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a b s t r a c t

The complex future power plants require digital twin (DT) architecture to achieve high reliability,
availability and maintainability at lower cost. The available research on DT for power plants is limited
and lacks details on DT comprehensiveness and robustness. The main focus of the present study
is to propose a comprehensive and robust DT architecture for power plants that can also be used
for other similar complex capital-intensive large engineering systems. First, overviews are conducted
for DT key research and development for power plants and related energy savings applications to
provide current status, guidelines and research gaps. Then, the requirements and rules for the power
plant DT are established and the major DT components are determined. These components include
the physics-based formulations; the statistical analysis of data from the sensor network; the real-
time data; the pre-performed localized in-depth simulations to predict activities of the corresponding
physical twin; and the system Genome with a digital thread that connects all these components
together. Recommendations and future directions are made for the power plant DT development
including the need for real data and physical description of the overall system focusing on each
component individually and on the overall connections. Data-driven algorithms with capabilities to
predict the system’s dynamic behavior still need to be developed. The data-driven approach alone
is not sufficient and a low-order physics based model should operate in tandem with the updated
latest system parameters to allow interpretation and enhancing the results from the data-driven
process. Discrepancies between the dynamic system models (DSM) and anomaly detection and deep
learning (ADL) require in-depth localized off-line simulations. Furthermore, this paper demonstrates
the advantages of the developed ADL algorithm approach and DSM prediction of the DT using vector
autoregressive model for anomaly detection in utility gas turbines with data from an operational power
plant.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

ADL Anomaly detection and Deep Learning
AMO Advanced Manufacturing Office
AI Artificial Intelligence
BIM Building Information Model
CI Computational Intelligence
CFD Computational Fluid Dynamics
CHP Combined Heat and Power
CS Cyber Security
CPS Cyber–Physical System
DDM Digital Dynamic Mirror
DNN Dynamic Nature of the Networks
DSM Dynamic System Model
DSN Distributed Sensor Network
DT Digital Twin
DTAS Digital Twin Artifacts System
ECPS Energy Cyber–Physical Systems
EECM Equipment Energy Consumption Man-

agement
EIA U.S. Energy Information Administration
EOS Equations of State
FEM Finite Element
GAM Generalized Additive Model
GHG Global Greenhouse Gas
GPA Gas Path Analysis
GT Gas Turbine
HMIs Health Management Information sys-

tem
HRSG Heat Recovery Steam Generator
IDEAS Institute for the Design of Advanced

Energy Systems
IDS Integrated dynamic simulation
IGV Inlet Guide Vanes
IMT Intelligent Machine Tool
IoT Internet of Things
IR Industrial Robot
LDS localized, in-depth simulation
MCR Maximum Continuous Rating
MECS Mobile Edge Computing System
ML Machine Learning
NZEB Net Zero Energy Buildings
O&M Operation and Maintenance
PCA Principal Component Analysis
PE Physical entity
PHM Prognostics and Health Management
3705
PP Power Plant
PPDT Power Plant Digital Twin.
PSE Process Systems Engineering (PSE)
PV Photovoltaic
RAM Reliability, Availability and Maintain-

ability
SMT Surface Mount Technology
ST Steam Turbine
VAR Multiple-stage vector autoregressive

model
VC Virtual Commissioning
VE Virtual equipment
VR Virtual Reality
WEEE Waste from disassembling Electronic

and Electric Equipment

1. Introduction

The global energy consumption is projected by EIA to increase
by 50% between now and 2050 (EIA, 2022). On the flip side,
the non-renewable energy production technologies contribute to
global greenhouse gas (GHG) emissions by more than 70%, Center
for Climate and Energy Solutions (C2ES). This presses the global
power industry to aggressively look for more efficient ways of
operations to reduce the negative impacts of variability of fuel
costs, weather changes, power plant cycling, unplanned outages,
etc. The existing solutions to such problems are of incremental
nature and new technologies and approaches are inevitable to
transform the energy production sector and to meaningfully im-
prove the energy efficiency in industrial, buildings, service and
transportation sectors. One of these technologies is the use of
digital twin (DT) for power plants to facilitate rapid transforma-
tion of power systems and to improve flexible operation. The
key challenges facing the energy industry, methods to improve
flexible operations and the benefits of implementing DTs are
summarized in Fig. 1 (based on Zitney (2019)). These challenges
can be mitigated by improving the flexible power plant operation
via digitalization and connected plant technologies, which can
be achieved using power plant DT. As shown by Fig. 1, the
digital transformation of power plants is accelerating, and DTs
are key enabling technologies for R&D with future applications
in cyber–physical systems for reducing design time and cost.

Digital twin is defined by the CIRP Encyclopedia of Production
Engineering (Stark and Damerau, 2019) as a digital representation
of a machine, device, service, object, asset or product–service sys-
tem that tracks the characteristics, properties, conditions, and be-
haviors of the system by means of models, information, and data’’.
Other comprehensive definitions of DT can be found in Negri et al.
(2017) and characterization of the DT, key terminology and asso-
ciated processes are summarized in Jones et al. (2020). While the
implantation of DT in the energy industry is currently limited (as
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Fig. 1. Challenges facing the energy industry, improving power plant flexible operation, and digital twin.
will be shown in subsequent sections), DT is being implemented
in various industries for the last 2 decades (Negri et al., 2019b;
Tao et al., 2019). Examples of these various industries that are
in the implementation stage of DT include: manufacturing (Jones
et al., 2020; Al-Ali et al., 2020), concepts, technologies, and indus-
trial applications (Liu et al., 2020); demonstrating the potential
of real time data acquisition in production systems (Uhlemann
et al., 2017a), synchronized production operation system (Zhang
et al., 2020), applications in manufacturing (Cimino et al., 2019);
smart cities and healthcare (Fuller et al., 2020; Augustine, 2020);
construction (Lu et al., 2020b), automotive (Tharma et al., 2018),
agriculture, cargo shipping and drilling platform (Mayani et al.,
2018); automobile, aerospace, and smart manufacturing (Lu et al.,
2020a); electricity (Qi et al., 2019); 3D printing (Mukherjee and
DebRoy, 2019); machine tools (Armendia et al., 2004); NASA,
U.S. Air Force vehicles (Glaessgen and Stargel); model-based sys-
tem engineering (Madni et al., 2019) and several others. Digital
twins have several kinds of industrial applications (Liu et al.,
2020) including real-time monitoring, production control, perfor-
mance prediction, human–robot interaction, optimization, asset
management and production planning. In service, applications of
DT include predictive maintenance, fault detection & diagnosis,
state monitoring, performance prediction, and virtual test (Liu
et al., 2020), diagnosis and adaptive degradation analysis of ro-
tating machines (Wang et al., 2019b), prognostics and health
management (PHM) (Tao et al., 2018).

