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ABSTRACT 

AL SHARIF, REEM , A., Doctorate: June: 2024, 

Doctorate of Philosophy in Engineering Management  

Title: Holistic Smart City Risk Assessment Framework  

Supervisor of Dissertation: Shaligram, Pokharel. 

Smart cities are built on the advanced usage of information and communication 

technology (ICT) in several aspects. Smart city projects are multidimensional and 

complex. Therefore, risk perspectives need to be considered.  Risks are related to 

privacy and security, infrastructure, standards, governance, and legal.  

While these perspectives undoubtedly play crucial roles in shaping the functions 

of smart cities, there remains a notable deficiency in comprehensive risk assessment. 

This thesis proposes a holistic smart city risk assessment framework considering both 

technical and non-technical risks applicable to smart cities. The framework uses an 

evaluation criterion to help the decision-makers produce and implement risk 

management plans. Data compiled through interviews with forty persons have been 

evaluated from risk perspectives and disaggregated into different phases of smart city 

development and operations.  

Based on the framework, the System Usability Scale (SUS) is utilized to 

evaluate the outputs of the analysis for usability and consistency.  The outcome of this 

analysis shows that the results obtained from risk evaluation closely match the decisions 

made by the decision makers based on a given environment.  
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CHAPTER 1: INTRODUCTION 

 The smart city idea started taking root in the early 1990s due to the innovation 

in information and communication technology (ICT) and their increasing use in 

improving the proficiency and efficacy of business processes, including those in the 

government sector. An increase in the accessibility and availability of ICT hardware 

and software helped in planning its adoption for urban processes (Bibri & Krogstie, 

2017).  Such an adoption can help enhance 'citizens' quality of life, foster the economy, 

facilitate a process to solve transport and traffic problems through appropriate 

management, boost a clean and sustainable environment, and provide reachable 

interaction with the appropriate authority of the government (Ismagilova et al., 2019). 

Smart cities are expected to be inclusive and benefit their residents (Sanchez et al., 

2022). Consideration of other factors, such as laws and regulations, is also important in 

smart cities (Apostolopoulos et al., 2022). Smart cities also focus on resilience living. 

In this situation, sustainability includes reducing the use of non-renewable resources, 

conserving the environment, having a varied and strong economy, autonomous 

communities, economic strength and variation, independence in communities, citizen 

well-being, and satisfying elementary human needs. 

Smart cities have complex and interdependent systems to provide services to their 

residents, and there are challenges to such a provision.  Such challenges relate to 

technical, social, economic, and political aspects (Ismagilova et al., 2022). For example, 

technological interconnection, operations leading to carbon emissions, cost of 

maintenance and repairs, and data security (Golubchikov & Thornbush, 2020) can be 

considered as some challenges. Adopting new technology, such as artificial 

intelligence-enabled devices and operations, might pose challenges during the design 

and operation stages.  
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Challenges are also related to risks connected with the implementation and operation 

of ICT used in smart cities (Golubchikov & Thornbush, 2020). There are risks related 

to socio-political, financial, technical, partnership, and resource management 

(Techatassanasoontorn & Suo, 2010); security and privacy (Čolić et al., 2020), and 

energy systems risks (O'Dwyer et al., 2019). Such risks make smart cities vulnerable in 

terms of their operations (Mikes,2012). 

Similarly, there are associated challenges and risks, such as a lack of standards for smart 

city applications, a lack of smart 'city regulations and policies, limited integrated 

solutions, and scarce skilled and critical workforce (Sharma et al.,2020). Therefore, the 

impact of these risks becomes significant to challenges reduction if they are considered 

in a smart city project from all aspects: technology, security, privacy, political, 

environmental, managerial, user trust, and adoption. The assessment can help highlight 

the potential risks in different aspects of smart city designing and operation  (Ismagilova 

et al., 2020). 

The governance of a smart city is another essential aspect that requires effective 

collaboration between government, stakeholders, citizens, and socio-technical systems. 

Governance requires a complex framework, policies, and procedures (Ben Yahia et al., 

2019).  

