Fig.1. PSO randomly
generates the position of a particle (parameter) (xi (t)) into a
group of number of population (swarm) within a given bound.
The next position of the particle (xi (t + 1)) is estimated
according to its inertia as well as both local and global
memories, as in Eq. (1) and (2).

xi (t + 1) = xi (t)+ vi(t + 1) (1)

vi (t + 1) = wvi (t)

+r1c1 (pbest (t)− xi (t))

+r2c2 (gbest (t)− xi (t)) (2)

Here, vi (t+1) describes the velocity of the particle’s posi-
tion in both direction and speed. The velocity term consists
of Inertia, Cognitive and Social Components.

The first term of Eq. (2) is the Inertia Component, which
controls the momentum of the particle’s velocity (vi(t)) and
w is the inertial weight factor [40]. The second part is the
Cognitive Component, which controls the effect of personal
experience or the local best position (pbest ) (the best posi-
tion for every ith iteration). Also, the best position in the
population is the one with the minimum cost value. The
third component, which is the Social Component, controls
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FIGURE 1. The flowchart of the PSO algorithm.

the global best position (gbest ) i.e., the overall best position
of the particle. The value of gbest is constantly substituted
with pbest whenever the current cost value of gbest is lower
than the previous one [41]. The design parameters, r1 and r2
are random numbers, ranging from 0 to 1. On the other
hand, the design parameters c1 and c2 are the acceleration
constants, which can be expressed as in Eq. (6) and (7) [42].
The parameters are compiled in Table 1 below.

TABLE 1. PSO parameters.

According to Clerc and Kennedy [43], the inertial weight
factor, w is equal to the constriction coefficients (ω):

ω =
2k

12− ∅−
√
∅2−4∅

(3)

where,

0 ≤ k ≤ 1 (4)

∅ = ∅1+∅2 ≥ 4 (5)

In this work, k is equal to 1, and the values of ∅1 and ∅2
are set to 2.05. The parameters of c1 and c2 are as follows:

c1 = ω∅1 (6)

c2 = ω∅2 (7)

The particle’s position is continuously updated until
the targeted objective function is achieved. In this paper,
the objective function is to minimize the normalized
root-mean-squared error.

The objective function or performance criteria should first
be defined as it directly affects the evolutionary change
in optimization operation. The commonly used objective
functions are the root-mean-square error (RMSE), which
describes the error between the empirical and simulation
result. The equation is given by:

RMSE =

√√√√ 1

N

N∑
i=1

[EFRi (t)− SFRi(t)]
2 (8)

where i(i = 1N ) is the number of experimental samples,
EFRi (t) is the empirical result – Empirical Force Response
at the ith sampling spot and SFRi(t) is the simulation result –
Simulated Force Response. For a fair comparison, NRMSE or
normalized error is given in Eq. 9 is applied, where EFRmax
is the maximum empirical value.

NRMSE =
RMSE
EFRmax

(9)

B. EXPERIMENTAL SETUP
In this work, LORD RD-8040-1 [44] is used. This damper
is a short-stroke damper with a maximum length of 55 mm.
The picture of the damper is shown in Fig. 2. RD-8040-1
damper can withstand high tensile strength up to approxi-
mately 8896 N. Table 2, and 3 describe the properties of the
damper.

FIGURE 2. The picture of MR damper RD-8040-1.

TABLE 2. Typical properties of MR damper (RD-8040-1) (LORD
corporation 2009).

The MRF damper is subjected to harmonic excitation on
Fatigue Testing Machine (FTM) to obtain empirical results,
as shown in Fig. 3. The test machine used in the experiment is
’Shimadzu Servopulser’ and controlled by Servopulser Con-
trol unit, ‘4830 Controller’. The Control Computer is used
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FIGURE 3. The experimental setup of the MR damper.

FIGURE 4. Hysteresis loop of the force response of RD-8040-1 with respect to (a) velocity and (b) displacement at 2 Hz with varied current.

TABLE 3. Electrical properties of MR damper (RD-8040-1)....(LORD
corporation 2009).

to record the data from the control unit and use them to plot
force versus time, force versus displacement and force versus
velocity graphs. An ’RS Pro IPS-303DD’ power supply is
used to feed current to the MRF damper. The damper is

attached to the upper and lower ends of the machine via
fabricated damper’s grippers. The damper’s piston rod is
excited sinusoidally, while a load cell and a linear variable
differential transformer (LVDT) sensor integrated into the
machine measure the force and displacement of the piston
rod, respectively. ’Windows Software for 4830’ running on
the Control Computer records the force, displacement and
relative velocity of the piston rod.

Tests are done to acquire the damper’s dynamic response
by changing the applied current from 0 to 1 A in increments
of 0.1 A, while maintaining the frequency at constant levels
of 0.4 until 2 Hz in increments of 0.4 Hz. The experiment
is repeated by varying the excitation from 0.4 to 2 Hz in
increments of 0.4 Hz while keeping the current at a constant
value of 0 to 1 A in increments of 0.1 A. The tested stroke
range is 50 mm at a constant starting position in the middle of
the stroke. The tests are performed by providing a harmonic
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FIGURE 5. Hysteresis loop of the force response of RD-8040-1 with respect to (a) velocity and (b) displacement at 1 A with varied frequency.