Digital Twin for power plants can be defined as combined
physics based and analytical methods used to model the indi-
vidual components of the power plant and the system. These
models can be applied to new and existing power plants to
provide design limits of the power production units under dif-
ferent operation conditions such as changes in weather data,
ambient temperature, humidity, variable load, fuel mix, etc. In
combination with advanced prediction, control and optimization
techniques, the outcome of these DT models can improve the
power plants performance, reliability, availability, maintainability
and flexible operation. By utilizing data from sensors’ network,
3706
the models are able to enhance the efficiency for different opera-
tional scenarios considering all kind of tradeoffs. Further, DTs can
be integrated with decision making algorithms to allow making
changes in real time. For power plants, DT applications include:
performance and cost optimization; asset management; control
with advanced edge computing; cyber defense; and processing
‘‘big data’’ using clouds and specialized platforms. An ideal digital
twin for power plants and other capital-intensive large engineer-
ing systems must be both comprehensive, as described above, and
robust in terms of its capability to age as the physical twin does
using physics based foundation that is augmented by empirical
data such as operational, outage, part-load condition, and site
specific environmental data; ability to perform dynamic esti-
mations and model tuning using data from available sensors,
ability to handle fouling in the pipelines, heat exchangers, rotor
blades; blockage of film cooling holes; operation problems such
as inlet guide vanes (IGV) flutter and failure, malfunctioning of
thermocouples, pressure, flow and power measuring devices, etc.
To the best of the authors’ knowledge, such comprehensive and
robust DT for power plants does not exist yet and the main goal
of the present work is to propose one. The current state of DT
research in the energy sector and the main contributions of the
present work are provided in the next subsections.

1.1. Current state of digital twin research in the energy sector and
for power plants

In the energy production sector, because of renewable inte-
gration, future power plants will become more complex with
Power-to-X, Electrolysis to green hydrogen, onsite storage of
hydrogen, and use of pure or blended hydrogen, etc. Such power
plants will require DT architecture to achieve high Reliability,
Availability and Maintainability (RAM) at lower cost. Another
energy-related application of DT is for energy savings in the
industrial, service, buildings, and transportation sectors. The im-
portance of industrial energy savings is asserted by many initia-
tives worldwide (Teng et al., 2021) including the establishment
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Fig. 2. Number of all DT publications by subject area, year, country/territory and source type (from Scopus).
f Advanced Manufacturing Office (AMO) of the US Department
f Energy to improve the energy efficiency across the indus-
rial sectors (US Department of Energ, 2020). Other countries
nd regions have adopted energy efficiency initiatives including
he European Union (European Commission, 2020; EED, 2012),
hina (IEA, 2018), India (Bureau of Energy Efficiency (BEE) M. of
.G. of I, 2018), South-East Asia (Ministry of Energy Green Tech-
ology and Water, 2015), the Middle East and North Africa (Open
nowledge Repository, 2020), etc. However, as mentioned above,
pplications of DT in the energy production industry and for
nergy savings are limited in open literature. To demonstrate
his limitation, a search of the keyword ‘‘digital twin’’ on Scopus
evealed a total of 4695 documents on several research fields as
hown by Fig. 2, of which only 376 documents are related to
nergy, Fig. 2a. This Figure also shows the subject areas, where
T is being implemented including engineering, medicine, social
ciences and others. The publication rate has been in the rise as
videnced by Fig. 2b with USA, China and the European Union
n the lead, Fig. 2c. Most of these publications are published in
ournals, conference proceedings and book series, Fig. 2d.

DT publications related to energy, in general, are provided in
ig. 3. Out of all 376 publications, the majority of 226 publications
re on the area of engineering, Fig. 3a, while the rest are on
arth sciences, mathematics, computer science and environment.
his implies that DT research related to energy is still in its
nfantry stage and all subject areas can still benefit from its
dvantages. Furthermore, the low number of DT publications on
he energy field by year, Fig. 3b, by country, Fig. 3c by source
ype, Fig. 3d, confirms the necessity of research in this untapped
rea. It is worth mentioning that Scopus as a source for DT
3707
related publications is used here as an indicator of the limited
research publications on DT for energy applications. However
other sources of publications were consulted and provided in the
rest of the article including IEEE, ASME, GE, Siemens, etc.

Digital twin research publications for power plants in particu-
lar are very limited. Only three articles were found on DT for fossil
fuel power plants: Zitney (2019), Xu et al. (2019) and Yu et al.
(2020); two articles for DT in nuclear power plants: Patterson
et al. (2016) and Okita et al. (2019); and five articles on DT for
renewable energy systems: Ebrahimi (2019), Kahlen et al. (2016),
Sivalingam et al. (2018), Moussa et al. (2018) and Jain et al.
(2020). There are several other articles on DT at the component
level of power plants. However, all these articles, as will be
detailed in Sections 2 and 3 below, did not include enough details
on the comprehensiveness/robustness of their DTs or details on
the used physics based models, artificial intelligence and enabling
technologies capabilities.

1.2. Manuscript contributions and organization

While digital twin research and architectures for many indus-
tries have been developed or in advanced development stages,
digital twins for power plants are numbered in open literature
and the available DTs are lacking or missing details on how
comprehensive and robust is the DT and details on its capabilities.
The main focus of the present study is to propose comprehensive
and robust DT architecture for power plants that can also be
used for other similar complex capital-intensive large engineering
systems. The novelty, necessity and advantages of such DT will
be assessed by reviewing the available power plant DT research
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Fig. 3. Energy related digital twin publications by subject area, year, country/territory and source type (from Scopus).
nd energy efficiency DT research that potentially can benefit
he development of power plant DT. More specifically, the main
ontributions of the present work include:

i. Overview of DT key research related to power plants and
energy savings applications that could benefit the develop-
ment of power plant DT (PPDT). This overview is intended
on highlighting the available so far power plant DT ap-
plications, frameworks and architectures and to highlight
important findings and research gaps.

ii. Proposing new comprehensive and robust DT architecture
for power plants. For this, the requirements for PPDT will
be established and the major DT components will be de-
termined including the physics-based formulations; the
statistical analysis of data from the sensor network; the
real-time data; the pre-performed localized in-depth sim-
ulations to predict activities of the corresponding physical
twin and the system Genome with a digital thread that
connects all these components together.

iii. Demonstrating the advantages of the developed ADL algo-
rithm approach and DSM prediction of the DT using vector
autoregressive model for anomaly detection in utility gas
turbines with data from an operational power plant.

The rest of the manuscript is organized as follows: Section 2
etails the DT applications that are mostly related to power
lants and their components. Section 3 overviews DT applications
or energy savings that benefits the development of PPDT. The

roposed DT for power plants and other similar complex systems

3708
is provided in Section 4 and future work and conclusions related
to PPDT are summarized in Section 5.

2. Overview of DT research for power plants

Development efforts of DT technology in the energy industry
are ongoing and gaining more momentum at fast pace. So far,
these efforts have been documented only in limited number of
publications. The aim of this section is to provide a comprehen-
sive and timely review of the PPDT and to provide a framework
for implementing DT in energy production systems. The energy
production key applications of DT are summarized in Table 1
categorized by their application type. These applications include
electricity generation and power distribution; renewable and nu-
clear power; vehicles, energy storage, batteries; and scheduling
of energy projects. As the focus of the present work is on PPDT,
further discussions are provided in this section on DT applications
for conventional, nuclear, and renewable energy power plants;
smart energy systems; and energy cyber–physical systems.

