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A B S T R A C T   

In this paper, we propose a novel approach to solve nonlinear stress analysis problems in shell structures using an 
image processing technique. In general, such problems in design optimisation or virtual reality applications must 
be solved repetitively in a short period using direct methods such as nonlinear finite element analysis. Hence, 
obtaining solutions in real-time using direct methods can quickly become computationally overwhelming. The 
proposed method in this paper is unique in that it converts the mechanical behaviour of shell structures into 
images that are then used to train a machine learning algorithm. This is achieved by mapping shell deformations 
and stresses to a set of images that are used to train a conditional generative adversarial network. The network 
can then predict the solution of the problem for a varying range of parameters. The proposed approach can be 
significantly more efficient than training a machine learning algorithm using the raw numerical data. To evaluate 
the proposed method, two different structures are assessed where the training data is created using nonlinear 
finite element analysis. Each structure is studied for a varying geometry and a set of material properties. We show 
that the results of the trained network agree well with the results of the nonlinear finite element analysis. The 
proposed approach can quickly and accurately predict the mechanical behaviour of the structure using a fraction 
of the computational cost. All created data and source codes are openly available.   

1. Introduction 

The finite element method is a useful numerical tool for modelling 
many engineering applications. The method is especially useful for 
dealing with complex geometries and/or material heterogeneity. How
ever, it often relies on highly refined mesh grids to provide accurate 
results. This can be computationally expensive not only for solving 
problems with many degrees of freedom but also for generating such 
meshes. The computational needs become even more of an issue when 
considering finite element models that should produce results in real- 
time. Running such computations usually involves solving a large sys
tem of equations repeatedly several times per second, which can be 
difficult to achieve even with advanced computational hardware. To 
deal with this class of applications, a significant amount of computations 
are performed offline and only necessary computations are updated in 
real-time [1,2]. This approach can be efficient if the changes in the 
system can be accurately predicted offline. But accurate predictions are 
difficult to achieve in many applications related to medical procedures 
[3,4], interactive virtual environments [1,5], predictive control [6] and 

design/process optimisation [7] amongst others. In many such appli
cations, real-time finite element computations must be performed 
online. 

To speed-up online finite element computations, three different ap
proaches are possible [8]: first, it is possible to rely on the constant 
improvement in the computing hardware as described by Moore’s law 
[9]. This also includes changing the strategy of the hardware utilization 
[3,5]. The second approach relies on code optimisation and parallel 
computing [10,11]. The third approach is to develop new modelling 
algorithms such as mass–spring systems [12,13], model-order reduction 
[14,15], proper generalized decomposition [16,17], enriched finite 
element techniques [18] or wave-based finite element methods [19,20]. 
More recently, machine learning algorithms which are trained using 
solutions of finite element simulations are also used to solve problems in 
real-time [21–23]. 

Solving converged finite element models often provides reliable so
lutions. However, only models with a moderate number of degrees of 
freedom can be executed in a real-time manner. Therefore, several at
tempts were made to alter the way finite element problems are 
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formulated and solved. In general, the alteration compromises the ac
curacy of the solution to meet the objective of real-time simulation. For 
example, ignoring (material or geometric) nonlinearity can significantly 
reduce the computations and may offer a sufficient level of accuracy 
based on the application. Huang et al. [24] developed an augmented 
reality system based on a network of wireless sensors acquiring spatially 
distributed loads and a finite element model. Real-time computations 
were achieved by assuming the problem is linear and has a quasi-static 
behaviour which speeds up the finite element computations to real-time 
levels. Fiorentino et al. [25] used a similar approach on a cantilever 
specimen. The results of the finite element simulation were displayed in 
real-time on the specimen where the boundary conditions were inter
actively defined/redefined. However, in many applications it is not 
possible to assume linearity. 

Biomedical engineering is a main area where most of the applications 
cannot be treated as linear. Examples can be found in studies that 
involve modelling soft tissues such as skin [26,27], internal organs [28, 
29], muscles [30,31], and brain tissues [32]. Hence, the finite element 
analysis (FEA) of this type of applications often cannot be performed in 
real-time. To overcome this, quasi-nonlinear models were developed by 
combining a linear-elastic finite element model with a nonlinear one 
with the nonlinear model being limited to certain parts of the compu
tational domain. Examples of such approach can be found in [14, 
33–35]. In general, this approach ignores certain nonlinear effects. 
Similarly, the approaches that rely on model-order reduction are, in 
general, not applicable to nonlinear problems [36,37]. 

Compared to the previous approaches, machine learning algorithms 
are a strong candidate to overcome the above difficulties. The work on 
using artificial neural networks (ANN) as an alternative to the FEA has 
been ongoing since the early 1990s [38]. However, at the early stages 
ANNs had serious limitations which resulted in severe restrictions on 
where they can be useful. These restrictions were eased significantly by 
the recent development of new approaches such as deep learning and 
physics informed neural networks (PINNs) [39,40]. The popularity of 
deep learning and PINNs has been on the rise. For example, Karniadakis 
et al. [41] published an extensive review of physics-informed machine 
learning approaches. They provided a review of existing capabilities and 
outlook of this field. Alber et al. [42] provided a comprehensive review 
of integrating multiscale modelling and machine learning. 

