
Advances in Engineering Software 176 (2023) 103392

Available online 24 December 2022
0965-9978/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research paper

Nonlinear analysis of shell structures using image processing and
machine learning

M.S. Nashed a, J. Renno b,*, M.S. Mohamed a

a School of Energy, Geoscience, Infrastructure and Society, Institute for Infrastructure & Environment, Heriot-Watt University, Edinburgh, United Kingdom
b Department of Mechanical & Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar

A R T I C L E I N F O

Keywords:
Convolutional neural networks
Nonlinear finite element analysis
Shell structures
Stress prediction

A B S T R A C T

In this paper, we propose a novel approach to solve nonlinear stress analysis problems in shell structures using an
image processing technique. In general, such problems in design optimisation or virtual reality applications must
be solved repetitively in a short period using direct methods such as nonlinear finite element analysis. Hence,
obtaining solutions in real-time using direct methods can quickly become computationally overwhelming. The
proposed method in this paper is unique in that it converts the mechanical behaviour of shell structures into
images that are then used to train a machine learning algorithm. This is achieved by mapping shell deformations
and stresses to a set of images that are used to train a conditional generative adversarial network. The network
can then predict the solution of the problem for a varying range of parameters. The proposed approach can be
significantly more efficient than training a machine learning algorithm using the raw numerical data. To evaluate
the proposed method, two different structures are assessed where the training data is created using nonlinear
finite element analysis. Each structure is studied for a varying geometry and a set of material properties. We show
that the results of the trained network agree well with the results of the nonlinear finite element analysis. The
proposed approach can quickly and accurately predict the mechanical behaviour of the structure using a fraction
of the computational cost. All created data and source codes are openly available.

1. Introduction

The finite element method is a useful numerical tool for modelling
many engineering applications. The method is especially useful for
dealing with complex geometries and/or material heterogeneity. How-
ever, it often relies on highly refined mesh grids to provide accurate
results. This can be computationally expensive not only for solving
problems with many degrees of freedom but also for generating such
meshes. The computational needs become even more of an issue when
considering finite element models that should produce results in real-
time. Running such computations usually involves solving a large sys-
tem of equations repeatedly several times per second, which can be
difficult to achieve even with advanced computational hardware. To
deal with this class of applications, a significant amount of computations
are performed offline and only necessary computations are updated in
real-time [1,2]. This approach can be efficient if the changes in the
system can be accurately predicted offline. But accurate predictions are
difficult to achieve in many applications related to medical procedures
[3,4], interactive virtual environments [1,5], predictive control [6] and

design/process optimisation [7] amongst others. In many such appli-
cations, real-time finite element computations must be performed
online.

To speed-up online finite element computations, three different ap-
proaches are possible [8]: first, it is possible to rely on the constant
improvement in the computing hardware as described by Moore’s law
[9]. This also includes changing the strategy of the hardware utilization
[3,5]. The second approach relies on code optimisation and parallel
computing [10,11]. The third approach is to develop new modelling
algorithms such as mass–spring systems [12,13], model-order reduction
[14,15], proper generalized decomposition [16,17], enriched finite
element techniques [18] or wave-based finite element methods [19,20].
More recently, machine learning algorithms which are trained using
solutions of finite element simulations are also used to solve problems in
real-time [21–23].

Solving converged finite element models often provides reliable so-
lutions. However, only models with a moderate number of degrees of
freedom can be executed in a real-time manner. Therefore, several at-
tempts were made to alter the way finite element problems are

* Corresponding author.
E-mail address: jamil.renno@qu.edu.qa (J. Renno).

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

https://doi.org/10.1016/j.advengsoft.2022.103392
Received 25 May 2022; Received in revised form 19 November 2022; Accepted 1 December 2022

mailto:jamil.renno@qu.edu.qa
www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2022.103392
https://doi.org/10.1016/j.advengsoft.2022.103392
https://doi.org/10.1016/j.advengsoft.2022.103392
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103392&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Advances in Engineering Software 176 (2023) 103392

2

formulated and solved. In general, the alteration compromises the ac-
curacy of the solution to meet the objective of real-time simulation. For
example, ignoring (material or geometric) nonlinearity can significantly
reduce the computations and may offer a sufficient level of accuracy
based on the application. Huang et al. [24] developed an augmented
reality system based on a network of wireless sensors acquiring spatially
distributed loads and a finite element model. Real-time computations
were achieved by assuming the problem is linear and has a quasi-static
behaviour which speeds up the finite element computations to real-time
levels. Fiorentino et al. [25] used a similar approach on a cantilever
specimen. The results of the finite element simulation were displayed in
real-time on the specimen where the boundary conditions were inter-
actively defined/redefined. However, in many applications it is not
possible to assume linearity.

Biomedical engineering is a main area where most of the applications
cannot be treated as linear. Examples can be found in studies that
involve modelling soft tissues such as skin [26,27], internal organs [28,
29], muscles [30,31], and brain tissues [32]. Hence, the finite element
analysis (FEA) of this type of applications often cannot be performed in
real-time. To overcome this, quasi-nonlinear models were developed by
combining a linear-elastic finite element model with a nonlinear one
with the nonlinear model being limited to certain parts of the compu-
tational domain. Examples of such approach can be found in [14,
33–35]. In general, this approach ignores certain nonlinear effects.
Similarly, the approaches that rely on model-order reduction are, in
general, not applicable to nonlinear problems [36,37].

Compared to the previous approaches, machine learning algorithms
are a strong candidate to overcome the above difficulties. The work on
using artificial neural networks (ANN) as an alternative to the FEA has
been ongoing since the early 1990s [38]. However, at the early stages
ANNs had serious limitations which resulted in severe restrictions on
where they can be useful. These restrictions were eased significantly by
the recent development of new approaches such as deep learning and
physics informed neural networks (PINNs) [39,40]. The popularity of
deep learning and PINNs has been on the rise. For example, Karniadakis
et al. [41] published an extensive review of physics-informed machine
learning approaches. They provided a review of existing capabilities and
outlook of this field. Alber et al. [42] provided a comprehensive review
of integrating multiscale modelling and machine learning.

To reduce the computational cost of FEA when solving multi-scale
problems, machine learning surrogate models were nested in a micro-
model, which significantly reduced the computational costs [26]. Other
results showed that PINNs can simulate the response of an elastic bar
with good accuracy and much faster than standard computational
methods [43]. Deep neural networks were also used to evaluate the
buckling response of aircraft panels [44] where the neural network
estimated the response with 95% accuracy compared to the FEA but
using only 1/200 of the central processing unit (CPU) time. Deep
learning was also used with higher-order neurons to predict the strength
of foamed concrete [45]. Other cases focused on producing more ac-
curate results using ANNs but with reasonable computational cost [46,
47]. More recently, the introduction of PINNs led to numerical models
that are driven by data as well as physics and potentially combining the
advantages of both approaches. Here, the neural network was used to
solve partial differential equations. For example in [48], a Python
package for physics-informed deep learning was developed to solve
partial differential equations in strong and weak forms. PINNs were also
implemented to build surrogate models simulating nonlinear von Mises
elastoplasticity in solid materials [49]. Wen et al. [50] combined PINNs
with FEA to model complex deformations in multiscale problems.
Combining PINNs with FEA is not limited to mechanical problems. For
example, PINNs can be used to accurately predict convective heat
transfer [51].