2.1. Digital twin for fossil fuel power plants and their components

The energy industry is actively pursuing the tremendous op-
portunists of DT applications for power plants. The key chal-
lenges facing the energy industry, the need for improving flexible
power plant operation and implementing power plant DT were
introduced by Fig. 1 of the introduction section. For rapid trans-

formation of power systems and to reduce the impact of plant
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Table 1
Overview of DT in energy production industry.
Application type Ref. Description

Electrical power
industry, including
electricity generation,
electric power
distribution

Zitney (2019) DT for flexible power plant operation
Sládek and Maryška (2018) Business potential of emerging technologies in decentralized energy industry
Klein et al. (2020) Pressure-driven dynamic simulation to provide a detailed, transient simulation

model, a digital twin, of an air separation unit
Saad et al. (2020a) DT for energy cyber–physical systems based on IoT and cloud computing
Scheibe et al. (2019) Analysis study in a power system simulation tool
Pileggi et al. (2019) Detect and analyze anomalies in a flexible energy deployment
Brosinsky et al. (2020) Digital Dynamic Mirror (DDM) for grid control
Park et al. (2020a) Optimization model for microgrid energy storage operation/scheduling
Saad et al. (2020b) DT for Networked Microgrids Resiliency against Cyber Attacks
Kozhevnikov and Kaplin (2019) Fault diagnosis and maintenance of power grid equip. and transmission lines
Barszcz and Zabaryłło (2019) A method for automated fault detection with analytical rotordynamic model
Errandonea et al. (2020) Review of DT for maintenance
Peng and Wang (2019) Condition monitoring for power converters

Renewable energy
industry

Oñederra et al. (2019) Predictive maintenance for windfarm
Andryushkevich et al. (2019) Power supply system with renewable energy sources

Nuclear power industry Lin et al. (2021) Semi-autonomous management and control system for advanced reactors to
prevent peak fuel temperature from exceeding safe levels

Internet of Vehicles,
energy storage, batteries

Zhang et al. (2019) Electric vehicles, analyzing the collected data of energy use, charging and
waiting time

Merkle (2019) Implement DT framework in a cloud-computing environment to estimate the
SOC of battery modules

Li et al. (2020) Cloud management for battery with online estimation of charge and health
Park et al. (2021) Solid oxides electrolyte materials for lithium batteries

Sustainable project
scheduling

Chakrabortty et al. (2019) Applied to a real-life energy system
Table 2
Fossil fuel power plant DT models in open literature.
Description DT model Calibration Validation Findings

DT for coal-fired thermal
power plant to analyze
operation, optimization
and economics. Xu et al.
(2019)

ThermoflowTM with boiler,
steam-turbine islands and
emission control equipment
models. O&M design
specification data at
320-MWe base load.

Using real operating data
from the distributed
control system

Simulating the
performances of various
part-load-operating cases

Irregular load changes,
thermal stresses, shortened
lifespan and increasing
O&M costs. CHP
cogeneration improves
efficiency.

Hybrid modeling and DT
development method of
control stage systems.
Yu et al. (2020)

3 parts: flow rate calc. of
high pressure control valves
using operation data, flow
and efficiency derivation.

330 MW steam turbines
and 1000 MW ultra
supercritical steam
turbine.

5-day operation data for
hybrid modeling and
5-day operation data to
develop DTs.

Suitable for online
performance monitoring
and for integrating more
renewables with higher
efficiency and safety.
cycling, the power plant flexible operations can be improved
via digitalization and connected plant technologies using DTs.
However several DT key components need further research and
development. The sensor network design is one of these compo-
nents that can be optimized using two-tier approach: plant and
component and using field data for performance improvement,
condition monitoring and fault diagnosis. Integrated dynamic
simulation (IDS) and virtual reality (VR) technologies, advanced
process control and strategies for flexible operation of the power
plant are the other key components of DT that need further
development.

Only handful DT concepts for power plants and their compo-
ents were found in open literature. For example, Zitney (2019)
resented dynamic model-based DT, optimization, and control
echnologies for improving flexible power plant operations. For
uture work, the authors emphasized the application of DT in
yber–physical systems for reducing design time and operational
isks and in cybersecurity system testing and validation. Another
wo studies by Xu et al. (2019), Yu et al. (2020) as shown in
ig. 4a and b, respectively, and summarized in Table 2, where
irectly related to thermal power plants. In Xu et al. (2019) a
ase study of DT modeling analysis is introduced on power-plant-
erformance optimizations on a 320-MWe coal-fired thermal
ower-plant unit. Their digital concept uses ThermoflowTM soft-
are that has imbedded models for the emission control equip-
ent, the steam turbine island and the boiler island. The results
3709
showed reduction in coal consumption of 3.5 g/kWh that worth
large fuel-cost savings annually. For the electricity-generation
only mode (in summer), the thermal efficiency dropped 6% fol-
lowing the grid demand of load changes from 100% maximum
continuous rating (MCR) down to 30%MCR. For the combined heat
and power (CHP) cogeneration mode (in winter) and for the same
boiler load, the plant’s operating profit increased with increasing
district heating duty. However, the work in Xu et al. (2019)
was oriented toward the results of using DT and description of
how optimization can improve the operation and reduce cost. No
details were provided on the models used for their DT or on the
optimization techniques and algorithms.

In Yu et al. (2020), a hybrid modeling method was proposed
based on collected operational data for performance monitoring
of control stage system of thermal power plants. Their modeling
method uses flow rate calculation of high pressure control valves
and flow and efficiency calculations of control stages. They vali-
dated the method using two case studies of a 330 MW subcritical
steam turbine and a 1000 MW ultra-supercritical steam turbine,
for which they developed DTs of control stages. Results show av-
erage relative errors within 1% between calculated and measured
values of exit pressure and temperature, suggesting that plant-
wide DT development and online performance monitoring are
possible. Although the studies by Zitney (2019), Xu et al. (2019)

and Yu et al. (2020) are good demonstration examples of using
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Fig. 4. DT concepts for power plants and their components.
T for power plants, they still lack a holistic approach to full
igitalization. The DT developed in Yu et al. (2020) was only at
he control stage level that can be useful for developing DTs for
ther components but still does not address all requirements for
ower plant DT as a system.
The other DT concepts in Fig. 4c to 4f are also at the compo-

ent level of power plants. Dawes et al. (2019) discussed digital
eometry, as opposed to classical CAD approach, to support a gas
3710
turbine DT, Fig. 4c. The authors suggested that the DT should
be an integrated, based on physics simulation (aero-thermal-
mechanical, manufacturing, erosion & corrosion, wear & degrada-
tion, cost & life economics). Three key challenges were identified:
scale of simulation; scaling the simulation; and responding to
data driven feedback.

A diesel engine’s DT for predicting propulsion system dynam-
ics was developed by Bondarenko and Fukuda (2020), Fig. 4d.
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Fig. 5. Digital twin concepts for nuclear power plants.
heir modeling approach combines continuous time domain cycle-
ean value engine model with the crank-angle resolved phe-
omenological combustion model, satisfying the real-time exe-
ution constraint. They used the integral form of the energy and
ass conservation equations with Wiebe combustion model to
ome up with a set of nonlinear algebraic equations resulting in
aster solutions and better accuracy than traditional approaches.