To reduce the computational cost of FEA when solving multi-scale 
problems, machine learning surrogate models were nested in a micro
model, which significantly reduced the computational costs [26]. Other 
results showed that PINNs can simulate the response of an elastic bar 
with good accuracy and much faster than standard computational 
methods [43]. Deep neural networks were also used to evaluate the 
buckling response of aircraft panels [44] where the neural network 
estimated the response with 95% accuracy compared to the FEA but 
using only 1/200 of the central processing unit (CPU) time. Deep 
learning was also used with higher-order neurons to predict the strength 
of foamed concrete [45]. Other cases focused on producing more ac
curate results using ANNs but with reasonable computational cost [46, 
47]. More recently, the introduction of PINNs led to numerical models 
that are driven by data as well as physics and potentially combining the 
advantages of both approaches. Here, the neural network was used to 
solve partial differential equations. For example in [48], a Python 
package for physics-informed deep learning was developed to solve 
partial differential equations in strong and weak forms. PINNs were also 
implemented to build surrogate models simulating nonlinear von Mises 
elastoplasticity in solid materials [49]. Wen et al. [50] combined PINNs 
with FEA to model complex deformations in multiscale problems. 
Combining PINNs with FEA is not limited to mechanical problems. For 
example, PINNs can be used to accurately predict convective heat 
transfer [51]. 

Another popular type of neural networks which is used by engineers 
for solving problems in mechanical engineering is convolutional neural 
networks (CNNs). This type of networks is composed of convolutional 

layers, fully connected layers, and pooling layers. The layers are stacked 
successively with additional activation functions at key points to form a 
complete CNN [52]. CNNs were initially introduced for image process
ing in applications related to machine vision [53–55], autonomous ve
hicles [56,57] and image segmentation [58,59]. More recently, CNNs 
were also introduced into mechanical applications. The finite element 
method and CNNs were combined within the same framework to solve 
optimisation problems for annular shape charge [60]. The network was 
trained using finite element simulations and the resulting network was 
then used to predict the optimal parameters of an annular liner. The 
presented numerical simulations and the experimental results indicated 
that the CNNs have indeed produced an optimum solution for the 
annular shape charge problem. Krokos et al. [61] considered multiscale 
computational mechanics problems where they used an 
encoder-decoder CNN to generate the stress distribution of the micro
scale features in their model. They used a Bayesian approach to evaluate 
the uncertainty of the predictions. Desphande et al. [62] used three 
benchmark finite element models to generate training datasets. Loads 
were applied randomly on each model and the displacement results were 
recorded and used in the training of Bayesian CNNs. The loads were 
large enough to cause nonlinear deformations. For a more in-depth and 
comprehensive discussion of CNNs, the interested reader is directed to 
[63]. Generative adversarial networks (GANs) are a special form of 
CNNs that are often utilized in the creation of images [64]. The main 
principle of GANs is that two rival CNNs compete in a way that both 
networks become better as the training progresses. These two CNNs are 
called the Generator and Discriminator. The Generator creates images 
that it aims to pass to the Discriminator as genuine whereas the Dis
criminator’s role is to identify whether the generated images are real or 
fake. To train the Discriminator, input images are provided as pairs with 
each pair comprising of a genuine image (from the training dataset) and 
a generated image (created by the Generator). The Generator is trained 
to create images that match the ground-truth whereas the Discriminator 
is trained to differentiate between the ground-truth and generated im
ages. The performance of both networks improves as training progresses 
[64]. In computational fluid dynamics, a GAN was used to develop a new 
sub-filter modelling approach in the context of large-eddy simulations 
[65]. The network performed well with decaying turbulence calculation 
and in complex combustion scenarios which otherwise would have been 
very challenging for conventional numerical methods. 

In this paper, we propose a new machine learning approach for 
solving nonlinear computational mechanics in shell structures using a 
conditional Generative Adversarial Network (cGAN) as an image pro
cessing technique. A cGAN is trained to map input images to output 
images and learn the loss function to train the cGAN. Thus, defining a 
loss function is not required when using cGANs which minimizes human 
input in the process of building the cGAN and makes the method more 
general allowing its application to a variety of image datasets (e.g., 
transforming hand-drawn sketches into photos, etc.) [64]. Further in
formation about the cGAN is provided in Section 2.2. 

To train the machine learning algorithm, a set of data is created using 
nonlinear FEA models. The results of the finite element model along 
with the material and geometric properties are embedded into images 
that are then used to train the cGAN. The red-green-blue (RGB) images 
that are created are not contour plots of the solution of the FEA simu
lation. Instead, every RGB image includes the solution of the FEA 
simulation (displacement or stress) in the red channel whereas geo
metric and material properties are included in the green and blue 
channels of the image. The transformation of the data into images makes 
the problem suitable for emulating FEA by cGANs. The proposed 
approach has a significant computational advantage in treating the 
mechanical behaviour as an image processing problem. Trying to 
recognize the visual patterns in the finite element results and then 
mimicking them is more efficient compared to the process of dealing 
with a significant amount of raw data that is typically produced in such 
simulations. Three cGANs are designed where a dedicated network is 
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used to identify deflections by reading forces, stresses by reading de
flections and stresses by reading forces. Thus, the contribution of this 
paper lies in transforming the solution of a nonlinear FEA problem into 
an image dataset that can be used to train a cGAN which is then used to 
emulate FEA. Geometric and material properties are embedded in the 
image dataset. The resulting cGAN can produce near real-time results for 
nonlinear FEA problems. 

The remainder of this paper is organized as follows. Machine 
learning and ANNs will be briefly reviewed in Section 2. Section 3 lays 
out the proposed approach and how the cGAN is built, trained, and 
validated. Two examples are then presented to assess the performance of 
the proposed method in Section 4 while conclusions are drawn in Sec
tion 5. 