Another popular type of neural networks which is used by engineers
for solving problems in mechanical engineering is convolutional neural
networks (CNNs). This type of networks is composed of convolutional

layers, fully connected layers, and pooling layers. The layers are stacked
successively with additional activation functions at key points to form a
complete CNN [52]. CNNs were initially introduced for image process-
ing in applications related to machine vision [53–55], autonomous ve-
hicles [56,57] and image segmentation [58,59]. More recently, CNNs
were also introduced into mechanical applications. The finite element
method and CNNs were combined within the same framework to solve
optimisation problems for annular shape charge [60]. The network was
trained using finite element simulations and the resulting network was
then used to predict the optimal parameters of an annular liner. The
presented numerical simulations and the experimental results indicated
that the CNNs have indeed produced an optimum solution for the
annular shape charge problem. Krokos et al. [61] considered multiscale
computational mechanics problems where they used an
encoder-decoder CNN to generate the stress distribution of the micro-
scale features in their model. They used a Bayesian approach to evaluate
the uncertainty of the predictions. Desphande et al. [62] used three
benchmark finite element models to generate training datasets. Loads
were applied randomly on each model and the displacement results were
recorded and used in the training of Bayesian CNNs. The loads were
large enough to cause nonlinear deformations. For a more in-depth and
comprehensive discussion of CNNs, the interested reader is directed to
[63]. Generative adversarial networks (GANs) are a special form of
CNNs that are often utilized in the creation of images [64]. The main
principle of GANs is that two rival CNNs compete in a way that both
networks become better as the training progresses. These two CNNs are
called the Generator and Discriminator. The Generator creates images
that it aims to pass to the Discriminator as genuine whereas the Dis-
criminator’s role is to identify whether the generated images are real or
fake. To train the Discriminator, input images are provided as pairs with
each pair comprising of a genuine image (from the training dataset) and
a generated image (created by the Generator). The Generator is trained
to create images that match the ground-truth whereas the Discriminator
is trained to differentiate between the ground-truth and generated im-
ages. The performance of both networks improves as training progresses
[64]. In computational fluid dynamics, a GAN was used to develop a new
sub-filter modelling approach in the context of large-eddy simulations
[65]. The network performed well with decaying turbulence calculation
and in complex combustion scenarios which otherwise would have been
very challenging for conventional numerical methods.

In this paper, we propose a new machine learning approach for
solving nonlinear computational mechanics in shell structures using a
conditional Generative Adversarial Network (cGAN) as an image pro-
cessing technique. A cGAN is trained to map input images to output
images and learn the loss function to train the cGAN. Thus, defining a
loss function is not required when using cGANs which minimizes human
input in the process of building the cGAN and makes the method more
general allowing its application to a variety of image datasets (e.g.,
transforming hand-drawn sketches into photos, etc.) [64]. Further in-
formation about the cGAN is provided in Section 2.2.

To train the machine learning algorithm, a set of data is created using
nonlinear FEA models. The results of the finite element model along
with the material and geometric properties are embedded into images
that are then used to train the cGAN. The red-green-blue (RGB) images
that are created are not contour plots of the solution of the FEA simu-
lation. Instead, every RGB image includes the solution of the FEA
simulation (displacement or stress) in the red channel whereas geo-
metric and material properties are included in the green and blue
channels of the image. The transformation of the data into images makes
the problem suitable for emulating FEA by cGANs. The proposed
approach has a significant computational advantage in treating the
mechanical behaviour as an image processing problem. Trying to
recognize the visual patterns in the finite element results and then
mimicking them is more efficient compared to the process of dealing
with a significant amount of raw data that is typically produced in such
simulations. Three cGANs are designed where a dedicated network is

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

3

used to identify deflections by reading forces, stresses by reading de-
flections and stresses by reading forces. Thus, the contribution of this
paper lies in transforming the solution of a nonlinear FEA problem into
an image dataset that can be used to train a cGAN which is then used to
emulate FEA. Geometric and material properties are embedded in the
image dataset. The resulting cGAN can produce near real-time results for
nonlinear FEA problems.

The remainder of this paper is organized as follows. Machine
learning and ANNs will be briefly reviewed in Section 2. Section 3 lays
out the proposed approach and how the cGAN is built, trained, and
validated. Two examples are then presented to assess the performance of
the proposed method in Section 4 while conclusions are drawn in Sec-
tion 5.

2. Machine learning and artificial neural networks

Artificial neural networks (ANNs) are a class of computational tools
inspired by the biological nervous system [66]. The main processing unit
is called the neuron or perceptron. The neurons are organized in sets of
layers. The network usually starts with an input layer and ends with an
output layer. The specific layout to which the neurons and layers are
interconnected is known as the “connectivity pattern” or “architecture”
of the network. The network is trained to learn a certain data pattern by
going through training cycles (or epochs). During each epoch, each
neuron receives input signals from other units yielding an output.
Throughout the training process, the weights (w) and biases (b) of the
neurons are affected by the flow of data through the network layers.
Then, the values carried by the neurons are aggregated by various
‘activation functions’ resulting in the ‘activation’ value (a) of that
neuron. The neurons’ activation values are then transmitted as inputs to
the next connected layer. The network accuracy is calculated by a
backpropagation algorithm during the training process which leads to
the network convergence toward a solution. This process makes the ANN
capable of learning linear and nonlinear relations, hence allowing it to
solve many problems instead of following a predefined set of rules.

2.1. Convolutional neural networks

Convolutional neural networks (CNNs) are a specific type of ANNs
that emerged from the study of the human brain visual cortex for image
recognition purposes. CNNs showed a great ability to solve difficult
image-based tasks in pattern recognition, classification and machine
vision in general [54,67] as well as in traffic prediction and autonomous
vehicle applications [57,68]. A CNN is a collection of convolutional
layers, fully connected layers, and pooling layers. Convolutional layers
form the most important block in a CNN. These layers are not fully
connected layers because each neuron is only connected to a few other
neurons located within a small rectangular area in the previous layer.
This architecture allows the network to focus on small low-level features
in the first hidden layer, then assemble them into larger higher-level
features in the next hidden layer and so on. The pooling layers are like
the convolutional layers in that they are not fully connected. Each
neuron in a pooling layer is connected to the outputs of a limited number
of neurons in the previous layer. However, a pooling neuron just ag-
gregates the inputs using an aggregation function such as the max or
mean. This process allows the network to reduce memory usage and
computations. Finally, the fully connected layers in conjunction with the
activation functions produce scores to be used for classification.

2.2. Generative adversarial network

The generative adversarial network (GAN) is a specific type of CNN
which was initially designed for image creation and enhancement. It was
first proposed in 2014 by Goodfellow et al. [69]. Although the idea of
GAN showed great potential almost instantly, it took some time to
overcome some of the difficulties in its training. The core principle of

GAN relies on the competition between two rival networks; a generator
and a discriminator; hence their "adversarial" nature. The generator is
tasked with creating an image which it aims to pass off as genuine to the
discriminator. The discriminator in turn is tasked with identifying
whether the images it receives from the generator are in fact “real” or
“fake”. The discriminator always works with two images during the
training phase. One image comes from the generator and the other is a
genuine image from the training dataset. After assessing the level to
which it believes the generator image is real or fake via loss functions,
the results are backpropagated for each network, i.e., for the generator
and the discriminator, and the cycle is repeated. This competitive loop
between the generator and the discriminator improves both networks,
but primarily makes the generator capable of producing
near-ground-truth images. A subtype of GANs is the conditional gener-
ative adversarial network (cGAN). This network was developed by Isola
et al. [64] with their seminal “Pix2Pix” model. In principle, the cGAN
and the GAN are based on the same fundamentals. However, instead of
generating an image from random input noise and discerning whether it
is passable as genuine or not as in the GAN, the cGAN enforces the
conditional generation and discerning of the images using auxiliary in-
formation (such as class labels or data). Isola et al. [64] demonstrated
that the Pix2Pix method can be utilized on a broad range of datasets for a
variety of tasks such as architectural labels transformed into building
images and maps transformed to aerial photos and colorization of black
and white images. Since the image generation is conditional the
convergence of the cGAN is faster than the convergence of GAN.
Moreover, unlike conventional CNNs, there is no need to define a loss
function when using cGANs. The Pix2Pix method learns the loss function
without human input thereby providing a “universal” loss function. This
makes cGAN a more powerful tool and a potential candidate to emulate
FEA.