Mitsubishi Hitachi Power Systems (MHPS) (Mitsubishi Heavy
ndustries, 2018), Fig. 4e, developed DT for coal-fired boilers.
he DT collects the measurement data of pressure, temperature
nd flow rate; utilizes AI technology including machine learn-
ng and MHPS’s expertise; and reproduces a virtual boiler that
rovides optimum settings feedback to the control system of the
eal boiler. Taiwan Power Linkou Power Plant Unit 2 (800MW)
howed 100 million yen annual cost reduction. The ultimate goal
f the development of this DT technology is to establish automatic
utonomous operation in the future.
Water pumps are used in power plants extensively, however

pecific applications of DT for water pumps in power plants were
ot found in literature. A study of water pump DT that can be
xtended to power plant applications can be found in Ferguson
t al. (2017), Fig. 4f, who implemented the DT concept to tackle
esign challenges in water pumps using a simulation package
3711
from Siemens PLM Software. They used an example focuses on
a large flood control axial pump for the city of New Orleans,
designed to provide durable performance under severe weather
conditions. The complex geometry of the pump was imported
into STAR-CCM+ and discretized using the automated polyhedral
and prism layer meshing capability. In combination with LabView
pressure tracks and vibration software, they reached optimum
design of the pump for the intended operation.

2.2. Digital twin for nuclear power plants

Applications of DT in nuclear power plants can be found in
Patterson et al. (2016), Okita et al. (2019) as shown in Fig. 5.
Patterson et al. (2016), Fig. 8a, proposed framework for a DT
composed of prototype design of nuclear plants, operations, de-
commissioning, storage and waste disposal. The DT has series of
interconnected multi-scale, multi-physics models with real data
from prototypes, in-service monitoring and inspections, post-
shut-down inspections, and in-situ monitoring of stored waste.
The gaps, implementation and advantages of the proposed DT
are identified and discussed emphasizing the dependence on
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uture advances in high performance computing and on devel-
ping algorithms for processing huge data and on the impor-
ance of obtaining data via measurement innovations, analysis
nd uncertainty.
Okita et al. (2019) proposed a general DT of artifacts (DTAS)

oncept, which can be applied to large artifact systems such as
uclear power plants and small artifacts such as home appli-
nces. The structure of DTAS consists of inspection technique that
an detect the current state of structural materials, see Fig. 5b,
o evaluate their degradation and integrity. DTAS components
nclude physical and numerical models in cyber space such as
anufacturing/remanufacturing, supply chain, economic and so-
ial models. The social system models, however, are challenging
ecause they are related to value creation in societies, which is
ot easy to describe mathematically.

.3. DT for renewable energy generators

DT concept can play major role for optimal design and reliable
unctioning of large renewable energy systems, however, accord-
ng to (Ebrahimi, 2019), no serious strategy and comprehensive
tudy have been yet proposed. Ebrahimi (2019) discussed the
ecessity and challenges of DT models of large renewable energy
enerators and introduced a comprehensive modeling strategy
or developing a multi-domain live simulation platform for wind
nd hydro power plants, Fig. 6a. Large scale energy systems such
s wind farms are complex systems and as such the DT concept
as used by Kahlen et al. (2016), Fig. 6b, to change system de-
ign, manufacturing and operation. This resulted in reducing the
npredicted undesirable (UU) behavior of these complex systems
nd augmenting Systems Engineering. Sivalingam et al. (2018)
eviewed and proposed methodology to predict the useful life for
ffshore wind turbine power converter in DT framework, Fig. 6c,
or predictive maintenance. For hydro generators, Moussa et al.
2018), Fig. 6d, presented an existing large hydro generator based
n partial DT concept and models using finite element method.
synchronous machine case study is considered, where both

ets of simulation and experimental results are used to validate
he model by performing no-load and sustained short circuit
ests according to IEEE 115 standard. This DT concept still under
evelopment and needs to be completed to be able to perform
ondition monitoring, diagnosis and prognostics functionalities.
T approach for fault diagnosis in distributed photovoltaic sys-
ems, Oñederra et al. (2019), is shown by Fig. 6e, and will also
e discussed in Section 3 below as the case serves as an example
or both energy savings in buildings and for PV renewable energy
pplications of DT.
In addition to the above applications, Brosinsky et al. (2018)

ntroduced a dynamic digital mirror concept of a DT centric
ontrol for power systems. A DT interface for managing a wind
arm was patented by Lund (2018) with a graphical user interface
GUI) displaying a digital equivalent of the wind farm and a
ontrol icon. The digital equivalent of the wind farm includes
nvironmental information and a digital representation of each
f the wind farm turbines.

.4. Energy management and control DT for smart energy systems

Energy management tool that can be used across different
nergy sectors is presented in O’Dwyer et al. (2020), Fig. 7a, with
ptimal control, scheduling, forecasting and coordination services
f energy assets for a district. The idea is for a single open-source
ptimization framework to be applied across multiple energy
ectors, providing local government the opportunity to coordi-
ate different assets. Case studies were conducted for integrated

ow-carbon heating for social housing and electric vehicle charge
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management in Greenwich, London. The paper illustrates the
theoretical methodology, the software architecture and the DT
environment, however considerations for aging of the subsystems
and the overall systems are not taken.

2.5. DT for energy cyber–physical systems

Modeling method of energy cyber–physical systems (ECPS)
for several applications including in energy industry was intro-
duced by Saad et al. (2020a), Fig. 7b. DT types to cover high-
and low-bandwidth applications are tested and validated using
Amazon Web Services (AWS) as cloud host. The experimental
results confirmed the feasibility of DT for the ECPS based on cloud
computing and IoT technologies with 3.7% normalized mean-
square error for the low-bandwidth DT case and the accuracy
of the proposed high-bandwidth DT, reached 98.2% in terms of
voltage estimates.

Talkhestani et al. (2019) proposed DT and intelligent DT archi-
tectures for cyber–physical production systems. For implementa-
tion and evaluation, they used a method for heterogeneous data
acquisition and data integration and an agent-based method for
DTs simulations. Their proposed intelligent DTs is partly realized
for a metal forming use case, however its realization for energy
cyber–physical system was not carried out, which is a subject for
future research.

To conclude this section, the main observation is that the
available DT research for power plants is very limited with only
three articles were found on DT for fossil fuel power plants: Zit-
ney (2019), Xu et al. (2019) and Yu et al. (2020); two articles
for DT in nuclear power plants: Patterson et al. (2016) and Okita
et al. (2019); and five articles on DT for renewable energy sys-
tems: Ebrahimi (2019), Kahlen et al. (2016), Sivalingam et al.
(2018), Moussa et al. (2018) and Jain et al. (2020). There are
several other articles on DT at the component level of power
plants. However, all these articles did not include details on
the comprehensiveness/robustness of their DTs or details on the
used physics based models, artificial intelligence and enabling
technologies capabilities.

The main challenges and research gaps facing DT R&D for
power plants include:

• Optimization of sensor network design needs
• Developing and implementing integrated dynamic simula-

tions and virtual reality (VR) technologies.
• Advancing process controls and enhancing strategies for

flexible operations,
• Realization of DT for energy cyber–physical systems, and for

energy management and control for smart energy systems.
• A holistic approach is needed for developing and imple-

menting DT for power plants to account for renewable inte-
gration, energy storage choices, autonomous operation, full
and part load conditions, aging of the DT, transient operation
and other factors.