The provisions of ICT in smart cities promote citizens' participation, enhance growth 

in human, social, and environmental assets, and create social-oriented smart cities 

(Bouzguenda et al., 2019). Therefore, smart cities are generally constructed based on 

four pillars: organizational structure, physical structure, social structure, and economic 

structure (Silva et al., 2018). Each of these pillars is supported through smart city 

dimensions. These dimensions help structure the design, plan, program, and policies 

into a particular dimension and facilitate their interactions through key linkages. 
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However, these dimensions and linkages are subject to risks as well. Therefore, 

understanding each dimension and its value in the formation of a smart city becomes 

important.  

1.1 Smart Cities Dimensions 

 In smart city phases, such as design, planning, and operation, there are six 

dimensions that are popularly recognized. 

Each of these dimensions is discussed next.  

1.1.1 Smart Economy  

Smart economies comprise guidelines and policies that inspire innovation and 

creativity in connection with scientific research, innovative technology, and the 

sustainability concept's attention to the environment(Apostol et al., 2015). Also, a smart 

economy is defined as the effectiveness of information and communication 

technologies in the whole economy and the sensible use of assets within the society  

(Arroub et al., 2016). In a smart economy, technology integrates all disciplines, such as 

science, industry, business, cultural heritage, architecture, planning, and development( 

Kumar & Dahiya, 2017). 

The smart economy in smart cities takes many forms and applications, some of which 

are given in Table 1.1. The table illustrates some associated applications to the 

dimension of smart economy. Forms of the smart economy, challenges leading to non-

technical risks associated with each discussed application are also highlighted. Some 

recommendations in the table are explained to surmount the difficulties.  
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Table 1.1. Smart Economy Applications 

Forms of 

Applications 
Issues\Challenges Recommendations 

Online Platform 

Economy (e.g., 

Amazon, Alibaba, 

Airbnb, and Uber)  

• The collection of the 

information is integrated into 

the platforms, causing a 

monopoly in the 

marketplace. This is 

considered a challenge for 

the online platform economy 

since these platforms can not 

support complex 

products(Radonjic-Simic & 

Pfisterer, 2019).  

• Platforms function 

effectively for particular 

services and products. The 

platforms do not support 

organizational requirements. 

(Radonjic-Simic & Pfisterer, 

2019). 

The" Distributed Market Spaces" 

model. is recommended to 

resolve this challenge. 

The model is designed to 

support strategic and operational 

levels and complex product 

exchange, and it is applied in 

smart city information 

technology infrastructure since 

the city is characterized by a 

service ecosystem  (Radonjic-

Simic & Pfisterer, 2019). 

Sharing economy in 

terms of giving and 

sharing access to 

goods and services 

in a coordinated 

manner using 

online services 

(such as car 

sharing, bike 

sharing, room 

sharing, and sharing 

services)  

• The risk of human behavior 

is a critical challenge 

opposing the usage of the 

sharing economy, as norms 

and behavior control sharing 

(Akande et al., 2020).  

  

The government should 

encourage positive liability and 

responsibility among citizens to 

preserve natural resources and 

enhance smart 'cities' 

sustainability.  

The use of the sharing economy 

concept in renewable energy 

within microgrids will improve 

energy consumption and support 

resilience systems (Akande et 

al., 2020). 

The digital 

economy fosters 

digital involvement 

and engagement for 

citizens in all 

aspects of life and 

encourages digital 

industries and 

innovations.  

Supply chain 

applications using 

• Changing community 

services to the digital form 

regarding participation and 

business procedures at all 

levels is challenging the 

application of the digital 

economy due to a lack of 

perception of the 

cybersecurity risk related to  

IoT applications (Radanliev 

et al., 2019). 

Ensure citizens are engaged, 

motivated, and skilled to utilize 

the smart city's digital services. 

(Carter, 2013). 

Underpadding risks from all 

aspects, not considering the 

standalone situation, and 

encouraging understanding of 

different factors' connections 

and dependencies (Radanliev et 

al., 2019).  
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Forms of 

Applications 
Issues\Challenges Recommendations 

Internet of Things 

(IoT) devices.  

