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Abstract 

Road networks are considered huge and critical infrastructures that support the development 
and growth of societies. These infrastructures deteriorate over time due to regular usage 
and/or external environmental factors. Deteriorating road networks eventually cause ride 
discomfort for their users and the production of ground-borne noise and vibrations. Thus, 
maintaining these infrastructures is essential, and monitoring the condition of the roads is 
one of the most important steps in maintaining these road networks. Road roughness could be 
considered as one of the main indicators of the road’s overall health. The International 
Roughness Index (IRI) is used to describe the road roughness profile numerically in a single 
value. Traditionally the IRI is obtained through manual or automated profilometers, profilo-
graphs, or dipstick profilers, which could be time/money consuming. Therefore, this study in-
vestigates the ability of Artificial Neural Networks (ANNs) in reconstructing road roughness 
profiles from dynamic vehicle accelerations. This study also investigates the ANNs ability to 
predict the model characteristics of a 7-DOF Full Car (FC) model, which is constructed to 
extract the dynamic vehicle accelerations of a vehicle moving on various roughness profiles. 
First, the FC model will be moving over a certain obstacle so that the developed ANN could 
take the dynamic vehicle accelerations as inputs and predict the FC model characteristics. 
Once the model characteristics are obtained, another ANN will be trained using the dynamic 
vehicle acceleration of an FC model with the same characteristics to reconstruct the road 
roughness profile. 

Keywords: Artificial Neural Networks, Dynamic Vibrations, Modal Characterization, Road 
Roughness. 
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1 INTRODUCTION 
The continuous measurement of road roughness levels is essential for maintaining the 

overall health and functionality of the road network. These levels provide a reliable indication 
of the road's ability to serve the public safely and efficiently. The ISO 8608 guidelines classi-
fy road roughness into eight categories, ranging from class A to class H, which describe the 
overall condition of a road section [1]. These roughness classes can also be assigned to road 
sections based on the International Roughness Index (IRI), which summarizes the road sec-
tion's roughness profile into a single value [2]. Usually, the IRI is computed by utilizing a 
quarter-car model that travels on a road with a particular roughness level. Conventional man-
ual and automated techniques, such as dipstick profilometer, profilograph, or automated road 
meters, are capable of determining the IRI of a road section[3]–[6]. Nonetheless, implement-
ing these methods across an entire road network can be both expensive and time intensive. 

Highway agencies and researchers have sought to find a more efficient method of monitor-
ing road profiles by using specially designed trucks equipped with high-resolution cameras 
and lasers [7]–[11]. However, mounting such equipment on trucks requires significant capital 
and operational expenses, making it expensive compared to manual monitoring. Researchers 
have also explored using unmanned air vehicles (UAVs) to train artificial neural networks 
(ANNs) and convolutional neural networks (CNNs) to detect surface defects [12], [13]. Alt-
hough these methods have the potential to be time and cost-effective, they lack the necessary 
accuracy to be integrated into highway management systems. 

Boyu et al. [14] proposed a new technique for estimating road profiles using only a 
smartphone to measure the responses of an ordinary vehicle. They proposed a new algorithm 
that involves two main stages. Initially, the ordinary vehicle is modeled as a half car (HC), 
and a genetic algorithm (GA) is employed to identify its parameters by analyzing the vehicle's 
responses when it passes over a well-defined speed bump. Using the vehicle model that was 
estimated, a Kalman filter that incorporates the road profile as a part of the state vector is em-
ployed to estimate the road profile.  

This research proposes the use of dynamic vehicle responses along with artificial neural 
networks (ANNs) to estimate road roughness profiles. A full car (FC) model will be devel-
oped for exporting the dynamic vehicle response of a normal car passing over randomly gen-
erated roughness profiles. The FC model will be also subjected to a road profile with a pre-
defined speed bump to calibrate the model for road roughness estimations.  

2 METHODOLOGY  
This study aims towards reconstructing road roughness profiles using ANNs and dynamic 

vehicle responses. A numerical FC model will be used throughout this research. The FC mod-
el will be used to extract the vehicle dynamic responses to be later used for training the ANNs. 
Initially, the FC model with randomly varied parameters will be subjected to a predefined 
speed bump, from which the dynamic vehicle response will be used with ANN to calibrate the 
developed FC model. Then the calibrated FC model will be used with randomly generated 
roughness profiles to train another ANN in estimating the road roughness profile.  

2.1 Full car (FC) model  
This study utilizes a 7-degree-of-freedom (7-DOF) FC model that includes four unsprung 

masses on behalf of the vehicle's wheels and a single sprung mass representing the vehicle's 
body. The model also takes into account the pitch and roll of the vehicle's body as shown in 
Figure 1. Equations (1-15) [15], [16] provide a summary of the governing equations for the 
FC model. 
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Figure 1: Full car model demonstration [14]. 
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where:   

                                                                                                      (12) 
                                                                                                       (13) 
                                                                                                      (14) 
                                                                                                       (15) 
   

 
The equations listed above involve variables such as pitch angle (θ) and roll angle (Φ) that 

refer to the body of the vehicle and its corresponding mass moment of inertia Iyy and Ixx 
about the respective axes. The subscripts s, u, fr, fl, rr, and rl denote the sprung, unsprung, 
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front right, front left, rear right, and rear left parts of the vehicle. Additionally, the terms Lf, Lr, 
Wr, and Wl refer to specific distances shown in Figure 1. 