3. Overview of DT for energy savings applications

Key energy savings applications of DT that can serve the
development of DT for power plants are summarized in Table 3
categorized by their application type with brief description of the
main features. The examples in Table 3 include energy savings ap-
plications in production engineering, monitoring, manufacturing,
buildings and pumping and ventilation systems. Further discus-
sions of DT for these energy savings applications are provided
next.
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Fig. 6. Digital twin concepts for renewable energy systems.
.1. DT for energy savings in manufacturing

In a recent review by Teng et al. (2021) on DTs for industrial
nergy savings applications, the potential for a more accurate
nd effective DT-based infrastructure was discussed. The authors
roposed to standardize and modularize industrial data infras-
ructure for smart energy savings and provided a guideline for
mplementing advanced energy-saving systems. A DT for smart
anufacturing to reduce energy consumption for a robotic cel-

ular was proposed by Vatankhah Barenji et al. (2020). The ap-
roach implements real time optimization of motion planning in
obotic cellular of the physical and virtual layer, Fig. 8a, based
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on which the DT driven facility is designed. Several observations
and findings were reported for IoT implications with the new
DT environment. Machining data application and service based
on intelligent machine tool (IMT) DT were presented in Tong
et al. (2020). Multi-sensor fusion technology is adapted for real-
time data acquisition and processing. MTConnect protocol and
components were used for transmission and storage of data. Mul-
tiple forms of health management information system (HMIs) and
applications are developed for analysis in DT, including machin-
ing trajectory, status and energy consumption. The authors used
the IMT DT model for analysis of machine tool dynamics, con-
tour error estimation and compensation. For energy monitoring



A.K. Sleiti, J.S. Kapat and L. Vesely Energy Reports 8 (2022) 3704–3726

a
(
t
i
u
m
R
m
a
a
w
a
l
c
f
g
t
m

-

Fig. 7. Concepts of DT for energy management and control for smart energy systems and for energy cyber–physical systems (ECPSs).
nd management of injection molding machines, Castagna et al.
2019) introduced a framework integrating the models inside the
win of the ARTI architecture and proposed a methodology to
mplement the DT on a resource, see Fig. 8b. Zhang et al. (2018b)
sed DT shop-floor (DTS) in the equipment energy consumption
anagement (EECM) to improve the energy efficiency, Fig. 8c. In
occa et al. (2020) DT concept was used for energy savings opti-
ization of the waste from a process of disassembling electronic
nd electric equipment (WEEE) using automated simulation tools
nd manufacturing line, Fig. 8d. Energy optimization case study
as presented in Karanjkar et al. (2019) using IoT-based DT in
utomated surface mount technology (SMT) assembly line with
egacy machines, Fig. 8e. Sensors were used to measure energy
onsumption and other machine activities and open source tools
or the DT. A buffering-based solution was suggested based on the
athered data to improve energy efficiency. The DT implemen-
ation showed energy consumption reduction of 2.7 times with
inor effects on line throughput.
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3.2. DT for minimizing energy consumption in mobile edge comput-
ing

A mobile edge computing system (MECS) with communica-
tions and delay tolerant services was considered in Dong et al.
(2019) to minimize the energy consumption per bit (the only
study found in open literature on this field). This is done by
optimizing resource allocation, user association, and offloading
probabilities constrained by requirements of service quality. They
proposed a deep learning (DL) architecture, where a DT of the
real network is used to train the DL algorithm off line, Fig. 9. To
account for the dynamic nature of the networks (DNN), the DT
sorts out the variation of real networks and updates the DNN. An
optimization algorithm is proposed for resource allocation and
offloading probabilities that achieved energy savings with less
computational resources. The MECSs are energy-intense consum-
ing systems with potential for significant energy savings, which
calls for more research using DT approach.
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Table 3
Overview of DT for energy savings applications.
Application type Ref. Description

Production engineering

Hauf et al. (2017) Automated production; energy efficiency with virtual commissioning (VC)
Negri et al. (2019a) Monitor the functional behavior of the production system and evaluating its

energy consumption
Howard et al. (2020) DT for Commercial Greenhouse Production
Howard et al. (2021) For green house growers for developing energy flexibility solutions with

constraints for processes and products
Gupta and Basu
(2019)

Aluminum smelting and emerging technology like Industry 4.0, toward
reduction of energy and making Al production sustainable.

Monitoring appliances,
machines, tools,
compressors

Bayer et al. (2018) Aircraft high lift system
Kychkin et al. (2019) Monitoring and control cyber–physical system (CPS) of compressors
Sun et al. (2019) Energy consumption of cutting tools
Song et al. (2019) Performance prediction of electro-optical detection system using Modulation

(dynamic Bayesian network)Yue et al. (2019)

Manufacturing

Liu et al. (2019) Energy consumption for remanufacturing shop-floor
Xiang et al. (2019) green manufacturing, energy consumption management
Oyekan et al. (2019) Industrial robots and humans, metrics and kinetic energy for human reactions
Anton et al. (2020) DT on a distributed cloud in a shop floor with SCARA assembly robots
Kannan and
Arunachalam (2019)
Pombo et al. (2020)

For Grinding Wheel, increases energy and resource efficiency.
Development of intelligent grinding wheel.

Wang et al. (2019a) Energy efficient manufacturing in synchronous and asynchronous systems
using event driven online machine

Park et al. (2020b) Smart manufacturing operations DT for service functionality
Cardin et al. (2020) For injection molding machines
Gaikwad et al. (2020) For additive manufacturing

Data centers, building
industry

Brannvall et al.
(2019)

Cooling of IT equipment, tuning of server fan controllers

Mateev (2020) Business cases and best practices in design of IoT solutions for buildings

Pumping systems Carrillo Peña et al.
(2019)

Visualizing pumps in series or in parallel to adjust operating conditions to
achieve higher efficiency in response to changes in conditions downstream

Ventilation system Kychkin and Nikolaev
(2020)

Mine ventilation control system architecture
Fig. 9. DT to minimize energy consumption for mobile edge computing system, Dong et al. (2019).
.3. Robot DT for energy savings

Autonomous robotized facilities with maintenance capabilities
n the energy industry was discussed in Pairet et al. (2019).
video was presented of ORCA Hub simulator, a framework

or three autonomous systems (Husky, ANYmal and UAVs) on
n offshore platform DT for training and testing human–robot
ollaboration; inspection and emergency response. In Yan et al.
2018) energy saving of industrial robots (IRs) is investigated for
nvironment protection and cost reduction. In their paper, energy
odeling method of IRs based on DT is proposed, which includes
hysics based energy model of the physical IRs, 3D virtual robot
odel, DT data, and ontology based model to map the virtual to
3716
the physical model. Results of case study validation show that
the DT modeling method predicted the IRs energy consumption
efficiently.