2. Machine learning and artificial neural networks 

Artificial neural networks (ANNs) are a class of computational tools 
inspired by the biological nervous system [66]. The main processing unit 
is called the neuron or perceptron. The neurons are organized in sets of 
layers. The network usually starts with an input layer and ends with an 
output layer. The specific layout to which the neurons and layers are 
interconnected is known as the “connectivity pattern” or “architecture” 
of the network. The network is trained to learn a certain data pattern by 
going through training cycles (or epochs). During each epoch, each 
neuron receives input signals from other units yielding an output. 
Throughout the training process, the weights (w) and biases (b) of the 
neurons are affected by the flow of data through the network layers. 
Then, the values carried by the neurons are aggregated by various 
‘activation functions’ resulting in the ‘activation’ value (a) of that 
neuron. The neurons’ activation values are then transmitted as inputs to 
the next connected layer. The network accuracy is calculated by a 
backpropagation algorithm during the training process which leads to 
the network convergence toward a solution. This process makes the ANN 
capable of learning linear and nonlinear relations, hence allowing it to 
solve many problems instead of following a predefined set of rules. 

2.1. Convolutional neural networks 

Convolutional neural networks (CNNs) are a specific type of ANNs 
that emerged from the study of the human brain visual cortex for image 
recognition purposes. CNNs showed a great ability to solve difficult 
image-based tasks in pattern recognition, classification and machine 
vision in general [54,67] as well as in traffic prediction and autonomous 
vehicle applications [57,68]. A CNN is a collection of convolutional 
layers, fully connected layers, and pooling layers. Convolutional layers 
form the most important block in a CNN. These layers are not fully 
connected layers because each neuron is only connected to a few other 
neurons located within a small rectangular area in the previous layer. 
This architecture allows the network to focus on small low-level features 
in the first hidden layer, then assemble them into larger higher-level 
features in the next hidden layer and so on. The pooling layers are like 
the convolutional layers in that they are not fully connected. Each 
neuron in a pooling layer is connected to the outputs of a limited number 
of neurons in the previous layer. However, a pooling neuron just ag
gregates the inputs using an aggregation function such as the max or 
mean. This process allows the network to reduce memory usage and 
computations. Finally, the fully connected layers in conjunction with the 
activation functions produce scores to be used for classification. 

2.2. Generative adversarial network 

The generative adversarial network (GAN) is a specific type of CNN 
which was initially designed for image creation and enhancement. It was 
first proposed in 2014 by Goodfellow et al. [69]. Although the idea of 
GAN showed great potential almost instantly, it took some time to 
overcome some of the difficulties in its training. The core principle of 

GAN relies on the competition between two rival networks; a generator 
and a discriminator; hence their "adversarial" nature. The generator is 
tasked with creating an image which it aims to pass off as genuine to the 
discriminator. The discriminator in turn is tasked with identifying 
whether the images it receives from the generator are in fact “real” or 
“fake”. The discriminator always works with two images during the 
training phase. One image comes from the generator and the other is a 
genuine image from the training dataset. After assessing the level to 
which it believes the generator image is real or fake via loss functions, 
the results are backpropagated for each network, i.e., for the generator 
and the discriminator, and the cycle is repeated. This competitive loop 
between the generator and the discriminator improves both networks, 
but primarily makes the generator capable of producing 
near-ground-truth images. A subtype of GANs is the conditional gener
ative adversarial network (cGAN). This network was developed by Isola 
et al. [64] with their seminal “Pix2Pix” model. In principle, the cGAN 
and the GAN are based on the same fundamentals. However, instead of 
generating an image from random input noise and discerning whether it 
is passable as genuine or not as in the GAN, the cGAN enforces the 
conditional generation and discerning of the images using auxiliary in
formation (such as class labels or data). Isola et al. [64] demonstrated 
that the Pix2Pix method can be utilized on a broad range of datasets for a 
variety of tasks such as architectural labels transformed into building 
images and maps transformed to aerial photos and colorization of black 
and white images. Since the image generation is conditional the 
convergence of the cGAN is faster than the convergence of GAN. 
Moreover, unlike conventional CNNs, there is no need to define a loss 
function when using cGANs. The Pix2Pix method learns the loss function 
without human input thereby providing a “universal” loss function. This 
makes cGAN a more powerful tool and a potential candidate to emulate 
FEA. 

3. Proposed method 

We propose to build a machine learning approach based on the cGAN 
that can successfully predict the mechanical behaviour of a structure for 
a variation of loads and material properties. The approach consists of 
multiple stages which are summarized in the swimlane diagram of 
Fig. 1. Each stage is explained in detail in the following sections. 

3.1. Data creation 

In this section, two case studies will be presented. In both cases, a 
bilinear material model is used, and multiple vertical loads are randomly 
applied to the structure which experiences nonlinear deformations. The 
first case study considers the vertical deformation of a square plate 
whereas the second case study considers the vertical displacement of a 
curved shell. 

3.1.1. Plate 
In this case study, we focus on the nonlinear response of a square 

plate under varying localized pressure loads applied at multiple loca
tions where the magnitudes of the loads and their locations are 
randomly varied. The four edges of the plate are fully fixed. The choice 
of this structure is deliberate where a large area with numerous input- 
output coordinates can be rapidly produced and since a closed form 
solution for this problem does not exist. The data is generated using a 
finite element model with SHELL181 elements in ANSYS [70]. A uni
form mesh of 256 × 256 elements is used to model the plate. A schematic 
of the plate and an example of the applied loads is shown in Fig. 2. 