3. Proposed method

We propose to build a machine learning approach based on the cGAN
that can successfully predict the mechanical behaviour of a structure for
a variation of loads and material properties. The approach consists of
multiple stages which are summarized in the swimlane diagram of
Fig. 1. Each stage is explained in detail in the following sections.

3.1. Data creation

In this section, two case studies will be presented. In both cases, a
bilinear material model is used, and multiple vertical loads are randomly
applied to the structure which experiences nonlinear deformations. The
first case study considers the vertical deformation of a square plate
whereas the second case study considers the vertical displacement of a
curved shell.

3.1.1. Plate
In this case study, we focus on the nonlinear response of a square

plate under varying localized pressure loads applied at multiple loca-
tions where the magnitudes of the loads and their locations are
randomly varied. The four edges of the plate are fully fixed. The choice
of this structure is deliberate where a large area with numerous input-
output coordinates can be rapidly produced and since a closed form
solution for this problem does not exist. The data is generated using a
finite element model with SHELL181 elements in ANSYS [70]. A uni-
form mesh of 256 × 256 elements is used to model the plate. A schematic
of the plate and an example of the applied loads is shown in Fig. 2.

Six different values of the modulus of elasticity (60, 90, 120, 150,
180 and 210 GPa) and eight values of the plate thickness (20, 40, 60, 80,
100, 150, 200 and 300 mm) are considered. This results in a total of 48
possible physical realizations of the plate. Each realization starts with
simulating the response to one (randomly located) load, then two
(randomly located) and so on until five (randomly located) loads are

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

4

acting on the plate. Since the plate is fully fixed, the loads are applied
within 5% of the edges of the plate.

The value of the load that would cause nonlinear deformations in the

plate depends on the modulus of elasticity and the thickness of the plate.
For example, Table 1 shows such loads for eight realizations of the plate
(with one value for the modulus of elasticity). Similar tables were
generated for the remaining 40 realizations. The value of the transverse
force F that is displayed in Table 1 were obtained with guidance from
[71] and was then validated using FEA to make sure that this load will
induce nonlinear deformations in the plate. For each realization in
Table 1, ten more values for the vertical load were calculated. Thus, for
each realization of the plate, five loads of those shown in Table 1 are
randomly selected, sequentially applied to the load at random locations
and the simulation is conducted. Thus, the choice of the load F ensures
that the plate will undergo nonlinear deformations in each of the five
simulations.

For each realization, the five simulations are repeated 25 times as
“trial cycles” to generate randomness and ensure a wide statistical
spread in the dataset. Hence, each realization with one modulus of
elasticity and plate thickness will generate 125 data samples. With 48
physical realizations of the plate, the total number of simulations comes
up to 125 × 48 = 6, 000. The plate deflections as well as the first
principal stress are evaluated for all the considered simulations and the
results are stored in the dataset needed for training and validating the
cGAN. The generation of this dataset is computationally intensive but
can be performed in parallel on multiple machines. Fig. 3 below shows a
sample of both stress and vertical displacement results from one of the
simulated finite element models.

3.1.2. Curved shell
In this case study, the nonlinear response of a curved shell to

randomly located vertical loads is considered. Fig. 4 below shows a
schematic of the curved shell. The shell is fixed at the edge where x =
0 and at the edge where x = 1 m; the other two edges are free. The width
(along the y-axis) is 1 m, and the radius of the shell is 1 m. The shell has
the same material properties as the plate. Six values of the modulus of
elasticity (60, 90, 120, 150, 180 and 210 GPa) and eight values of the
plate thickness (20, 40, 60, 80, 100, 150, 200 and 300 mm) are
considered. The combinations of the modulus of elasticity and thickness
provide 48 possible physical realizations. For each realization, loads are

Fig. 1. Swimlane diagram summarizing the methodology.

Fig. 2. Schematic of a rectangular plate with five (randomly located) loads. The
four edges of the plate (annotated by B in the schematic) are fully fixed.

Table 1
Possible value of the load that would cause the plate whose modulus of elasticity is 60 GPa to experience nonlinear deformations in the traverse direction.

Thickness [mm] F [kN] 1.01F 1.02F 1.03F 1.04F 1.05F 1.06F 1.07F 1.08F 1.09F 1.10F

20.0 13.2 13.3 13.5 13.6 13.7 13.9 14.0 14.1 14.3 14.4 14.5
40.0 52.0 52.5 53.0 53.6 54.1 54.6 55.1 55.6 56.2 56.7 57.2
60.0 130.0 131.3 132.6 133.9 135.2 136.5 137.8 139.1 140.4 141.7 143.0
80.0 245.0 247.5 249.9 252.4 254.8 257.3 259.7 262.2 264.6 267.1 269.5
100.0 380.0 383.8 387.6 391.4 395.2 399.0 402.8 406.6 410.4 414.2 418.0
150.0 730.0 737.3 744.6 751.9 759.2 766.5 773.8 781.1 788.4 795.7 803.0
200.0 1300.0 1313.0 1326.1 1339.4 1352.8 1366.3 1380.0 1393.8 1407.7 1421.8 1430.0
300.0 2900.0 2929.0 2958.0 2987.0 3016.0 3045.0 3074.0 3103.0 3132.0 3161.0 3190.0

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

5

added one at a time staring with one (randomly located) load until five
(randomly located) loads are applied. The loads are all acting in the
negative z-direction. The load values were obtained in similar fashion as
laid out in Section 3.1.1. For each realization, the load with the lowest
value would cause nonlinear deformation in the shell. Ten loads were
defined like Table 1 and the loads that are applied sequentially are
selected randomly from these ten loads. All the loads that were used in
this case study are provided as part of the data associated with this paper
(which is openly available). Each simulation is repeated 25 times to
generate randomness and ensure that the dataset has a wide statistical
spread. Like in the first case study, the dataset will be formed from the
results of 6000 simulations. Vertical dispalcement and the first principal
stress are saved after each simulation to be later used in the training and
validation of the cGAN.

3.2. Data pre-processing

To train the cGANs, the dataset was organized as paired images. One
image as an input and the other as the target. Rasterized images can be
used in any of the following popular formats: Bitmap (bmp), Portable
Network Graphics (png) or Joint Photographic Experts Group (jpeg).
The images are composed of a matrix of pixels each with a minimum of
three channels. Those channels represent red, green, and blue colours, i.
e., the RGB format. The granularity of a pixel in each channel is
administered by the bit-depth which can be 8 bits for 256, 16 bits for
65,536 or 24 bits for 16,777,216 shades of each colour. It should be
noted that usually for photography purposes, 24 bits are used as the
human eye do not easily distinguish between colours beyond this level of
shadings. However, it is possible to create higher bit-depth for industrial
uses. Obviously, a higher bit-depth results in a larger image file and
subsequently increases the size of the dataset. After careful consider-
ation, we decided to use images with depth of 8 bits as this provided
sufficiently accurate results for a significant reduction in the CPU time
which was otherwise used to train the cGAN. Furthermore, the image
format may cause compression artefacts. Although this might not be
visible to the human eye, such artefacts can damage the data or even
corrupt it. A comparison of high-quality image formats is summarized in

Table 2. In this work we use png file format as it is a lossless data
compression format.