3.4. DT for energy savings in buildings

Only 3 studies were found in open literature that used DT for
energy savings in buildings; (Lydon et al., 2019; Jain et al., 2020;
Kaewunruen et al., 2018). A building simulation of a heating and
cooling system integrated with a lightweight roof structure was
presented in Lydon et al. (2019). The concrete roof structure
is shape optimized to provide a low-energy building element,
which supplies space conditioning from geothermal source. The
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pproach uses building physics analysis for initial system perfor-
ance and a parametric geometry model to apply the pipework

o a roof shape. Then, a less-resolution method is used to add
he characteristics of the system to a whole building simulation
odel to develop control strategies. The research found that

he digital fabrication approach helped identifying the needed
lternations to the building design process.
Rooftop and building-integrated distributed photovoltaic (PV)

T design methodology was presented by Jain et al. (2020) in-
luding mathematical analysis, simulation study, and experimen-
al validation for fault diagnosis. The DT estimates the measurable
haracteristic outputs of a PV unit in real time and the fault is
etected by comparing the error in the measured and estimated
utputs. Using a PV prototype, the experimental results show
etection and identification of ten different faults. The time to
ault detection in the power converter and the electrical sensors
howed higher fault sensitivity than existing approaches.
The case study of existing buildings in Kaewunruen et al.

2018) investigated technical and financial viability of Net Zero
nergy Buildings (NZEB). Evaluations to improve the NZEB are
erformed using a flow chart with a Building Information Model
BIM). This BIM or DT is then used to visualize the available
ptions to estimate costs and production issues of NZEB. The au-
hors concluded that the DT is feasible for renewable technologies
pplied on the NZEB buildings highlighting a case study in the UK
ith a payback period of 23 years.
To conclude this section, the challenges and research gaps

acing DT R&D for energy savings applications that can serve the
evelopment of PPDT include:

• While the above DTs for energy savings demonstrated ad-
vantages in their intended applications, important DT as-
pects were not fully considered such as aging of the DT,
detecting anomalies in real-time and answering what–if
scenarios for transient operation. These aspects will be ad-
dressed in Section 4 below for the proposed in this study
DT.

• Handling the data, processing infrastructure, and incomplete
data acquisition systems in existing facilities, Máša et al.
(2018), Weyer et al. (2015), Uhlemann et al. (2017).

• Standardization and modularization the systems’ data in-
frastructure and development of efficient robust approach
for analysis of data driven processes and data acquisition,
(Weyer et al., 2015).

• The complexity arising from energy usage of hundreds of
processes, Zhang et al. (2018a), which was addressed in
Shrouf et al. (2017) by using multi-level energy data pro-
cessing at the process, machine, production lines and pro-
duction levels.

• Potential for blockchain technology, Teng et al. (2021), An-
doni et al. (2019), Lu et al. (2019).

• Exploration and implementation of DT for new applica-
tions such as pipe networks for oil, gas and CO2 transporta-
tion (Sleiti et al., 2020c) and many others.

In summary, these examples and approaches of using DT for
energy savings in manufacturing, mobile edge computing, robots,
and buildings can serve as guidelines for similar and extended
processes and applications for power plant DT. Based on the
findings from the review of DT for energy production and power
plants (Section 2), DT for energy savings (Section 3) and the
identified research gaps, a robust DT for power plants is proposed
in Section 4 below. This DT is designed to also be used for other

similar complex capital-intensive large engineering systems.
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4. Proposed robust DT for a power plant and other similar
complex capital-intensive large engineering systems

In this section, efforts are proposed that will lead to an al-
gorithm or software platform consisting of several specialized,
open-domain and/or commercial software to create a ‘‘Digital
Twin’’ (DT) of a power plant, and other similar complex capital-
intensive large engineering systems. Such a DT can be used for
condition-based maintenance, prediction of life-remaining, au-
tonomous operation of a power plant or similar systems. Because
of renewable integration, future power plants will become more
complex with Power-to-X, Electrolysis to green hydrogen, onsite
storage of hydrogen, and use of pure or blended hydrogen, etc.
Such power plants will require DT architecture, such as the pro-
posed here, to achieve high RAM at a lower cost. Condition based
maintenance and autonomous plant operation will become more
important in the coming decades. As various forms of short term
versus long term energy storage technologies are introduced, and
as various forms of fuels will be used either in blended or pure
form with implications on both emissions and life of components,
on-the-fly decision for operation and maintenance will become
too complex. For example, whether to deplete battery storage or
to use stored green hydrogen, whether to use higher fraction of
hydrogen or lower fraction in blended fuel, whether to reduce the
load to a part load condition or to use on-site electrolyzer to pro-
duce and store hydrogen for later use are some of the decisions
that plant operators of the future have to take. The proposed DT
platform is intended to address such issues. In addition, the DT
platform can also be used to assess the remaining life for various
parts, and hence for planning a service interruption or prediction
of a component’s fault according to real-time measurement and
historical data.

4.1. Requirements for DT architecture

The DT architecture is based on an integrated algorithm that
combines, on a real-time basis, a dynamic system model utilizing
a physics-based low-order model of the system, and statistical
and machine learning algorithms applied to data from the various
sensors employed. In order to design a DT architecture, it is neces-
sary to define several requirements, which have to be considered
in the DT architecture:

• The DT must have the up-to-date physical dimensions and
model (System Genome or SGenome) of the physical twin
— The DT must ‘‘age’’ as the physical twin does.

• The DT must accept and process continuous data stream
from a multitude of sensors (referred to as distributed sen-
sor network (DSN) – just as a human brain does.

• Must include a low-order, physics-based, dynamic system
model (DSM) that can run in real-time. This is essentially
the Cyber–Physical model or System of the Physical Twin.

• Must be able to detect, in real-time, anomalies based on data
received from DSN, to apply machine learning or deep learn-
ing principles to identify the serious anomalies. This feature
is referred to as anomaly detection and deep learning (ADL).

• Must be able to refer to a look-up table of previously per-
formed localized, in-depth simulation (LDS) solutions to ex-
plain differences between ADL and DSM, and update System
Genome.

• Must be able to trigger alarms and warnings in real-time
that would lead to maintenance schedules, and/or suggest
off-line, new LDS in case of unexplained disagreements.

• Must be able to answer what–if scenarios for transient op-

eration or changes.
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Fig. 10. Components of Digital Twin architecture, based on Goyal et al. (2019).
According to the above rules and requirements, the proposed DT
architecture consists of five key components, see Fig. 10. These
DT components are: DSM or physics-based formulations of a
system of interest (power plant, air craft, storage, etc.), ADL or
statistical analysis of data from the sensor network, as well as
DNS or real-time data of a system of interest, and LDS or pre-
performed localized in-depth simulations to predict activities of
the corresponding physical twin. All these four components are
connected to the system Genome with a digital thread.

4.2. Overall flowchart of the proposed power plant DT architecture

The overall DT architecture is shown in Fig. 11, where number
(1) is a dynamic system model (DSM), which is physics-based,
low-order model of the power plant and number (2) is a data-
based model that would incorporate the latest techniques in
machine/deep learning and artificial intelligence (ADL). The DT
architecture compares the results from DSM and ADL. In the case
of ‘‘unacceptable’’ levels of disagreement, and if the difference
between DSM and ADL can be traced back to sensor failure(s), the
sensor database (DNS), i.e. number (3) and the digital thread of
the system, i.e. number (4) are updated. Here (3) is a distributed,
massive sensor network that should be flexible enough to in-
corporate newer sensors and automatically discard unnecessary
and failed sensors, and (4) is digital thread or plant model that
must be updated on real-time in order to accommodate ‘‘aging’’
and localized failures. Otherwise, ‘‘unacceptable’’ levels of dis-
agreement will force the DT algorithm to look-up a collection
of pre-performed localized in-depth simulations (LDS) of various
components of the system, i.e. number (5), which is an off-line
or non-real-time tool for detailed, localized simulation of flow,
structures, acoustics, vibrations, combustion etc. If the differences
can be explained due to, say, aging or wear and tear of the
components, the digital thread is updated so that the DSM will
utilize the updated digital description subsequently. Otherwise,
alarms are raised and additional off-line LDS may be performed
until the differences can be explained.