Six different values of the modulus of elasticity (60, 90, 120, 150, 
180 and 210 GPa) and eight values of the plate thickness (20, 40, 60, 80, 
100, 150, 200 and 300 mm) are considered. This results in a total of 48 
possible physical realizations of the plate. Each realization starts with 
simulating the response to one (randomly located) load, then two 
(randomly located) and so on until five (randomly located) loads are 
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acting on the plate. Since the plate is fully fixed, the loads are applied 
within 5% of the edges of the plate. 

The value of the load that would cause nonlinear deformations in the 

plate depends on the modulus of elasticity and the thickness of the plate. 
For example, Table 1 shows such loads for eight realizations of the plate 
(with one value for the modulus of elasticity). Similar tables were 
generated for the remaining 40 realizations. The value of the transverse 
force F that is displayed in Table 1 were obtained with guidance from 
[71] and was then validated using FEA to make sure that this load will 
induce nonlinear deformations in the plate. For each realization in 
Table 1, ten more values for the vertical load were calculated. Thus, for 
each realization of the plate, five loads of those shown in Table 1 are 
randomly selected, sequentially applied to the load at random locations 
and the simulation is conducted. Thus, the choice of the load F ensures 
that the plate will undergo nonlinear deformations in each of the five 
simulations. 

For each realization, the five simulations are repeated 25 times as 
“trial cycles” to generate randomness and ensure a wide statistical 
spread in the dataset. Hence, each realization with one modulus of 
elasticity and plate thickness will generate 125 data samples. With 48 
physical realizations of the plate, the total number of simulations comes 
up to 125 × 48 = 6, 000. The plate deflections as well as the first 
principal stress are evaluated for all the considered simulations and the 
results are stored in the dataset needed for training and validating the 
cGAN. The generation of this dataset is computationally intensive but 
can be performed in parallel on multiple machines. Fig. 3 below shows a 
sample of both stress and vertical displacement results from one of the 
simulated finite element models. 

3.1.2. Curved shell 
In this case study, the nonlinear response of a curved shell to 

randomly located vertical loads is considered. Fig. 4 below shows a 
schematic of the curved shell. The shell is fixed at the edge where x =
0 and at the edge where x = 1 m; the other two edges are free. The width 
(along the y-axis) is 1 m, and the radius of the shell is 1 m. The shell has 
the same material properties as the plate. Six values of the modulus of 
elasticity (60, 90, 120, 150, 180 and 210 GPa) and eight values of the 
plate thickness (20, 40, 60, 80, 100, 150, 200 and 300 mm) are 
considered. The combinations of the modulus of elasticity and thickness 
provide 48 possible physical realizations. For each realization, loads are 

Fig. 1. Swimlane diagram summarizing the methodology.  

Fig. 2. Schematic of a rectangular plate with five (randomly located) loads. The 
four edges of the plate (annotated by B in the schematic) are fully fixed. 

Table 1 
Possible value of the load that would cause the plate whose modulus of elasticity is 60 GPa to experience nonlinear deformations in the traverse direction.  

Thickness [mm] F [kN] 1.01F 1.02F 1.03F 1.04F 1.05F 1.06F 1.07F 1.08F 1.09F 1.10F 

20.0 13.2 13.3 13.5 13.6 13.7 13.9 14.0 14.1 14.3 14.4 14.5 
40.0 52.0 52.5 53.0 53.6 54.1 54.6 55.1 55.6 56.2 56.7 57.2 
60.0 130.0 131.3 132.6 133.9 135.2 136.5 137.8 139.1 140.4 141.7 143.0 
80.0 245.0 247.5 249.9 252.4 254.8 257.3 259.7 262.2 264.6 267.1 269.5 
100.0 380.0 383.8 387.6 391.4 395.2 399.0 402.8 406.6 410.4 414.2 418.0 
150.0 730.0 737.3 744.6 751.9 759.2 766.5 773.8 781.1 788.4 795.7 803.0 
200.0 1300.0 1313.0 1326.1 1339.4 1352.8 1366.3 1380.0 1393.8 1407.7 1421.8 1430.0 
300.0 2900.0 2929.0 2958.0 2987.0 3016.0 3045.0 3074.0 3103.0 3132.0 3161.0 3190.0  
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added one at a time staring with one (randomly located) load until five 
(randomly located) loads are applied. The loads are all acting in the 
negative z-direction. The load values were obtained in similar fashion as 
laid out in Section 3.1.1. For each realization, the load with the lowest 
value would cause nonlinear deformation in the shell. Ten loads were 
defined like Table 1 and the loads that are applied sequentially are 
selected randomly from these ten loads. All the loads that were used in 
this case study are provided as part of the data associated with this paper 
(which is openly available). Each simulation is repeated 25 times to 
generate randomness and ensure that the dataset has a wide statistical 
spread. Like in the first case study, the dataset will be formed from the 
results of 6000 simulations. Vertical dispalcement and the first principal 
stress are saved after each simulation to be later used in the training and 
validation of the cGAN. 

3.2. Data pre-processing 

To train the cGANs, the dataset was organized as paired images. One 
image as an input and the other as the target. Rasterized images can be 
used in any of the following popular formats: Bitmap (bmp), Portable 
Network Graphics (png) or Joint Photographic Experts Group (jpeg). 
The images are composed of a matrix of pixels each with a minimum of 
three channels. Those channels represent red, green, and blue colours, i. 
e., the RGB format. The granularity of a pixel in each channel is 
administered by the bit-depth which can be 8 bits for 256, 16 bits for 
65,536 or 24 bits for 16,777,216 shades of each colour. It should be 
noted that usually for photography purposes, 24 bits are used as the 
human eye do not easily distinguish between colours beyond this level of 
shadings. However, it is possible to create higher bit-depth for industrial 
uses. Obviously, a higher bit-depth results in a larger image file and 
subsequently increases the size of the dataset. After careful consider
ation, we decided to use images with depth of 8 bits as this provided 
sufficiently accurate results for a significant reduction in the CPU time 
which was otherwise used to train the cGAN. Furthermore, the image 
format may cause compression artefacts. Although this might not be 
visible to the human eye, such artefacts can damage the data or even 
corrupt it. A comparison of high-quality image formats is summarized in 

Table 2. In this work we use png file format as it is a lossless data 
compression format. 