 

e-commerce service 

applications, 

including mobile 

shopping 

applications  

• Customer data privacy is a 

major issue for e-commerce 

service applications 

(Kirimtat et al., 2020)  

Considering ‚users‘ data privacy 

is essential, considering the 

balance between innovations and 

‚users‘ interests. (Kirimtat et al., 

2020) 

 

1.1.2 Smart Governance 

Governance is the administrative rules, laws, practices, and constraints to 

manage smart city projects. These projects involve multiple stakeholders; accordingly, 

improved governance quality is necessary. Smart governance integrates technology, 

policies, laws, practices, people, and social standards (Arroub et al., 2016).    

Smart cities’ governance must be allied with the contribution to decision-making, 

public services, social services, transparent governance, and policies and strategies. 

Governance is summarized as coordination between citizens and administrative 

institutions (Silva et al., 2018). By integrating public, private, and civil officials, 

successful governance will maximize smart cities’ benefits regarding consistency, 

effectiveness, and efficiency of citizens’ services. Furthermore, the technical aspect is 

crucial in smart governance since it assures addressing several city services and features 

through highly technological solutions (Silva et al., 2018) 

Governance is considered the main building block in the collective efforts to develop 

successful interactions between all actors in smart cities (Nilssen, 2019). Therefore, 

interactive governance is recommended to promote open innovation. Such an 

interaction might be facilitated through e-governance (Ismagilova et al. 2019), which 

can help build transparency in decision-making. Such e-governance can be enhanced 
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using 5G technologies, IoT, and AI. Additionally, cloud-based information services can 

help decision-making to support participation, engagement, and information sharing for 

collaborative governance (Ismagilova et al., 2019). Table 1.2 highlights applications, 

challenges, and recommendations related to smart governance. 

Table 1.2.Smart Governance Applications 

Forms of 

Application 

Issues\Challenges Recommendations 

Applications to 

allow users to 

control their 

devices within the 

smart city. 

Data security and privacy are 

major issues faced by the usage 

of control and social 

collaboration applications used 

for smart city 

governance(Ismagilova et al., 

2020; Kirimtat et al., 2020).  

• To overcome data security 

and privacy issues, Decision-

makers should be able to grant 

access based on specific 

policies and guidelines to 

ensure ‘users’ data  

privacy(Ismagilova et al., 

2020; Kirimtat et al., 2020) 

Illustrate social 

collaboration using 

Information and 

communication 

technologies. 

• Adopting national policy 

considering the latest 

technologies and applications 

• Introduce an intensive legal 

framework to increase public 

involvement (Čolić et al., 

2020) 

E-government 

projects and 

services  

The ability of cooperation and 

support between stakeholders 

and leadership using e-

government services. (Arroub et 

al., 2016) 

• Interaction between people, 

policies, resources, culture, 

and information technology to 

ensure the success of provided 

services(Arroub et al., 2016) 
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1.1.3 Smart Living  

The OECD Better-Life Initiative framework (Measuring Well-Being and 

Progress, 2022) considers the development and preservation of natural, economic, and 

human capital as elements of smart living. Smart living is defined as smart structures, 

including buildings, learning and education, and healthcare (Ismagilova et al., 2019), 

and is considered an outcome of a smart economy (Apostol et al., 2015). Social 

perception is another necessary element for smart living that needs to be considered 

(Silva et al., 2018). Healthcare as an element of smart living can come through real-

time monitoring of the needs of the special care and emergency support enabled through 

the ICT, in addition to home re-habitation applications that were raised during the 

COVID-19 pandemic to assist medical professionals during this time ( Atitallah et al., 

2020; Ismagilova et al., 2019; Nižetić et al., 2020).  

ICT usage helps smart living through connected and internet-aided computerized living 

space conditioning, lighting, and connected security systems (Romero et al., 2020). 