The DT shown in Fig. 11 is a complex architecture with several
issues that need special handling. For example, currently many of
the data-based algorithms have shown tremendous promise but
the accuracy of these algorithms is far from satisfactory, which is
very important for ADL. The problem is basically in the quality
of datasets (negligible repeatability or security and liability is-
sues) (Loboda, 2016; Zhao et al., 2016). However, according to
published literature, the gas path analysis (GPA) has been used
consistently in the industry to predict the deviation from the ex-
pected performance of gas turbines or small subsystems (Volponi,
2014; Volponi and Tang, 2016).
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4.3. Components of the power plant DT architecture

Referring to Fig. 11, the detailed description of each circled
component(s) is as follows:

(1) Physics-based dynamic system model (DSM)
The DSM is oriented toward the development of the mathe-

matical model of the problem/system. This mathematical model
is written for real-time solutions with dynamic effects as well as
steady-state behavior. The mathematical model can be written in
one source programing language or can use commercial software.
The IDAES (Institute for the Design of Advanced Energy Systems)
is one of the open source software and can be used for this
purpose (Gunter et al., 2018). IDEAS is a new advanced Process
Systems Engineering (PSE) with capabilities to design and opti-
mize current and future potential power systems with dynamic
simulation. IDEAS is written in Python, which is an open-source,
fast, and user-friendly programing language. IDAES uses several
Python software packages. The main open-source dependency is
Pyomo, which IDAES uses for optimization. Pyomo is the Python
software package collection for the definition and formulation
of the optimization models. DT based optimization methods can
be used such as the one proposed by Guerra et al. (2019) that
minimizes the maximum absolute position error based on fine
tune method. Also, multi-objective optimization for economy,
environment and society sustainability (Rivas et al., 2020) can be
incorporated in the optimization processes.

The IDAES architecture is designed as the main flowsheet,
which is divided into the unit’s models, which include thermo-
dynamic properties models and support submodules, see Fig. 12.
All input parameters, and boundary conditions are defined in the
main code (flowsheet). The flowsheet also defines the connection
between components and whether the system is open or closed.

The unit models (pump, compressor, boiler, heat exchanger,
etc.) are the main models for the calculation of individual com-
ponents. The unit model defines constraints and equations for
each component with the geometry and material properties. The
support submodules are modules, which define the control vol-
ume of the model, reaction, phase, or connection between unit
models. The support submodules are the main mathematical
codes for a defined overall system, for example, for direct-fired
supercritical CO2 power cycle (Sleiti et al., 2021), combined water
and cooling production systems (Sleiti et al., 2020b,a), oil and gas
systems (Sleiti et al., 2020c), etc. The thermodynamic properties
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Fig. 11. The overall flowchart of the proposed power plant DT architecture.
Fig. 12. IDAES flowsheet — example.
models define the purity or composition of the working medium,
and its thermodynamic properties according to equations of state
(EOS) for water (Wagner and Pruss, 2002; Wagner and Pruß,
2002; Wagner et al., 2000; AKASAK, 2008; Huber et al., 2012;
Daucik and Dooley, 2011; Huber et al., 2009), and for flue gas
or CO2 (Span and Wagner, 1996; Vesovic et al., 1990; Fenghour
et al., 1998). The models also define how, and which parame-
ters are necessary for calculation of thermodynamic properties.
The properties are calculated from two independent parameters,
temperature and pressure. The main thermodynamic properties,
which the models can calculate and give for optimization are the
3719
enthalpy, entropy, thermal conductivity, kinematic and dynamic
viscosity.

(2) Data-based model; Anomaly Detection and deep Learning
(ADL)

Beside the DMS the DT architecture includes data-based model,
which uses real-time data from a system. The data-based model
uses Anomaly Detection and deep Learning (ADL) for the de-
tection of the difference between DSM and ADL, which can be
traced back to sensor failure(s), then the sensor database and
the DT database or digital thread of the system are updated, see
Fig. 13. Unlike DMS, which is based on a physical description of
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Fig. 13. The ADL algorithm approach and DSM prediction of the DT architecture.
Fig. 14. Power plant schematic, based on Goyal et al. (2019).
the system, ADL uses statistical methods to find dependence. For
data-based model, a few approaches are suggested using various
advanced techniques in ML/DL/AI that can be utilized for this
purpose:

• The ADL algorithm approach, which uses real data from
power plants. This data can be sorted using multiple statis-
tical tools.

• The generalized additive models (GAMs), which lends in-
sight into the understanding of the non-linear relationship
between the system inputs (e.g., fuel flow, etc.) and out-
puts (e.g., temperature, power, etc.) of the system, Granger
(1969), Goyal et al. (2019).

• Multiple-stage vector autoregressive model (VAR) can be
used in which, a variable present value is expressed as linear
combination of other variables’ previous values or itself. For
a factor not explainable by its historical value, a random
error term can be used, Lütkepohl (2005), Goyal et al. (2019,
2020).
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An example to demonstrate the advantages of ADL of Fig. 13,
is the case of using vector autoregressive model for anomaly
detection in utility gas turbines (Goyal et al., 2019), Fig. 14. In this
example, an operational power-plant data is used. Such power
plant has 3 identical gas turbine (GT) units, one entire steam
turbine (ST), and 3 heat recovery steam generator (HRSG) units
as shown in Fig. 15.

The data for the analysis, according to Fig. 14, comes from
only one of the GTs, HRSG and ST. Several anomalies are de-
tected and reported during operation via controlled false alarms
that are treated using physics-based methods to determine if an
action needs to be taken. In this example, the DT architecture
summarizes a pure data-driven statistical autoregression study
that uses the behavior of the past values of the system to predict
future values to help figuring out if the measurement data are
in the toleration or show anomalies. When some values deviate
from the autoregression, they are flagged as an anomaly, however
large number of false alarms mean that such a method is inef-
fective. A demonstration of this method is provided by Fig. 15
for a combined cycle power generation and the pressure of the
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Fig. 15. Unexpected change in the pressure of the cooling steam, based on Goyal et al. (2019).
Fig. 16. In advance prediction error in cooling steam pressure, based on Goyal et al. (2019).
cooling steam in one of the GT units. The noticeable increase in
the cooling pressure at the nondimensional time of about 90 is
flagged as an anomaly as seen in Fig. 15 and hence actions can be
taken before causing unit failure by this anomaly.