To maximize the amount of information passed to the cGAN, the
following parameters: elasticity modulus, plate thickness, load location,
load magnitude, nodal deflections, and nodal stresses, have been
transferred to the images. The red channel in each image is assigned to
the magnitude (applied force, stress, or deflection), green to the modulus
of elasticity and blue to the plate thickness. This process results in three
images for each sample of results. Fig. 5 shows a sample of paired images
decomposed into the three channels red, green, and blue. The target
image is obtained by transforming the results of the FEA simulation and
the material and geometric properties as explained above.

3.2.1. Data normalization
Converting the decimal results of the finite element simulation into

an image requires scaling the data to fit within the colour depth range.
Therefore, each input variable is normalized to the range [0,1]. Then,
the normalized values are multiplied by the bit-depth of each channel, i.
e., 255 (since the bit-depth is 8 bits and the channel colour range is [0,
255]). Clearly, the cGAN cannot distinguish the amplitude difference
between different input variables. The resultant is a three-dimensional
colour-space of potential input values mapped to pixel colour as illus-
trated with an example of the two-dimensional image files in Fig. 6
where a sample of paired image shows the deflection as an input and the
corresponding stresses as an output.

3.3. Model creation

The cGAN which is implemented in this paper follows the working
principles and the architecture of the “Pix2Pix” network developed by
Isola et al. [64]. Like the GAN, the cGAN trains the generator to produce
realistic samples for each class of data in the training dataset. The
discriminator on the other hand learns to distinguish fake samples from
real ones. However, unlike GAN, the discriminator in the cGAN does not
learn to identify the class of the image. It learns only to accept real,
matching samples while rejecting samples that are mismatched. More-
over, for the generator to fool the discriminator, noise is used to syn-
thesize fake samples. Next, we discuss the main components of the
cGAN.

Fig. 3. A sample of thin plate analysis results in response to five randomly located loads.

Fig. 4. A schematic of the curved shell considered in this case study.

Table 2
Comparison of common image file formats recreated from [72].

Parameter GIF89a JPEG TIFF PNG

Maximum Colour Depth 8-bit 24-bit 48-bit 48-bit
Number of Colours 256 colours 16 million 281 trillion 281 trillion
Compression Technique Lossless Lossy Lossy Lossless
Gamma correction No No Yes Yes
Patent Issues Yes No Yes No

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

6

3.3.1. Generator network
The objective of the generator in a cGAN is to produce samples that

capture the characteristics of the training dataset and look indistin-
guishable from the training data. The generator learns the patterns in the
dataset to distinguish the dataset content. Then instead of recognizing
the patterns, the generator learns to create the dataset from scratch; this
takes the form of an auto encoder/decoder whereby the encoder portion
is tasked with mapping the input space to another intermediate space
(sometimes called a “latent space”). Thereafter and by contrast, the
decoder has the complementary function of mapping from the latent
space to another target space. The Pix2Pix implementation used in this
research has additional bridging connections between the layers of the

encoder and layers of the decoder to form a “U-Net”. This “cross-linking”
provides the ability to pass information across the network whilst
avoiding the central bottleneck region inherent in the conventional
encoder/decoder networks and functionally imposes structural condi-
tions between layers. Fig. 7 shows a schematic of the generator network.

3.3.2. Discriminator network
The cGAN discriminator network is a CNN which Isola et al. [64]

refer to as a “patchGAN” classifier. With patchGan, the discriminator
divides each image into overlapping “patches”. Then, the discriminator
evaluates if each patch is real or fake. The output of the discriminator is
a matrix with predicted probability for each patch. This process allows
the network to measure the goodness of the discriminator at dis-
tinguishing images based on their pattern rather than their content.

3.3.3. Loss functions and gradients
The objective function of the cGAN can be stated as follows

L cGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z))] (1)

where the generator (G) is trained to map the real image x and a random
noise vector z to an output image y. On the other hand, the discriminator
(D) is trained to classify between the “real” (x) and “fake” (y) images.
The generator tries to minimize the objective function while the
discriminator (which acts as the adversarial network) tries to maximize
the same objective, i.e.,

Fig. 5. Colour channel decomposition for a single sample of 256 × 512 png paired image dataset reflecting the colour channel mapping.

Fig. 6. Example of the processed paired image dataset: deflection as an input
(left) and the corresponding stress as an output (right).

Fig. 7. cGAN generator uses a random noise vector z and a label y (one of them possible labels) as inputs and produces a fake example (x*|y) that strives to be both
realistic looking and a convincing match for the label y.

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

7

G* = argmin
G

max
D

L cGAN(G,D) (2)

Additionally, the cGAN includes the mean absolute error loss, L1,
imposed on the generator to be near the ground truth output (in an L1
sense) in addition to the conventional requirement of convincing the
discriminator that the output is real. This L1 requirement can be stated as

L L1(G) = Ex,y,z[‖ y − G(x, z)‖1] (3)

The final objective of the cGAN can then be summarized as

G* = argmin
G

max
D

L cGAN(G,D) + λL L1(G) (4)

In practice, calculating the losses and utilizing them to change the
network weights and biases is done sequentially as laid out in [73].

3.4. Model training

The results of the finite element simulation were organized into three
datasets: loads, deflections, and stresses. Since the stresses and the de-
flections are generated by the applied loads, the force dataset is paired
with both the deflections and the stresses datasets to create two exper-
iments. In the first experiment, we train the cGAN to identify the
structure’s deflections by reading the forces, i.e., a force-to-deflection
(FtD) mapping. In the second experiment, we train the cGAN to iden-
tify the structure’s stresses by reading the forces, i.e., a force-to-stresses
mapping (FtS). Furthermore, we also created a third pair by coupling the
deflections with the stresses to create a deflection-to-stress (DtS) map-
ping. In this work, the cGAN are implemented in MATLAB [74]. Two
thirds of the dataset was used for training while the remaining third was
equally split between testing and validation sets. Hence, 4000 images
were used for training, 1000 images were used for testing and 1000
images were used for validation. Random jitter and random flip func-
tions were used to introduce additional randomness and discourage
over-fitting [64]. The losses and gradients were determined and applied
to both the generator and discriminator networks using the ADAM solver
and backpropagation function [73].

3.5. Model validation

GAN in general (and cGAN in particular) are difficult to train for
several reasons. For example, a very good discriminator may result in a
poor generator with a vanishing gradient problem. In this case the
discriminator does not provide sufficient feedback to the generator to
improve its outputs. Another problem happens when the generator
produces the same output repeatedly leading the discriminator to al-
ways reject the output, which is known as the mode collapse problem.
Consequently, the discriminator gets stuck in a local minimum and does
not find the optimal hyperparameters of the cGAN. Because the accuracy
of prediction is paramount, we validate each generated result against the
ground-truth (obtained from the FEA simulations) by several metrics.
We use the direct absolute error (DAE) to evaluate the absolute value of
the difference between the target and generated results; this is given by

DAE =
⃒
⃒ytarget − ygenerated

⃒
⃒ (5)

where ytarget is the ground-truth obtained through the FEA and ygenerated
is the prediction generated by the cGAN. We also use the relative error
(RE) which is the ratio of the DAE magnitude to the target value
magnitude, and is defined by

RE =

⃒
⃒ytarget − ygenerated

⃒
⃒

ytarget
=

DAE
ytarget

(6)

The third metric we use is the relative percent difference (RPD)
which estimates the variation between the target and the generated
results

RPD =
1
2

⃒
⃒ytarget − ygenerated

⃒
⃒

(
ytarget + ygenerated

) =
1
2

DAE
(
ytarget + ygenerated

) (7)

The latter is an important metric as there might be regions wherein
the target and the generated results have zero values (e.g., at fixed
edges) where the DAE and the RE are undefined. All the above metrics
are calculated for the overall images (which results in 2D plots). We also
calculate the averages of these metrics over the entire result and at the
locations of the maximum input values. Furthermore, the errors are
calculated and tracked across every saved epoch of the model to gauge
the improvements in the training of the cGAN, hence, to assess the
changes.