Smart facilitation applications are used broadly in smart homes; they collect intimate 

and concealed data about their users, yet privacy and security risks are not tackled with 

precision. Accordingly, risk assessment models are hardly used. It is crucial to set 

standards and specifications to detect and manage associated risks within smart living 

applications (Elahi et al., 2019). Empowering technologies such as cloud storage and 

computing, AI, machine learning, data mining, and wireless sensor networks support 

smart living applications (Nitoslawski et al., 2019). Table 1.3 illustrates some forms of 

applications, challenges, and recommendations to overcome the challenges of smart 

living applications. 
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Table 1.3 Smart Living Applications 

Forms of 

Application 

Issues\Challenges Recommendations 

Smart 

Buildings  

Data security and privacy are the 

main challenges to the usage and 

application of smart living 

applications (Kirimtat et al., 2020) 

Applying access control 

models encourages 

cryptography and state-of-the-

art security architecture.  

(Vorakulpipat et al., 2021) 

E-health 

systems for 

smart 

assistance.   

Set specific standards for data 

security and privacy ((Elahi et 

al., 2019) 

Home re-

habitation 

applications 

Adopt transparency in 

implementing smart city 

applications (Nižetić et al., 

2020) 

Smart Tourism    Innovative business models 

with enhanced security and 

privacy considerations are 

required (Kirimtat et al., 

2020).  

 

1.1.4 Smart Mobility  

The common issues in cities are traffic problems such as congestion, long 

queues, and delays. Smart systems should focus on using autonomous vehicles and 

provide coordinated choices for people to ease commutation (Appio et al., 2019). The 

communication between autonomous cars and smart transportation systems is achieved 

through IoT devices, which collect real-time road data and route the inspection to 

potential passengers (Silva et al., 2018). The Internet of Vehicles (IoV) will allow 

communication between vehicles and support traffic safety, efficiency, and smart 

mobility(Ismagilova et al., 2019).  

The widespread use of IoT in rural and urban areas provides a better-integrated 

transportation system for smart mobility (Porru et al., 2020). The technologies that 

enable smart mobility include AI, IoT, big data, and blockchain (Paiva et al., 2021). 
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Table 1.4 provides several challenges, issues, and recommendations related to smart 

mobility.  

Table 1.4. Smart Mobility Application 

Forms of 

Application 

Issues\Challenges Recommendations  

Internet of Vehicle 

for traffic safety  

Availability of Sensor 

connectivity, the network for 

the Internet of Vehicles(Porru 

et al., 2020).   

Better integrated systems are 

used for better services (Porru 

et al., 2020). 

Mobility as a 

Service, including 

demand 

transportation 

smart ticketing.  

Infrastructure, connectivity, 

security, and privacy of 

mobility as a service 

application (Paiva et al., 2021) 

Develop infrastructure, 

enhance connections, consider 

security measures, and ensure 

the existence of policies to 

govern data privacy(Paiva et 

al., 2021) Road safety and 

smart surveillance 

systems  

 

Crowd-assisted 

smart applications  

The availability of real-time 

connectivity and big data 

analytics to use crowd smart 

applications ( Ullah et al., 

2021)  

Use different big data 

analytical tools to predict peak 

periods and enhance provided 

services( Ullah et al., 2021) 

 

 

1.1.5 Smart People  

Smart people refer to a smart 'city's citizens' level of education and societal 

interaction (Arroub et al., 2016). Smart cities cannot be achieved without the high-level 

education of their citizens, an open-minded attitude, and adaptive responses to the latest 

technologies, policies, and laws (Kirimtat et al., 2020).   

The social structure of a smart city is primarily related to human and social capital. 

Human capital is a person's or group's abilities and proficiencies, while social capital is 

the number and quality of associations linking social organizations. Human and social 

capital is crucial for improvement, productivity, and smart living in a smart city. 

Subsequently, higher education institutions such as universities are essential in 
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developing human capital (Ismagilova et al., 2019).   