To maximize the amount of information passed to the cGAN, the 
following parameters: elasticity modulus, plate thickness, load location, 
load magnitude, nodal deflections, and nodal stresses, have been 
transferred to the images. The red channel in each image is assigned to 
the magnitude (applied force, stress, or deflection), green to the modulus 
of elasticity and blue to the plate thickness. This process results in three 
images for each sample of results. Fig. 5 shows a sample of paired images 
decomposed into the three channels red, green, and blue. The target 
image is obtained by transforming the results of the FEA simulation and 
the material and geometric properties as explained above. 

3.2.1. Data normalization 
Converting the decimal results of the finite element simulation into 

an image requires scaling the data to fit within the colour depth range. 
Therefore, each input variable is normalized to the range [0,1]. Then, 
the normalized values are multiplied by the bit-depth of each channel, i. 
e., 255 (since the bit-depth is 8 bits and the channel colour range is [0, 
255]). Clearly, the cGAN cannot distinguish the amplitude difference 
between different input variables. The resultant is a three-dimensional 
colour-space of potential input values mapped to pixel colour as illus
trated with an example of the two-dimensional image files in Fig. 6 
where a sample of paired image shows the deflection as an input and the 
corresponding stresses as an output. 

3.3. Model creation 

The cGAN which is implemented in this paper follows the working 
principles and the architecture of the “Pix2Pix” network developed by 
Isola et al. [64]. Like the GAN, the cGAN trains the generator to produce 
realistic samples for each class of data in the training dataset. The 
discriminator on the other hand learns to distinguish fake samples from 
real ones. However, unlike GAN, the discriminator in the cGAN does not 
learn to identify the class of the image. It learns only to accept real, 
matching samples while rejecting samples that are mismatched. More
over, for the generator to fool the discriminator, noise is used to syn
thesize fake samples. Next, we discuss the main components of the 
cGAN. 

Fig. 3. A sample of thin plate analysis results in response to five randomly located loads.  

Fig. 4. A schematic of the curved shell considered in this case study.  

Table 2 
Comparison of common image file formats recreated from [72].  

Parameter GIF89a JPEG TIFF PNG 

Maximum Colour Depth 8-bit 24-bit 48-bit 48-bit 
Number of Colours 256 colours 16 million 281 trillion 281 trillion 
Compression Technique Lossless Lossy Lossy Lossless 
Gamma correction No No Yes Yes 
Patent Issues Yes No Yes No  
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3.3.1. Generator network 
The objective of the generator in a cGAN is to produce samples that 

capture the characteristics of the training dataset and look indistin
guishable from the training data. The generator learns the patterns in the 
dataset to distinguish the dataset content. Then instead of recognizing 
the patterns, the generator learns to create the dataset from scratch; this 
takes the form of an auto encoder/decoder whereby the encoder portion 
is tasked with mapping the input space to another intermediate space 
(sometimes called a “latent space”). Thereafter and by contrast, the 
decoder has the complementary function of mapping from the latent 
space to another target space. The Pix2Pix implementation used in this 
research has additional bridging connections between the layers of the 

encoder and layers of the decoder to form a “U-Net”. This “cross-linking” 
provides the ability to pass information across the network whilst 
avoiding the central bottleneck region inherent in the conventional 
encoder/decoder networks and functionally imposes structural condi
tions between layers. Fig. 7 shows a schematic of the generator network. 

3.3.2. Discriminator network 
The cGAN discriminator network is a CNN which Isola et al. [64] 

refer to as a “patchGAN” classifier. With patchGan, the discriminator 
divides each image into overlapping “patches”. Then, the discriminator 
evaluates if each patch is real or fake. The output of the discriminator is 
a matrix with predicted probability for each patch. This process allows 
the network to measure the goodness of the discriminator at dis
tinguishing images based on their pattern rather than their content. 

3.3.3. Loss functions and gradients 
The objective function of the cGAN can be stated as follows 

L cGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z))] (1)  

where the generator (G) is trained to map the real image x and a random 
noise vector z to an output image y. On the other hand, the discriminator 
(D) is trained to classify between the “real” (x) and “fake” (y) images. 
The generator tries to minimize the objective function while the 
discriminator (which acts as the adversarial network) tries to maximize 
the same objective, i.e., 

Fig. 5. Colour channel decomposition for a single sample of 256 × 512 png paired image dataset reflecting the colour channel mapping.  

Fig. 6. Example of the processed paired image dataset: deflection as an input 
(left) and the corresponding stress as an output (right). 

Fig. 7. cGAN generator uses a random noise vector z and a label y (one of them possible labels) as inputs and produces a fake example (x*|y) that strives to be both 
realistic looking and a convincing match for the label y. 
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G* = argmin
G

max
D

L cGAN(G,D) (2) 

Additionally, the cGAN includes the mean absolute error loss, L1, 
imposed on the generator to be near the ground truth output (in an L1 
sense) in addition to the conventional requirement of convincing the 
discriminator that the output is real. This L1 requirement can be stated as 

L L1(G) = Ex,y,z[ ‖ y − G(x, z)‖1] (3) 

The final objective of the cGAN can then be summarized as 

G* = argmin
G

max
D

L cGAN(G,D) + λL L1(G) (4) 

In practice, calculating the losses and utilizing them to change the 
network weights and biases is done sequentially as laid out in [73]. 