4. Results and discussion

This section discusses the numerical results of the three primary
experiments, namely, FtS, FtD and DtS mapping for the two case studies
that were described in Section 3.1. The cGAN architecture explained in
Section 3.3 is used to obtain all the following results.

4.1. Training progress

The training for each experiment is run for 200 epochs with a batch
size of 32 samples each so that all the 4000 training samples are orga-
nized into 125 batches resulting into a total of 25,000 iterations to
complete the training. Fig. 8 shows snippets of the training progress for
the FtS experiment for the rectangular plate case study. The figure in-
cludes the results of the generator, the discriminator and the cGAN. The
snippets show that the score of the discriminator rises whilst conversely,
that of the generator decreases starting from around the 150th to the
550th iterations. This is an indication that the discriminator can assess
the generated result as a “fake” up to this point. However, around the
5,900th iteration the score for both the generator and the discriminator
jumps between 0 and 1. The losses for both networks also increase in the
same range. These observations indicate that the discriminator is having
difficulty in distinguishing the generator images as fake and that the
generator is producing believable results. From here onward, both net-
works advance in steps with one another, and the learning changes are
reflected in the fine details of the snippets. The eventual alignment of the
generator losses with that of the discriminator indicates the improve-
ment in fooling the discriminator, hence, the improved prediction ac-
curacy. Similar behaviour is observed in the FtD and DtS experiments of
the rectangular plate and in all the experiments of the curved shell.

The training is conducted for 200 epochs with the model being saved
at a checkpoint every four epochs. Hence, an array of 51 checkpoints is
produced for each of the samples. Fig. 9 shows the output of a randomly
selected sample from the validation dataset at each of the saved
checkpoints. Fig. 9 shows the gradual improvement of the predictions as
the cGAN’s training progresses. Again, similar patterns are found when
training for the FtD and DtS mappings of the plate case and for all the
experiments of the curved shell.

4.2. Validation results

For validating the FtS case, 2000 paired images were used. Each pair
of images consisted of the force image as an input and the stress image as
a target. A randomly selected input image from the validation dataset is
used to compare against the ground-truth using Eq. (5) through to Eq.
(7). The results in Fig. 10 show the prediction of the generator at the first
checkpoint (4th epoch) and at the last checkpoint (200th epoch). The
absolute error plot shows a significant reduction in the error from
around 50% at the first checkpoint to less than 10% at the last check-
point. Furthermore, the maximum RE throughout the plate is at the first
checkpoint, while the maximum RE at the last checkpoint is near the
fixed edges of the plate where the solution is almost zero. This justifies

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

8

the relatively high RE whereas the DAE is much smaller at the fixed
edges.

Next, we illustrate in Fig. 11 through Fig. 14 the DAE and RPD errors
for the full validation dataset (2000 samples), where both the maximum
and the mean value of the DAE and RPD errors are shown. The aim here
is to show the errors for each sample in the validation dataset, the error
in the maximum stress and the mean value of the error for all the pixels.
Fig. 11 shows the kernel density distribution of the DAE error at the
location of the maximum stress and the mean value of the DAE error
over all training epochs and for all the validations samples. It is possible
to see that the best performance is in general not at the end of the
training stage (i.e., not at the 200th epoch). The figure also shows that

the mean value of both distributions (DAE target and DAE mean) is
below 5% for all training epochs. Fig. 12 presents the cascade for the
DAE mean over all epochs and is consistent with Fig. 11.

Figs. 13 and 14 present similar results to those presented in Figs. 11
and 12 but for RPD errors. These figures are consistent with the previous
ones. However, in this case the mean value of both distributions, i.e.,
RPD at the maximum stress and RPD mean are below 20% for all
training epochs as shown in the figures.

It should be noted that the choice of 200 epochs is made to ensure
that the network converges. However, this choice does not mean the
network will find the best solution at the 200th epoch. The network may
find an optimal solution before going through the 200 epochs and then

Fig. 8. FtS Model training progress snippets of the scores, losses, and random validation output for: the first 550 iterations (top), between 5800 and 6000 iterations
(middle) and between 21,600 and 22,400 iterations (bottom).

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

9

start over-fitting the data afterwards. Indeed, Fig. 13, shows that the
network reaches its best solution after around 136 epochs of training.
Thereafter, the network starts over fitting the data which leads to poorer
performance at later epochs. To deal with such cases an early stopping
technique [75] was adopted. The technique is a regularizing machine
learning approach that allows to save and restore a network after it
reaches an optimal solution.

Fig. 15 shows that the mean value of the DAE of the maximum stress
error distribution is 3% while for RPD is 5% when the cGAN is at its best
performance.

Similarly, to train and validate the FtD and DtS networks 6000 paired
images are used for each. The input and the target are changed
accordingly. Both DAE and RPD errors for all validation data are
calculated following the same procedure for FtS mapping. The target in
this case study is the maximum deflection for FtD and the maximum

stress for DtS. The FtD network achieved its best performance at the
112th epoch. The error evaluation at this epoch is presented in Fig. 16.
The mean value of the error distributions for DAE target and DAE mean
are below 1%. The RPD results of the mean and the target errors are
below 5%. The cGAN for the DtS mapping achieved its optimal perfor-
mance at the 160th epoch. Fig. 17 shows the error evaluation at this
epoch where the value of DAE target error distribution is 2% and for
RPD target is 4%.

To further showcase the capability of the developed approach, two
specific cases are presented. Here, the FtS network is used to predict the
stress distribution given the plate’s material, thickness and the location
of the forces. In Case I, the plate’s modulus of elasticity is 60 GPa its
thickness is 20 mm. The loads are applied at five random locations as
shown in Table 3. In Case II, the plate’s modulus is 210 GPa and its
thickness is 20 mm. The loads are applied at three random locations as

Fig. 9. Sequence of generated predictions for FtS Mapping of the plate: results at 51 checkpoints where finer details and smoother gradients emerge with continued
training running from left to right and top to bottom.

Fig. 10. FtS validation results of the error metrics at the first checkpoint (top) and the last checkpoint (bottom).

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

10

shown in Table 3. In each case, the plate’s modulus of elasticity, thick-
ness and location and magnitude of the forces were provided to the
trained FtS network. The network outputs an image. Using a modest
Lenovo® ThinkPad T460S with Dual Core i7–6600 U @ 2.6 GHz, the
generation of the image took 32 ms for Case I and 27 ms for Case II. The
resulting image is scaled back to obtain the stress distribution; this
process took less than 7 ms in both cases. Figs. 18 and 19 present the
target (true) and the predicted stress distribution for Case I and Case II,
respectively. In both cases, the predicted stress distribution and target
stress distribution are in good agreement. In both cases, the RE (defined
in Eq. (6)) is below 3% which is in agreement with the results presented
in Fig. 15.

4.3. Validation results of the curved shell

The same methodology to validate the cGAN of the rectangular plate
is used with the curved shell herein. Fig. 20 illustrates random ground-
truth sample with prediction of the generator at the first checkpoint (4th
epoch) and at the last checkpoint (200th epoch). The cGAN for the
curved shell shows a similar behaviour to the plate’s cGAN where a huge
reduction in the DAE occurs through the training process between the
first and last checkpoints.