FIGURE 6. Comparison graph between PSO and GA of the force response of RD-8040-1 with respect to (a) velocity and (b) displacement at 2 Hz
and 1A.

displacement input excitation,

u = Amsin(2π ft) (10)

where Am is the excitation amplitude of the displacement, and
f is the frequency of the excitation. Thus, the velocity of the
damper is written as:

v = 2π fAmcos(2π ft) (11)

III. RESULTS AND DISCUSSION
The results of the experiment are shown in Fig. 4 and Fig. 5.
Here, the patterns show that the force response increases
uniformly as the current increases at a constant frequency.
When the current is constant, the force response increases

TABLE 4. Input variables of the test.

with increasing frequency. Thus, it shows that the damper’s
force response depends on the current and the excitation fre-
quency. Also, higher velocity leads to a higher force response.

In order to estimate the parameters of the dynamic models
of the MR damper, the strategy is to make the simulated
behavior of the system as close as possible to the empirical
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FIGURE 7. Comparison graph of the force response between the MR damper models and the empirical data with respect to (a) velocity and
(b) displacement at 2 Hz and 1 A.

FIGURE 8. Comparison graph of the force response between Modified
Bouc-Wen model with and without parameter fo.

data. This can be realized by minimizing the normalized
root-mean-squared error (NRMSE). Both Genetic Algo-
rithms (GA) and Particle SwarmOptimization (PSO) are used
in the parameter identification process to determine which
technique works better. The modified Bouc-Wen model is
used to represent the damper.

The PSO tuning for parameter estimation is based on the
PSO constant obtained in section 2. On the other hand, theGA
algorithm utilized is directly taken from the MATLAB Tool-
box. Total iteration for each run for both algorithms is set
at 100, with the population’s size at 100. A similar range of
parameters is set when running both algorithms.

Comparisons between the empirical data, with its corre-
sponding parametric model response (using both PSO and
GA), are presented in Fig. 6. It is observed that the pre-
dicted response using PSO agrees well with the empirical

FIGURE 9. The curve fitting error and the force response error of the
Modified Bouc-Wen model for different polynomial order with the
computation time.

TABLE 5. Normalized-RMSE between PSO and GA. Note: Error = [PSO,
GA].

values compared with GA. The resulting normalized errors
are shown in Table 5. Based on the results, it is concluded
that PSO is better than GA in solving this problem.

The performance of the MR damper models is evaluated
by comparing the model output with the empirical data. The
plots of the investigated MR damper models, at which its
associated parameters are estimated using PSO, are shown
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FIGURE 10. Hysteresis loop of the force response of the Modified Bouc-Wen model for (a) velocity and (b) displacement at 0.4 Hz, and (c) velocity
and (d) displacement at 2 Hz with the varied current.

in Fig. 7. The estimation error for all models is presented
in Table 6. Generally, in Fig. 7, all models’ results are in good
agreement with the empirical data. However, based on the
error comparison in Table 6, the Modified Bouc-Wen model
seems to be the best in representing the MR damper.

A. MODIFIED BOUC-WEN MODEL AS THE BEST MODEL
TO DESCRIBE MR DAMPER
The Modified Bouc-Wen model can be written as:

F = c1y+ k1(x − xo) (12)

ẏ =
1

c1 + co
(αz+ coẋ + ko(x − y)) (13)

ż = −γ |ẋ − ẏ| |z|n−1 z− β (ẋ − ẏ) |z|n

+A(ẋ − ẏ) (14)

where force response is represented by F , internal and exter-
nal displacement is represented by y and x, respectively, and
initial displacement of the piston is donated by xo. Damping
coefficients at low and large velocity are represented by
c1 and c2. Spring stiffness is represented by k1 and ko,
where k1 is related to the nominal damper force because of
the accumulator, while ko is to control the stiffness at high

TABLE 6. Normalized-RMSE between all models.

velocity. Also, coefficient z is the hysteresis deformation
of the damper where the smoothness of the hysteresis is
controlled by coefficient γ , β, A and n [45].

However, it is found out that the response of the Modified
Bouc-Wen model does not compensate for the accumulator
effect in the region where the magnitude of the current or
frequency is high. For better prediction, a modified version
of the model is proposed as

F = c1y+ k1 (x − xo)+ fo (15)
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FIGURE 11. Parametric value of Modified Bouc-Wen model as function of current and frequency; (a) β, (b) γ , (c) A, (d) k1, (e) ko, (f) co, (g), c1 (h) fo.
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FIGURE 11. (Continued.) Parametric value of Modified Bouc-Wen model as function of current and frequency; (a) β, (b) γ , (c) A, (d) k1, (e) ko, (f) co,
(g), c1 (h) fo.