3.4. Model training 

The results of the finite element simulation were organized into three 
datasets: loads, deflections, and stresses. Since the stresses and the de
flections are generated by the applied loads, the force dataset is paired 
with both the deflections and the stresses datasets to create two exper
iments. In the first experiment, we train the cGAN to identify the 
structure’s deflections by reading the forces, i.e., a force-to-deflection 
(FtD) mapping. In the second experiment, we train the cGAN to iden
tify the structure’s stresses by reading the forces, i.e., a force-to-stresses 
mapping (FtS). Furthermore, we also created a third pair by coupling the 
deflections with the stresses to create a deflection-to-stress (DtS) map
ping. In this work, the cGAN are implemented in MATLAB [74]. Two 
thirds of the dataset was used for training while the remaining third was 
equally split between testing and validation sets. Hence, 4000 images 
were used for training, 1000 images were used for testing and 1000 
images were used for validation. Random jitter and random flip func
tions were used to introduce additional randomness and discourage 
over-fitting [64]. The losses and gradients were determined and applied 
to both the generator and discriminator networks using the ADAM solver 
and backpropagation function [73]. 

3.5. Model validation 

GAN in general (and cGAN in particular) are difficult to train for 
several reasons. For example, a very good discriminator may result in a 
poor generator with a vanishing gradient problem. In this case the 
discriminator does not provide sufficient feedback to the generator to 
improve its outputs. Another problem happens when the generator 
produces the same output repeatedly leading the discriminator to al
ways reject the output, which is known as the mode collapse problem. 
Consequently, the discriminator gets stuck in a local minimum and does 
not find the optimal hyperparameters of the cGAN. Because the accuracy 
of prediction is paramount, we validate each generated result against the 
ground-truth (obtained from the FEA simulations) by several metrics. 
We use the direct absolute error (DAE) to evaluate the absolute value of 
the difference between the target and generated results; this is given by 

DAE =
⃒
⃒ytarget − ygenerated

⃒
⃒ (5)  

where ytarget is the ground-truth obtained through the FEA and ygenerated 
is the prediction generated by the cGAN. We also use the relative error 
(RE) which is the ratio of the DAE magnitude to the target value 
magnitude, and is defined by 

RE =

⃒
⃒ytarget − ygenerated

⃒
⃒

ytarget
=

DAE
ytarget

(6) 

The third metric we use is the relative percent difference (RPD) 
which estimates the variation between the target and the generated 
results 

RPD =
1
2

⃒
⃒ytarget − ygenerated

⃒
⃒

(
ytarget + ygenerated

) =
1
2

DAE
(
ytarget + ygenerated

) (7) 

The latter is an important metric as there might be regions wherein 
the target and the generated results have zero values (e.g., at fixed 
edges) where the DAE and the RE are undefined. All the above metrics 
are calculated for the overall images (which results in 2D plots). We also 
calculate the averages of these metrics over the entire result and at the 
locations of the maximum input values. Furthermore, the errors are 
calculated and tracked across every saved epoch of the model to gauge 
the improvements in the training of the cGAN, hence, to assess the 
changes. 

4. Results and discussion 

This section discusses the numerical results of the three primary 
experiments, namely, FtS, FtD and DtS mapping for the two case studies 
that were described in Section 3.1. The cGAN architecture explained in 
Section 3.3 is used to obtain all the following results. 

4.1. Training progress 

The training for each experiment is run for 200 epochs with a batch 
size of 32 samples each so that all the 4000 training samples are orga
nized into 125 batches resulting into a total of 25,000 iterations to 
complete the training. Fig. 8 shows snippets of the training progress for 
the FtS experiment for the rectangular plate case study. The figure in
cludes the results of the generator, the discriminator and the cGAN. The 
snippets show that the score of the discriminator rises whilst conversely, 
that of the generator decreases starting from around the 150th to the 
550th iterations. This is an indication that the discriminator can assess 
the generated result as a “fake” up to this point. However, around the 
5,900th iteration the score for both the generator and the discriminator 
jumps between 0 and 1. The losses for both networks also increase in the 
same range. These observations indicate that the discriminator is having 
difficulty in distinguishing the generator images as fake and that the 
generator is producing believable results. From here onward, both net
works advance in steps with one another, and the learning changes are 
reflected in the fine details of the snippets. The eventual alignment of the 
generator losses with that of the discriminator indicates the improve
ment in fooling the discriminator, hence, the improved prediction ac
curacy. Similar behaviour is observed in the FtD and DtS experiments of 
the rectangular plate and in all the experiments of the curved shell. 

The training is conducted for 200 epochs with the model being saved 
at a checkpoint every four epochs. Hence, an array of 51 checkpoints is 
produced for each of the samples. Fig. 9 shows the output of a randomly 
selected sample from the validation dataset at each of the saved 
checkpoints. Fig. 9 shows the gradual improvement of the predictions as 
the cGAN’s training progresses. Again, similar patterns are found when 
training for the FtD and DtS mappings of the plate case and for all the 
experiments of the curved shell. 