For validating the FtS case, 2000 paired images were used. Like the
training in the rectangular plate case study, each pair of images con-
sisted of the force image as an input and the stress image as the target. A
randomly selected input image from the validation dataset is used to
compare against the ground-truth using Eq. (5) through to Eq. (7).
Fig. 20 shows a significant reduction in the absolute error from around
50% at the first checkpoint to less than 10% at the last checkpoint.
Furthermore, the maximum error is at the peak force at the first
checkpoint, while the maximum error at the last checkpoint is near the
two fixed edges of the shell. The curved shell shows very low absolute
error levels which justifies the higher level of the relative error.

The cGAN of the curved shell showed its best performance after 96
epochs of training. The error evaluation at this epoch is presented in
Fig. 21. The mean value of the error distributions for DAE target and
DAE mean are below 1%. The RPD results of the mean and the target
error is below 5%.

5. Conclusions

The finite element analysis (FEA) is often used to model problems
with complex geometries and homogeneous or heterogenous material
properties. However, for this class of problems the method can be

Fig. 11. FtS DAE results: Kernel density for error in the maximum stress (left) and kernel density for mean value of the error (right) for all samples and all epochs.

Fig. 12. FtS cascade plot of DAE distribution for all samples and all epochs.

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

11

computationally demanding, which is a major barrier for real-time ap-
plications such as virtual reality and digital twin models. It is also a
significant barrier to work on optimisation problems even when using
high performance computing. To reduce the computational demand of
FEA problems, several approaches have been developed. Amongst these
approaches, machine learning has emerged as a very capable candidate
with potential to enable FEA in real-time. The development in deep and
convolutional neural networks and combining them with physical
models can both accelerate the analysis and retain the method’s accu-
racy. In this paper, we propose a new approach to evaluate the stresses
and the displacements in a nonlinear shell structure using image pro-
cessing and machine learning techniques. The proposed approach
significantly reduces the computational costs by treating the mechanical
behaviour of the problem as an image. The performance of the proposed
approach is assessed through two case studies. First, the nonlinear
behaviour of a fully fixed rectangular plate with a varying geometry and
a set of material properties is considered under several randomly placed
loads. FEA is used to generate a dataset of solutions for hundreds of
realizations of the plate. The results of the simulations are converted into
contour plots of the stress or the displacement. The full dataset includes
the results of 6000 simulations that are transformed into image pairs

with the green and blue channels being assigned to the modulus of
elasticity and the plate thickness, respectively. The red channel is
assigned to the force and the displacement where half of the image is
assigned to the force and the other half is assigned to the displacement to
create an image pair. A conditional generative adversarial network
(cGAN) is implemented and trained to emulate FEA. Numerical experi-
ments are conducted to recover the stresses or the deflections using the
proposed approach. The network is trained to map the force to the
displacement, the displacement to the stress and the force to the stress.
The network is trained for 200 epochs and the results are saved every 4
epochs in this experiment. Using early stopping with error metrics, the
best model was retrieved for each experiment. For both the stress and
the deflection, the relative error remains below 5% of the FEA ground-
truth.

In the second case study, a curved shell is used to demonstrate the
potential of the proposed method to work with alternative geometries.
The curved shell is a sector of a cylindrical shell with the two straight
edges being fixed and the two curved edges being free. The curved
surface has the same variation in the thickness and modulus of elasticity
as in the first case study. The loads are also applied randomly, and this
resulted in 6000 simulation cases. Only the force to stress scenario is

Fig. 13. FtS RPD results: Kernel density for error in the maximum stress (left) and kernel density for mean value of the error (right) for all samples and all epochs.

Fig. 14. FtS cascade plot of RPD distribution for all samples and all epochs.

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

12

considered in this case study. To deal with the three-dimensional ge-
ometry, a projection into two-dimensions is introduced to generate the
training images for the cGAN. In this step, the FEA results are projected
onto the horizontal plane to generate the stress and the force images.
Again here, the final performance of the resulting cGAN shows a relative
error below 5% of the FEA ground-truth.

The two case studies presented and the three numerical experiments
that were conducted show that the proposed method can provide a
potential alternative for conventional FEA applications that require re-
petitive solutions of a set of problems. The results also demonstrate the
considerable potential of the proposed method in recovering the me-
chanical behaviour of shell structures where it is possible to reproduce

the solution of the problem at a fraction of the computational cost
required by traditional FEA.

Disclosure

The statements made herein are solely the responsibility of the au-
thors, and they are not of the Qatar National Research Fund, Qatar
University or Heriot-Watt University.

CRediT authorship contribution statement

M.S. Nashed: Conceptualization, Methodology, Investigation,

Fig. 15. FtS maximum stress error distribution for RPD and DAE at Epoch 136: Kernel Density for DAE error (Left) and Kernel Density for RPD error (right) for all
samples at Epoch 136.

Fig. 16. FtD maximum stress error distribution for RPD and DAE: Kernel Density for DAE error (Left) and Kernel Density for RPD error (right) for all samples
at Epoch112.

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

13

Writing – original draft, Software, Visualization. J. Renno: Project
administration, Funding acquisition, Conceptualization, Supervision,
Software, Writing – review & editing, Supervision, Visualization, Data
curation. M.S. Mohamed: Conceptualization, Methodology, Writing –
review & editing, Project administration, Funding acquisition,

Supervision.

Declaration of Competing Interest

The authors declare no potential conflicts of interest with response to

Fig. 17. DtS maximum stress error distribution for RPD and DAE: Kernel Density for DAE error (left) and Kernel Density for RPD error (right) for all samples
at Epoch160.

Table 3
Two realizations of the plate with.

Case I Modulus of Elasticity: 60 GPa, Thickness of 20 mm

Force Location (0.42,0.37) (0.42,0.37) (0.42,0.37) (0.42,0.37) (0.42,0.37)
Force Magnitude 13.6 kN 13.6 kN 13.6 kN 13.6 kN 13.6 kN
Case I Modulus of Elasticity: 210 GPa, Thickness: 20 mm
Force Location (0.72,0.43) (0.72,0.43) (0.72,0.43)
Force Magnitude 39.2 kN 39.2 kN 39.2 kN

Fig. 18. Stress distribution in the rectangular plate with five applied loads: (left) target/true stress distribution obtained by FEA and (right) predicted stress
distribution.

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

14

Fig. 19. Stress distribution in the rectangular plate with five applied loads: (left) target/true stress distribution obtained by FEA and (right) predicted stress
distribution.

Fig. 20. FtS validation results of the error metrics at the first checkpoint (top) and the last checkpoint (bottom).

Fig. 21. FtS maximum stress error distribution for RPD and DAE at Epoch 96: Kernel Density for DAE error (Left) and Kernel Density for RPD error (right) for all
samples at the 96th epoch.

M.S. Nashed et al.

Advances in Engineering Software 176 (2023) 103392

15

the research, authorship, and/or publication of this article.

Data availability

The data is available at an open respository.

Acknowledgements

Financial support for this research was graciously provided by Qatar
National Research Fund (a member of Qatar Foundation) via the Na-
tional Priorities Research Program under Grant no. NPRP-11S-1220-
170112. Open Access funding was graciously provided by Qatar Na-
tional Library.

References

[1] Liangyin X, Yunpeng L, Sheng Z, Biaosong C. Efficient visualization strategies for
large-scale finite element models. J Comput Inf Sci Eng 2018;18(1):011007.

[2] Lee HH. Finite element simulations with ANSYS workbench 2020. SDC
Publications; 2020.

[3] Driscoll M. The impact of the finite element method on medical device design.
Springer; 2019.