TABLE 7. Comparison of normalized- RMSE between modified Bouc-Wen
model with and without parameter fo. Note: Error = [with fo, without fo].

where an offset force (fo) is added to overcome the accu-
mulator effect (Note that offset force is already added in the
Modified Bouc-Wen model during parametric identification
in Section 2). Fig. 8 shows the plot of theModified Bouc-Wen
model’s force response with and without parameter fo. At dif-
ferent current and frequency, the corresponding model with
andwithout parameter fo is compared (see Table 7). The result
shows the model with offset force has a better prediction than
the model without offset force.

In this section, the optimal polynomial order is discussed.
Asmentioned before, theModifiedBouc-Wenmodel is found
out the best to represent the MR damper. The model’s force
response highly depends on two main variables: magnetic
field (electrical current) and velocity of the piston (fre-
quency). Thus, the parameters of the model from Eqs. (13)
to (15) are assumed as a function of current and frequency
directly.

The relation for each parameter is described in the form of
polynomial equations. However, the polynomial order needs
to be investigated to avoid the complexity of the models
without jeopardizing their precision. So, a simple test is done
by curve fitting the parameters, from first to fifth polynomial

order. The test result is shown in terms of computation time
and error, as in Fig. 9.

The curve fitting error represents the accuracy of the esti-
mated equation at the different polynomial order, while]e the
force response error represents the accuracy of the estimated
force response using the estimated equation. The result shows
higher polynomial order returns lower curve fitting error and
lower force response error. However, higher polynomial order
results in longer computation time as well as a complex
parametric equation. Thus, based on the breakeven point in
Fig. 9, the maximum polynomial order is set at third order.
At this point, the computation time is considerably fast with
a low force response error.

The proposed equations for Modified Bouc-Wen parame-
ters are as follow:

β = 4849− 7181i− 6711f + 12710i2

−3351if + 6999f 2 − 6816i3

+1304i2f + 567if 2 − 1987f 3 (16)

γ = 1935− 5041i− 1416f + 5105i2

+3102if + 691.4f 2 − 2027i3

−833.1i2f − 941.6if 2 (17)

A = 4571+ 12170i− 13450f − 9567i2

+1860if + 13230f 2 + 3103i3

−1018i2f + 1010if 2 − 3651f 3 (18)

k1 = −763.1+ 7391i− 2259f − 9788i2

−1964if + 3227f 2 + 2903i3

+4754i2f − 280.1if 2 − 999.6f 3 (19)

ko = 2382− 11770i− 1424f + 15660i2

−1224if + 276.4f 2 − 5140i3

−7164i2f + 2444if 2 (20)
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TABLE 8. The normalized-RMSE and the accuracy of the predicted model (modified Bouc-Wen model).

co = 175+ 279.8i+ 65.43f + 2142i2

−152.4if − 844i3 − 390.1i2f (21)

c1 = 24850+ 33860i− 65570f

+21510i2 − 41610if + 55930f 2

−21170i3 + 7301i2f + 13040if 2

−14610f 3 (22)

fo = 4.989− 124.6i− 2.643f + 325.2i2

+33.53if − 179.4i3 − 16.38i2f (23)

where f is the frequency, and i is the input current. Param-
eter α, xo, and n are constants which are 80, 0 and 1
respectively.

The error between the empirical force response and the
predicted force response is computed as a function of time.
The resultant errors are shown in Table 8. Overall, it is
observed that the model response is practically acceptable
compared to the empirical data even though it contains some
discrepancies. This discrepancy is believed due to the fitting
errors of the Modified Bouc-Wen model. The investigation
shows that the average normalized error for the optimization
to portray the MRF damper’s behaviour is approximately less
than 0.05 or more than 95% optimization accuracy. It can
be implied that the optimization is leaning at its finest rep-
resentation on modelling the MRF damper. Fig. 10 shows
the result of the force response using the proposed equation.
While Fig. 11 shows the curve fitting graph of the Modified
Bouc-Wen model parameters.

IV. CONCLUSION
This paper discusses the implementation of Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) in esti-
mating the parameters of magnetorheological fluid damper
models. In this article, PSO was used to estimate parameters
used to describe the behaviour of theMRF damper based on a
modified bouc-wenmodel. The PSOperformances in the esti-
mation are shown and compared with GA; a detailed analysis

of the estimation w.r.t current and frequency are illustrated in
the article. Both PSO and GA algorithms show good agree-
ment with the experimental results. However, PSO has lower
relative errors compared to GA. Comparing theMR dampers’
mathematical models shows that the Modified-Bouc Wen
model can precisely predict the MR damper’s behavior.
Equations representing the dynamic of the MR damper are
presented using a third-order polynomial curve fitting from
experimental results. For future work, the analytical model
given in this article can be used for simulation study and
controller design in applications involving shock absorption.
Results from this estimation can be used to design a controller
for various applications such as prosthetic limbs.
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