4.2. Validation results 

For validating the FtS case, 2000 paired images were used. Each pair 
of images consisted of the force image as an input and the stress image as 
a target. A randomly selected input image from the validation dataset is 
used to compare against the ground-truth using Eq. (5) through to Eq. 
(7). The results in Fig. 10 show the prediction of the generator at the first 
checkpoint (4th epoch) and at the last checkpoint (200th epoch). The 
absolute error plot shows a significant reduction in the error from 
around 50% at the first checkpoint to less than 10% at the last check
point. Furthermore, the maximum RE throughout the plate is at the first 
checkpoint, while the maximum RE at the last checkpoint is near the 
fixed edges of the plate where the solution is almost zero. This justifies 
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the relatively high RE whereas the DAE is much smaller at the fixed 
edges. 

Next, we illustrate in Fig. 11 through Fig. 14 the DAE and RPD errors 
for the full validation dataset (2000 samples), where both the maximum 
and the mean value of the DAE and RPD errors are shown. The aim here 
is to show the errors for each sample in the validation dataset, the error 
in the maximum stress and the mean value of the error for all the pixels. 
Fig. 11 shows the kernel density distribution of the DAE error at the 
location of the maximum stress and the mean value of the DAE error 
over all training epochs and for all the validations samples. It is possible 
to see that the best performance is in general not at the end of the 
training stage (i.e., not at the 200th epoch). The figure also shows that 

the mean value of both distributions (DAE target and DAE mean) is 
below 5% for all training epochs. Fig. 12 presents the cascade for the 
DAE mean over all epochs and is consistent with Fig. 11. 

Figs. 13 and 14 present similar results to those presented in Figs. 11 
and 12 but for RPD errors. These figures are consistent with the previous 
ones. However, in this case the mean value of both distributions, i.e., 
RPD at the maximum stress and RPD mean are below 20% for all 
training epochs as shown in the figures. 

It should be noted that the choice of 200 epochs is made to ensure 
that the network converges. However, this choice does not mean the 
network will find the best solution at the 200th epoch. The network may 
find an optimal solution before going through the 200 epochs and then 

Fig. 8. FtS Model training progress snippets of the scores, losses, and random validation output for: the first 550 iterations (top), between 5800 and 6000 iterations 
(middle) and between 21,600 and 22,400 iterations (bottom). 
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start over-fitting the data afterwards. Indeed, Fig. 13, shows that the 
network reaches its best solution after around 136 epochs of training. 
Thereafter, the network starts over fitting the data which leads to poorer 
performance at later epochs. To deal with such cases an early stopping 
technique [75] was adopted. The technique is a regularizing machine 
learning approach that allows to save and restore a network after it 
reaches an optimal solution. 

Fig. 15 shows that the mean value of the DAE of the maximum stress 
error distribution is 3% while for RPD is 5% when the cGAN is at its best 
performance. 

Similarly, to train and validate the FtD and DtS networks 6000 paired 
images are used for each. The input and the target are changed 
accordingly. Both DAE and RPD errors for all validation data are 
calculated following the same procedure for FtS mapping. The target in 
this case study is the maximum deflection for FtD and the maximum 

stress for DtS. The FtD network achieved its best performance at the 
112th epoch. The error evaluation at this epoch is presented in Fig. 16. 
The mean value of the error distributions for DAE target and DAE mean 
are below 1%. The RPD results of the mean and the target errors are 
below 5%. The cGAN for the DtS mapping achieved its optimal perfor
mance at the 160th epoch. Fig. 17 shows the error evaluation at this 
epoch where the value of DAE target error distribution is 2% and for 
RPD target is 4%. 

To further showcase the capability of the developed approach, two 
specific cases are presented. Here, the FtS network is used to predict the 
stress distribution given the plate’s material, thickness and the location 
of the forces. In Case I, the plate’s modulus of elasticity is 60 GPa its 
thickness is 20 mm. The loads are applied at five random locations as 
shown in Table 3. In Case II, the plate’s modulus is 210 GPa and its 
thickness is 20 mm. The loads are applied at three random locations as 

Fig. 9. Sequence of generated predictions for FtS Mapping of the plate: results at 51 checkpoints where finer details and smoother gradients emerge with continued 
training running from left to right and top to bottom. 

Fig. 10. FtS validation results of the error metrics at the first checkpoint (top) and the last checkpoint (bottom).  
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shown in Table 3. In each case, the plate’s modulus of elasticity, thick
ness and location and magnitude of the forces were provided to the 
trained FtS network. The network outputs an image. Using a modest 
Lenovo® ThinkPad T460S with Dual Core i7–6600 U @ 2.6 GHz, the 
generation of the image took 32 ms for Case I and 27 ms for Case II. The 
resulting image is scaled back to obtain the stress distribution; this 
process took less than 7 ms in both cases. Figs. 18 and 19 present the 
target (true) and the predicted stress distribution for Case I and Case II, 
respectively. In both cases, the predicted stress distribution and target 
stress distribution are in good agreement. In both cases, the RE (defined 
in Eq. (6)) is below 3% which is in agreement with the results presented 
in Fig. 15. 

4.3. Validation results of the curved shell 

The same methodology to validate the cGAN of the rectangular plate 
is used with the curved shell herein. Fig. 20 illustrates random ground- 
truth sample with prediction of the generator at the first checkpoint (4th 
epoch) and at the last checkpoint (200th epoch). The cGAN for the 
curved shell shows a similar behaviour to the plate’s cGAN where a huge 
reduction in the DAE occurs through the training process between the 
first and last checkpoints. 