2.2 Levenberg-Marquardt ANNs  
In this research, Levenberg-Marquardt ANNs are used to estimate the developed FC pa-

rameters and road roughness profiles. Compared to other techniques that require solving the 
Hessian matrix, the Levenberg-Marquardt method approximates it, which usually results in 
faster training of artificial neural networks.  

The FC model parameter estimation ANN consisted of 387 input neurons containing the 
sprung mass accelerations, and the vehicle pitch and roll response. It also had 15 hidden tan 
sigmoidal neurons, with 6 linear output neurons corresponding to the roll and pitch moment 
of inertia, front and rear axles suspension stiffness, and front and rear axles suspension damp-
ing as shown in Figure 2 (a). 

The road roughness estimation ANN consisted of 225 input neurons containing the sprung 
and unsprung masses’ accelerations. It also had 20 hidden tan sigmoidal neurons, and 50 line-
ar output neurons corresponding to the road profile in Figure 2 (b). 

    
                                   (a)                                                                    (b) 

Figure 2: ANN architecture. 

2.3 Training Data Sets  
The FC model parameter estimation ANN was trained by dynamic vehicle responses which 

were exported from the FC model moving over a predefined speed bump with a length of 1 m, 
and a height of 0.5 m. Figure 3 shows the front and rear left-wheel road profiles.  

 
Figure 3: speed bump road profile. 
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A total of 3000 varied FC models were simulated moving over the above-mentioned speed 
bump. Each of the Varied FC models had a randomly assigned roll and pitch moment of iner-
tia, front and rear axles suspension stiffness, and front and rear axles suspension damping. 
The ANN was later trained using the exported sprung mass accelerations, and the vehicle 
pitch and roll response as inputs, and the randomly assigned parameters as outputs. The vehi-
cle sprung mass and the rear and front axle masses were fixed at 1500 and 60 kg, respectively. 
Also, the wheel stiffness for all four wheels was fixed at 190000 kN/m.  

The road roughness estimation ANN was trained by the dynamic vehicle masses’ accelera-
tions which were exported from the calibrated FC model moving over various randomly gen-
erated roughness profiles. A total of 3000 randomly generated road roughness class C profiles 
were generated. The sprung and unsrpung mass accelerations were considered as inputs, while 
the randomly generated road roughness profiles were considered as outputs. 

3 RESULTS AND DISCUSSION 
Two separate ANNs were developed and tested in this research. The first ANN was used to 

calibrate the developed FC model, and the second ANN was used to estimate the road rough-
ness profile. The randomly generated model parameters and the estimated model parameters 
with their error percentage are summarized in  Table 1. Also, the sprung mass accelera-
tion of the true and estimated model parameters of an FC model passing over a speed bump is 
shown in Figure 4.  

Parameters  True 
Values 

Estimated 
Values  

Percentage 
error (%) 

Roll moment of Inertia (kg.m2) 961.3 947.7 1.41 
Pitch moment of Inertia (kg.m2) 1970 1986.9 0.86 
Front axle suspension stiffness (kN/m) 23000 22960 0.17 
Rear axle suspension stiffness (kN/m) 19210 19242.3 0.17 
Front axle suspension damping (kN s/m) 226.9 225 0.85 
Rear axle suspension damping (kN s/m) 923.5 932.7 1.00 

 Table 1: True and estimated FC model parameters and their error percentages  

 
Figure 4: sprung mass acceleration of the true (solid blue) and estimated (dashed red) FC model. 
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Various runs were tried with randomly varying modal parameters. However, the model pa-
rameters were consistently estimated with less than 10% error. The resulting sprung mass ac-
celeration of the estimated FC model showed great agreement with the true FC model, as 
shown in Figure 4.  

The calibrated FC model was then used to train a different ANN to reconstruct the road 
roughness profile. The testing profile was comprised of 1000 data points that were randomly 
generated. Consequently, the reconstruction process of the roughness profile involved split-
ting it into 20 sections and utilizing the same ANN on each of the sections. Figure 5 (a) sum-
marizes the true and estimated testing profile, while Figure (b) shows the regression between 
the two profiles. The road profile estimation ANN was able to reconstruct the road roughness 
profile with a regression of 0.94869 and a total root mean square error of 0.0064.  

  
Figure 5: a) reconstructed (dashed red) and true (solid blue) road roughness profile, b) regression between the 

reconstructed and true roughness profiles. 

4 CONCLUSION 
The ability of ANNs to estimate the road roughness profile and FC model parameters was 

tested in this study. An FC model was subjected to a predefine speed bump, from which the 
sprung mass acceleration and the pitch and roll of the vehicle’s body were used by a trained 
ANN to estimate the FC model’s parameters. After this, the calibrated FC model was used to 
train a different ANN by subjecting the FC model to various randomly generated road profiles. 
The sprung and unsprung masses accelerations were exported from the FC model and utilized 
by the ANN to estimate the road roughness profile. Overall, both ANNs showed great poten-
tial in their ability to estimate unknown parameters such as the varied FC model parameters 
and randomly generated road roughness profiles.  
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