[4] Koslan MFS, Zaidi AMA, Othman MZ, Abdullah S, Thanakodi S. The effect of mesh
sizing toward deformation result in computational dynamic simulation for blast
loading application. Mod Appl Sci 2013;7:23.

[5] Lee EJ, El-Tawil S. FEMvrml: an interactive virtual environment for visualization of
finite element simulation results. Adv Eng Softw 2008;39:737–42.

[6] Kakosimos P, Beniakar M, Sarigiannidis AG, Kladas AG. Model predictive control
employing finite-element methods for aerospace actuators. Mater Sci Forum 2016:
202–6. Trans Tech Publ.

[7] Ali N, Behdinan K, Fawaz Z. Applicability and viability of a GA based finite element
analysis architecture for structural design optimization. Comput Struct 2003;81:
2259–71.

[8] Marinkovic D, Zehn M. Survey of finite element method-based real-time
simulations. Appl Sci 2019;9:2775.

[9] Georgescu S, Chow P, Okuda H. GPU acceleration for FEM-based structural
analysis. Arch Computa Methods Eng 2013;20:111–21.

[10] Yan J, Zhang Q, Xu Q, Fan Z, Li H, Sun W, et al. Deep learning driven real time
topology optimisation based on initial stress learning. Adv Eng Inform 2022;51:
101472.

[11] Yoshida T, Okuzono T, Sakagami K. A parallel dissipation-free and dispersion-
optimized explicit time-domain fem for large-scale room acoustics simulation.
Buildings 2022;12:105.

[12] Wang Y, Guo S, Gao B. Vascular elasticity determined mass-spring model for
virtual reality simulators. Inte J Mechatron Autom 2015;5.

[13] White RE, Macdonald JHG, Alexander NA. A nonlinear frequency-dependent
spring-mass model for estimating loading caused by rhythmic human jumping. Eng
Struct 2021;241:112229.

[14] Ferhatoglu E, Cigeroglu E, Özgüven HN. A novel modal superposition method with
response dependent nonlinear modes for periodic vibration analysis of large MDOF
nonlinear systems. Mech Syst Signal Process 2020;135:106388.

[15] Favoretto B, de Hillerin CA, Bettinotti O, Oancea V, Barbarulo A. Reduced order
modeling via PGD for highly transient thermal evolutions in additive
manufacturing. Comput Methods Appl Mech Eng 2019;349:405–30.

[16] Nasri MA, Robert C, Ammar A, El Arem S, Morel F. Proper Generalized
Decomposition (PGD) for the numerical simulation of polycrystalline aggregates
under cyclic loading. C R Méc 2018;346:132–51.

[17] Barbarulo A, Ladevèze P, Riou H, Kovalevsky L. Proper Generalized Decomposition
applied to linear acoustic: a new tool for broad band calculation. J Sound Vib 2014;
333:2422–31.

[18] Diwan GC, Mohamed MS, Seaid M, Trevelyan J, Laghrouche O. Mixed enrichment
for the finite element method in heterogeneous media. Int J Numer Methods Eng
2015;101:54–78.

[19] Renno J, Manconi E, Mace B. A finite element method for modelling waves in
laminated structures. Adv Struct Eng 2013;16:61–75.

[20] Van Hal B, Desmet W, Vandepitte D. Hybrid finite element - wave-based method
for steady-state interior structural-acoustic problems. Comput Struct 2005;83:
167–80.

[21] Nikitin I, Nikitina L, Frolov P, Goebbels G, Göbel M, Klimenko S, et al. Real-time
simulation of elastic objects in virtual environments using finite element method
and precomputed Green’s functions. In: Proceedings of the workshop on virtual
environments. Eurographics Association; 2002. p. 47–52.

[22] Logg A, Lundholm C, Nordaas M. Finite element simulation of physical systems in
augmented reality. Adv Eng Softw 2020;149:102902.

[23] Huang JM, Ong SK, Nee AYC. Real-time finite element structural analysis in
augmented reality. Adv Eng Softw 2015;87:43–56.

[24] Huang J, Ong SK, Nee AY. Real-time finite element structural analysis in
augmented reality. Adv Eng Softw 2015;87:43–56.

[25] Fiorentino M, Monno G, Uva A. Interactive “touch and see” FEM simulation using
augmented reality. Int J Eng Educ 2009;25:1124–8.

[26] Guan Q, Du X, Shao Y, Lin L, Chen S. Three-dimensional simulation of scalp soft
tissue expansion using finite element method. Comput Math Methods Med 2014;
2014. https://doi.org/10.1155/2014/360981.

[27] Li X, Li C, Xue Z, Tian X. Investigation of transient thermo-mechanical responses on
the triple-layered skin tissue with temperature dependent blood perfusion rate. Int
J Therm Sci 2019;139:339–49.

[28] Cheung JTM, Zhang M. A 3-dimensional finite element model of the human foot
and ankle for insole design. Arch Phys Med Rehabil 2005;86:353–8.

[29] Panda SK, Buist ML. A finite element approach for gastrointestinal tissue
mechanics. Int J Numer Method Biomed Eng 2019;35:e3269.

[30] Heidlauf T, Klotz T, Rode C, Siebert T, Röhrle O. Force enhancement and stability
of finite element muscle models. PAMM 2016;16:85–6.

[31] Heidlauf T, Klotz T, Rode C, Siebert T, Röhrle O. A continuum-mechanical skeletal
muscle model including actin-titin interaction predicts stable contractions on the
descending limb of the force-length relation. PLoS Comput Biol 2017;13:e1005773.

[32] Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-D
intraoperative MR images of the brain using a finite-element biomechanical model.
IEEE Trans Med Imaging 2001;20:1384–97.

[33] Picinbono G, Lombardo JC, Delingette H, Ayache N. Improving realism of a surgery
simulator: linear anisotropic elasticity, complex interactions and force
extrapolation. J Vis Comput Animat 2002;13:147–67.

[34] Wu W, Sun J, Heng PA. A hybrid condensed finite element model for interactive 3D
soft tissue cutting. Medicine meets virtual reality, 11. IOS Press; 2003. p. 401–3.

[35] Joannin C, Thouverez F, Chouvion B. Reduced-order modelling using nonlinear
modes and triple nonlinear modal synthesis. Comput Struct 2018;203:18–33.

[36] Chinesta F, Ladeveze P, Cueto E. A short review on model order reduction based on
proper generalized decomposition. Arch Comput Methods Eng 2011;18:395–404.

[37] Tharwat A. Principal component analysis-a tutorial. Int J Appl Pattern Recognit
2016;3:197–240.

[38] Yeh YC, Kuo YH, Hsu DS. Building an expert system for debugging FEM input data
with artificial neural networks. Expert Syst Appl 1992;5:59–70.

[39] Bihlo A, Popovych RO. Physics-informed neural networks for the shallow-water
equations on the sphere. J Comput Phys 2022;456:111024.

[40] Penwarden M, Zhe S, Narayan A, Kirby RM. Multifidelity modeling for physics-
informed neural networks (PINNs). J Comput Phys 2022;451:110844.

[41] Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L. Physics-
informed machine learning. Nat Rev Phys 2021;3:422–40.

[42] Alber M, Buganza Tepole A, Cannon WR, De S, Dura-Bernal S, Garikipati K, et al.
Integrating machine learning and multiscale modeling-perspectives, challenges,
and opportunities in the biological, biomedical, and behavioral sciences. npj Digit
Med 2019;2:115.

[43] Jokar M, Semperlotti F. Finite element network analysis: a machine learning based
computational framework for the simulation of physical systems. Comput Struct
2021;247:106484.