For validating the FtS case, 2000 paired images were used. Like the 
training in the rectangular plate case study, each pair of images con
sisted of the force image as an input and the stress image as the target. A 
randomly selected input image from the validation dataset is used to 
compare against the ground-truth using Eq. (5) through to Eq. (7). 
Fig. 20 shows a significant reduction in the absolute error from around 
50% at the first checkpoint to less than 10% at the last checkpoint. 
Furthermore, the maximum error is at the peak force at the first 
checkpoint, while the maximum error at the last checkpoint is near the 
two fixed edges of the shell. The curved shell shows very low absolute 
error levels which justifies the higher level of the relative error. 

The cGAN of the curved shell showed its best performance after 96 
epochs of training. The error evaluation at this epoch is presented in 
Fig. 21. The mean value of the error distributions for DAE target and 
DAE mean are below 1%. The RPD results of the mean and the target 
error is below 5%. 

5. Conclusions 

The finite element analysis (FEA) is often used to model problems 
with complex geometries and homogeneous or heterogenous material 
properties. However, for this class of problems the method can be 

Fig. 11. FtS DAE results: Kernel density for error in the maximum stress (left) and kernel density for mean value of the error (right) for all samples and all epochs.  

Fig. 12. FtS cascade plot of DAE distribution for all samples and all epochs.  
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computationally demanding, which is a major barrier for real-time ap
plications such as virtual reality and digital twin models. It is also a 
significant barrier to work on optimisation problems even when using 
high performance computing. To reduce the computational demand of 
FEA problems, several approaches have been developed. Amongst these 
approaches, machine learning has emerged as a very capable candidate 
with potential to enable FEA in real-time. The development in deep and 
convolutional neural networks and combining them with physical 
models can both accelerate the analysis and retain the method’s accu
racy. In this paper, we propose a new approach to evaluate the stresses 
and the displacements in a nonlinear shell structure using image pro
cessing and machine learning techniques. The proposed approach 
significantly reduces the computational costs by treating the mechanical 
behaviour of the problem as an image. The performance of the proposed 
approach is assessed through two case studies. First, the nonlinear 
behaviour of a fully fixed rectangular plate with a varying geometry and 
a set of material properties is considered under several randomly placed 
loads. FEA is used to generate a dataset of solutions for hundreds of 
realizations of the plate. The results of the simulations are converted into 
contour plots of the stress or the displacement. The full dataset includes 
the results of 6000 simulations that are transformed into image pairs 

with the green and blue channels being assigned to the modulus of 
elasticity and the plate thickness, respectively. The red channel is 
assigned to the force and the displacement where half of the image is 
assigned to the force and the other half is assigned to the displacement to 
create an image pair. A conditional generative adversarial network 
(cGAN) is implemented and trained to emulate FEA. Numerical experi
ments are conducted to recover the stresses or the deflections using the 
proposed approach. The network is trained to map the force to the 
displacement, the displacement to the stress and the force to the stress. 
The network is trained for 200 epochs and the results are saved every 4 
epochs in this experiment. Using early stopping with error metrics, the 
best model was retrieved for each experiment. For both the stress and 
the deflection, the relative error remains below 5% of the FEA ground- 
truth. 

In the second case study, a curved shell is used to demonstrate the 
potential of the proposed method to work with alternative geometries. 
The curved shell is a sector of a cylindrical shell with the two straight 
edges being fixed and the two curved edges being free. The curved 
surface has the same variation in the thickness and modulus of elasticity 
as in the first case study. The loads are also applied randomly, and this 
resulted in 6000 simulation cases. Only the force to stress scenario is 

Fig. 13. FtS RPD results: Kernel density for error in the maximum stress (left) and kernel density for mean value of the error (right) for all samples and all epochs.  

Fig. 14. FtS cascade plot of RPD distribution for all samples and all epochs.  
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considered in this case study. To deal with the three-dimensional ge
ometry, a projection into two-dimensions is introduced to generate the 
training images for the cGAN. In this step, the FEA results are projected 
onto the horizontal plane to generate the stress and the force images. 
Again here, the final performance of the resulting cGAN shows a relative 
error below 5% of the FEA ground-truth. 

The two case studies presented and the three numerical experiments 
that were conducted show that the proposed method can provide a 
potential alternative for conventional FEA applications that require re
petitive solutions of a set of problems. The results also demonstrate the 
considerable potential of the proposed method in recovering the me
chanical behaviour of shell structures where it is possible to reproduce 

the solution of the problem at a fraction of the computational cost 
required by traditional FEA. 
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Table 3 
Two realizations of the plate with.  

Case I Modulus of Elasticity: 60 GPa, Thickness of 20 mm 

Force Location (0.42,0.37) (0.42,0.37) (0.42,0.37) (0.42,0.37) (0.42,0.37) 
Force Magnitude 13.6 kN 13.6 kN 13.6 kN 13.6 kN 13.6 kN 
Case I Modulus of Elasticity: 210 GPa, Thickness: 20 mm 
Force Location (0.72,0.43) (0.72,0.43) (0.72,0.43)   
Force Magnitude 39.2 kN 39.2 kN 39.2 kN    

Fig. 18. Stress distribution in the rectangular plate with five applied loads: (left) target/true stress distribution obtained by FEA and (right) predicted stress 
distribution. 
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Fig. 19. Stress distribution in the rectangular plate with five applied loads: (left) target/true stress distribution obtained by FEA and (right) predicted stress 
distribution. 

Fig. 20. FtS validation results of the error metrics at the first checkpoint (top) and the last checkpoint (bottom).  

Fig. 21. FtS maximum stress error distribution for RPD and DAE at Epoch 96: Kernel Density for DAE error (Left) and Kernel Density for RPD error (right) for all 
samples at the 96th epoch. 
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