A multiple-stage vector autoregressive model, in the above
example, is constructed for the nominal operation of the power
plant assuming that the variables are initially correlated and then
the anomaly detection/prediction is based on this assumption.
The prediction is compared with the plant operation time-series
data that have anomalies. Granger causality networks, based on
the associations between the time series streams, are found as
an implication from the vector autoregressive modeling. The
3721
anomaly is detected via comparing the observed measurements
with the predicted values. The details of this methodology can be
found in Goyal et al. (2019).

Fig. 16 shows the in advance prediction for different ranges
of cooling steam pressure over the testing period, including both
states ‘‘off’’ and ‘‘on’’. The prediction error is presented with
3 standard deviations of the corresponding stages. The sudden
increase around time 90 shows a non-negligible prediction er-
ror, indicating abnormal behavior of the pressure of the cooling
steam from its normal values. The 3 standard deviations of the
prediction error excludes the possibility that the deviations are
just noise.
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Fig. 17. The power generation failure – real-time measurement, based on Goyal et al. (2019).
3) Sensor network and data sources:
A power plant simulator flow loop (available from different

ources) can be used for public domain data for initial model
evelopment and debugging. The system imports streaming data
rom temperature sensors, vibration sensors, pressure sensors
nd accelerometers and other subsystems of the simulated power
lant. The level of data influx from different temperature sensors,
ressure sensors, and other parts of sub systems is very large.
s an example, Fig. 17 shows real data from the power plant,
entioned in Fig. 14, for two different days, which are used in
DL. To reduce the size of this ‘‘Big Data’’ from sensors, ‘‘Data
nalytics’’ can be used (Tannahill and Jamshidi, 2014) that imple-
ent computational intelligence (CI) and statistical tools such as
lustering, principal component analysis (PCA), neuro-computing,
enetic algorithms, Bayesian networks, fuzzy logic, etc. A demon-
tration is provided in Tannahill and Jamshidi (2014) of using
uch data analytics to generate models to forecast produced PV
nergy to optimize micro grids.
The Distributed Sensor Network (DSN) provides real-time

eadings of the system parameters. It forms the basis of the data
o be used by ADL, see Fig. 11. As existing sensors fail, DSN
atabase needs to be updated. As new failure mechanisms are
nderstood and corresponding sensors are implemented, DSN
atabase also needs to be updated. Assessment of sensors’ re-
iability is very important as discussed in Castaño et al. (2019)
hat proposed a co-simulation framework to enable real-time
nteraction between virtual and real sensors.

4) System Genome or Digital Thread:
The digital thread component of the proposed DT must be

pdated initially and then continuously, according to Fig. 11. The
ower plant model must also include the initial manufacturing
r as-manufactured deviations from the design intent. A central
eature of any DT architecture is the consideration of ‘‘aging’’ or
ontinuous system deterioration. DT architecture must age the

ame way as the physical twin will.
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(5) Localized in-Depth Simulations (LDS):
LDS are required when the physics-based model and the data-

based model disagree with each other, according to Figs. 10 and
11, and when we need to understand basic underlying physical
phenomenon using software where analytical methods are not
precise. This is because data-based algorithms tend to look for
systematic patterns and physics-based reasoning is required to
remove spurious correlations and false patterns. Unacceptable
levels of disagreement will force the digital twin algorithm to
look-up a collection of pre-performed localized in-depth simula-
tions (LDS) of various components of the system. When no such
pre-performed simulation is available, a new one will be per-
formed, and the results will be added to the look-up collection for
future usage as well. The LDS can be performed using appropriate
commercial or open-source CFD, FEM, Acoustics, etc. software.

4.4. Future work for the proposed DT for power plants

The DT architecture development for power plants and similar
systems is a very complex procedure that needs to be identi-
fied, defined, and decided according to real data and physical
description of the system. With the above 5 different parts of
DT, which are connected to each other, the future work on the
DT architecture would be focused on each part individually and
on the overall connections. The auto regression model example
(presented in this section earlier) that was used to detect anoma-
lous behavior, performs better when the system is not dynamic
and as such, the future research should concentrate on algorithms
that are capable of predicting the system’s dynamic behavior with
data-driven methods.

Data-driven approaches alone, (AD in Fig. 10) are not sufficient
for a robust DT that supposed to predict failures in advance
to trigger corrective actions, rather a multi-faceted approach is
needed. Additionally, for interpreting and enhancing the results
from the data driven process, a physics based model (low order
DSM in Figs. 10 and 11), should operate in tandem with the latest
system parameters.
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The comparisons, validations and verifications are continuous
rocesses, and as such, the unexplainable discrepancy between
SM and ADL, requires off-line in-depth localized simulations
LDS in Fig. 10). Such simulations would identify the causes of the
iscrepancies between ADL and DSM. The addition or not of sen-
ors at strategic-critical locations to the DSN, can be determined
rom the results of LDS.

Power plants operate almost continuously, which causes degra-
ations in the parameters used in the ADL. For this reason, the
ata set that defines the system parameters (System Genome in
ig. 10), should be updated all the time. This can be done either
ia measurements or through parameter estimation applied to
ata from sensors.
For robust DT architecture, the DT must not be based only

n ADL or data driven processes, rather the 5 components; DSM,
SN, ADL, LDS and System Genome, should be integrated.

. Conclusions

Digital twins can transform the energy production sector and
an meaningfully improve the energy efficiency in industrial,
uildings, service, and transportation sectors. The integration of
enewable energy in the energy production sector makes the fu-
ure power plants more complex that will require DT architecture
o achieve high reliability, availability and maintainability (RAM)
t lower cost. However, applications of DTs for power plants are
nusually limited in open literature, suggesting that tremendous
esearch opportunities in the field are still wide open.

In the present study the use of DT for power plants and its
otential to transform the energy production industry is inves-
igated. The main contributions of the present work include: an
verview of DT key research related to power plants including
pplications, frameworks and architectures; an overview of DT
ey research and development for energy savings applications
hat benefits the development of PPDT; and proposing new robust
T architecture for power plants, and other similar complex
apital-intensive large engineering systems.
The requirements and rules for developing PPDT are estab-

ished first and then used to develop the proposed PPDT that
onsists of five key components. These DT architecture compo-
ents are: DSM or physics-based formulations of a system of
nterest (power plant, air craft, storage, etc.), ADL or statistical
nalysis of data from the sensor network, as well as DNS or
eal-time data of a system of interest and LDS or pre-performed
ocalized in-depth simulations to predict activities of the corre-
ponding physical twin. All these four components are connected
o the system Genome with a digital thread.

The present study also suggests the future directions for DT
rchitecture development for power plants and similar complex
ystems. The DT development needs real data and physical de-
cription of the overall system with focus on each part of the
ystem individually and on the overall connections. Algorithms
hat are capable of predicting the dynamic behavior of the system
ith data-driven methods still need more advanced develop-
ent. Data-driven approach alone is not sufficient and a physics
ased (low order) model DSM must be operated in tandem with
he latest system parameters, to enhance and interpret the results
rom the data driven process. Discrepancy between DSM and ADL,
ill require in-depth localized off-line simulation (LDS). All five
omponents of the proposed DT architecture, DSM, DSN, ADL, LDS
nd System Genome, should be integrated to achieve a robust DT.
Lastly, it was observed that research related to the importance

f integration of energy systems cyber security with DTs has not
een reported in open literature (only couple studies listed in
able 2), which makes this subject a priority for future research.
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