[44] Singh K, Kapania RK. Accelerated optimization of curvilinearly stiffened panels
using deep learning. Thin-Walled Struct 2021;161:107418.

[45] Nguyen T, Kashani A, Ngo T, Bordas S. Deep neural network with high-order
neuron for the prediction of foamed concrete strength. Comput Aided Civ
Infrastruct Eng 2019;34:316–32.

[46] Viana FA, Nascimento RG, Dourado A, Yucesan YA. Estimating model inadequacy
in ordinary differential equations with physics-informed neural networks. Comput
Struct 2021;245:106458.

[47] Saha S, Gan Z, Cheng L, Gao J, Kafka OL, Xie X, et al. Hierarchical Deep Learning
Neural Network (HiDeNN): an artificial intelligence (AI) framework for
computational science and engineering. Comput Methods Appl Mech Eng 2021;
373:113452.

[48] Haghighat E, Juanes R. Sciann: a keras/tensorflow wrapper for scientific
computations and physics-informed deep learning using artificial neural networks.
Comput Methods Appl Mech Eng 2021;373:113552.

[49] Haghighat E, Raissi M, Moure A, Gomez H, Juanes R. A physics-informed deep
learning framework for inversion and surrogate modeling in solid mechanics.
Comput Methods Appl Mech Eng 2021;379:113741.

[50] Wen J, Zou Q, Wei Y. Physics-driven machine learning model on temperature and
time-dependent deformation in lithium metal and its finite element
implementation. J Mech Phys Solids 2021;153:104481.

[51] Zobeiry N, Humfeld KD. A physics-informed machine learning approach for solving
heat transfer equation in advanced manufacturing and engineering applications.
Eng Appl Artif Intell 2021;101:104232.

[52] Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural
network. In: Proceedings of the international conference on engineering and
technology (ICET). Ieee; 2017. p. 1–6.

[53] Puttagunta M, Ravi S. Medical image analysis based on deep learning approach.
Multimed Tools Appl 2021:1–34.

[54] Hameurlaine M., Moussaoui A., Safa B. Deep learning for medical image analysis,
2019.

[55] Tajdari M, Pawar A, Li H, Tajdari F, Maqsood A, Cleary E, et al. Image-based
modelling for adolescent idiopathic scoliosis: mechanistic machine learning
analysis and prediction. Comput Methods Appl Mech Eng 2021;374:113590.

[56] Fujiyoshi H, Hirakawa T, Yamashita T. Deep learning-based image recognition for
autonomous driving. IATSS Res 2019;43:244–52.

[57] Ranjan N, Bhandari S, Zhao HP, Kim H, Khan P. City-wide traffic congestion
prediction based on CNN, LSTM and transpose CNN. IEEE Access 2020;8:
81606–20.

[58] Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D. DRINet for medical
image segmentation. IEEE Trans Med Imaging 2018;37:2453–62.

M.S. Nashed et al.

http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0001
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0001
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0002
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0003
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0004
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0005
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0006
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0007
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0008
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0009
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0010
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0010
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0010
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0011
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0012
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0013
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0014
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0015
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0016
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0017
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0018
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0019
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0020
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0021
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0022
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0023
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0024
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0024
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0025
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0025
https://doi.org/10.1155/2014/360981
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0027
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0028
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0028
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0029
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0030
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0030
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0031
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0031
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0031
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0032
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0032
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0032
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0033
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0034
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0034
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0035
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0035
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0036
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0036
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0037
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0037
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0038
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0039
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0039
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0040
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0041
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0042
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0043
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0044
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0045
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0045
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0045
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0046
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0046
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0046
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0047
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0047
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0047
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0047
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0048
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0048
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0048
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0049
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0049
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0049
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0050
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0050
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0050
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0051
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0051
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0051
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0052
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0052
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0052
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0053
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0053
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0055
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0055
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0055
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0056
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0056
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0057
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0057
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0057
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0058
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0058

Advances in Engineering Software 176 (2023) 103392

16

[59] Mortazi A, Bagci U. Automatically designing CNN architectures for medical image
segmentation. In: Proceedings of the international workshop on machine learning
in medical imaging. Springer; 2018. p. 98–106.

[60] Xu W, Wang C, Yuan J. Impact performance of an annular shaped charge designed
by convolutional neural networks. Thin-Walled Struct 2021;160:107241.

[61] Krokos V, Bui Xuan V, Bordas SPA, Young P, Kerfriden P. A Bayesian multiscale
CNN framework to predict local stress fields in structures with microscale features.
Comput Mech 2022;69:733–66.

[62] Deshpande S, Lengiewicz J, Bordas SPA. Probabilistic deep learning for real-time
large deformation simulations. Comput Methods Appl Mech Eng 2022;398:115307.

[63] Dumoulin V., Visin F. A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:160307285. 2016.

[64] Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional
adversarial networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition; 2017. p. 1125–34.

[65] Bode M, Gauding M, Lian Z, Denker D, Davidovic M, Kleinheinz K, et al. Using
physics-informed enhanced super-resolution generative adversarial networks for
subfilter modeling in turbulent reactive flows. Proc Combust Inst 2021;38:
2617–25.

[66] Haykin SS. Neural networks: a comprehensive foundation. Prentice Hall; 1999.
Upper Saddle River, N.J.

[67] Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed
Eng 2017;19:221–48.

[68] Ranjan N, Bhandari S, Khan P, Hong YS, Kim H. Large-scale road network
congestion pattern analysis and prediction using deep convolutional autoencoder.
Sustainability 2021;13:5108.

[69] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al.
Generative adversarial nets. Adv Neural Inf Process Syst 2014;27.

[70] Gabriel JD, John AS. ANSYS engineering analysis system user’s manual. Houston,
PA.: Swanson Analysis Systems; 1985. 1985.

[71] Richard GB, Ali MS. Roark’s formulas for stress and strain. 8th ed. New York:
McGraw-Hill Education; 2020. 9th ed. /Edition.

[72] Wiggins RH, Davidson HC, Harnsberger HR, Lauman JR, Goede PA. Image file
formats: past, present, and future. Radiographics 2001;21:789–98.

[73] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-
propagating errors. Nature 1986;323:533–6.

[74] MATLAB. version (R2020a). Natick, Massachusetts: The MathWorks Inc; 2010.
[75] Géron A. Hands-on machine learning with scikit-learn, keras, and tensorflow:

concepts, tools, and techniques to build intelligent systems. O’Reilly Media; 2019.

M.S. Nashed et al.

http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0059
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0059
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0059
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0060
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0060
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0061
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0061
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0061
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0062
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0062
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0064
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0064
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0064
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0065
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0065
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0065
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0065
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0066
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0066
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0067
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0067
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0068
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0068
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0068
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0069
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0069
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0070
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0070
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0071
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0071
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0072
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0072
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0073
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0073
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0074
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0075
http://refhub.elsevier.com/S0965-9978(22)00293-9/sbref0075

	Nonlinear analysis of shell structures using image processing and machine learning
	1 Introduction
	2 Machine learning and artificial neural networks
	2.1 Convolutional neural networks
	2.2 Generative adversarial network

	3 Proposed method
	3.1 Data creation
	3.1.1 Plate
	3.1.2 Curved shell

	3.2 Data pre-processing
	3.2.1 Data normalization

	3.3 Model creation
	3.3.1 Generator network
	3.3.2 Discriminator network
	3.3.3 Loss functions and gradients

	3.4 Model training
	3.5 Model validation

	4 Results and discussion
	4.1 Training progress
	4.2 Validation results
	4.3 Validation results of the curved shell

	5 Conclusions
	Disclosure
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