Higher institutes act as knowledge mediators, custodians, and activity providers to 

support people in becoming smart (Ismagilova et al., 2019). AI and big data are two 

leading technologies for developing smart applications to enhance knowledge sharing, 

learning, and teaching (Radu, 2020). However, there might be challenges in accepting 

the security and privacy of information and services provided to the people (Blanche et 

al., 2015). Quality assurance has become a critical facet of higher education. People's 

participation in the state system through IoT is mandatory for the success of the smart 

city; for instance, an e-government website will grant citizens the opportunity to 

associate with public services as shareholders and refine it proactively (El-haddadeh et 

al., 2019).  

Table 1.5. Smart People Applications 

Forms of 

Application 

Issues\Challenges Recommendations  

Education 

platforms   

Data security and privacy are a 

challenge when using education 

platforms and e-government 

platforms(Allam & Dhunny, 

2019). 

Consider the privacy of information 

and apply data protection 

legislation.  

Spread awareness about smart city 

applications and cultivate the social 

community about the advantages of 

having them(Allam & Dhunny, 

2019).  

Social platforms  

Engaging people 

with 

government (e-

government 

platforms)  

 

1.1.6 Smart Environment  

The smart environment incorporates advances in waste disposal, pollution and 

energy management, smart grids, house and facility management, air and water quality, 

increases in green spaces, and monitoring emissions ( Appio et al., 2019; Ismagilova et 

al., 2019). The employment of technology is also essential to sustain natural resources 

in the cities. Accordingly, to preserve natural resources, sustainable methods to manage 
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them, protect the environment, and reduce pollution are required. That will be through 

smart energy grids, creating and consuming green energy, and green buildings (Staffans 

& Horelli, 2014).  

The Internet of Data and IoT technologies are used to develop applications related to 

the smart environment. These technologies use different sensors, such as radio 

frequency identification, integrated circuits, and optical and pressure sensors, to 

manage a smart city environment. Collected real-time data will help decision-makers 

optimize waste and junk collection, recycling, and sorting. Smart environment 

applications will enhance the decision-making method for the city's logistics and urban 

strategies (Perera et al., 2014). IoT technologies improve smart city waste-controlling 

treatments involving electronic waste to support the circular economy (Nižetić et al., 

2020). Table 1.6 provides applications, challenges, and recommendations for smart 

environment application challenges.   

Table 1.6.Smart Environment Applications 

Forms of 

Application 

Issues\Challenges Recommendations 

Partnership 

applications 

between public 

and private 

sectors  

IoT device connectivity issues 

limit the  usage of smart 

environment 

applications(Nitoslawski et al., 

2019)   

Enhancing the infrastructure of smart 

cities in terms of networks and 

connectivity.  

Develop robust AI applications for 

efficient data analysis and better 

performance.(Nitoslawski et al., 2019)  Public 

consultation in 

real-time  

Smart forestry 

applications  

Waste 

management 

applications  

Developing models for sharing 

infrastructure to reduce cost and 

increase data sharing between all 

waste management processes (Perera, 

Zaslavsky, Christen, & 

Georgakopoulos 2014).  
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Forms of 

Application 

Issues\Challenges Recommendations 

E- plants 

systems for 

plant 

monitoring and 

feedback   

Solid planning for smart cities is 

crucial for better connectivity 

solutions (Nitoslawski et al., 2019) 

 

1.2 Risks Related to Smart Cities 

Smart city development invites risks in multiple areas (Ahad et al., 2020; 

Coelho et al., 2021). Smart city risks are grouped into three categories: technological, 

organizational, and external environment (Ullah et al., 2021). Table 1.7 provides a 

summary of technical and non-technical categories of risks obtained from the literature.  

Technological risks are defined as the risks related to technology and its employment, 

such as risks correlated with IoT, big data, and AI, which are the most significant. 

Technical risks are divided into three general categories in some studies ( Singh & 

Helfert, 2019): network coverage in the city, technology choice, and technology 

discontinuation. Security risks should be considered in a smart city project; in addition 

to cybersecurity, attention to risks due to interactions between devices, systems, the 

absence of supporting infrastructure, unorganized data management, and adaptation of 

different standards in terms of technology and their integration is mandatory(Ahad et 

al., 2020) Another technical risk is related to data quality and reliability, specifically 

with the colossal amount of data produced from systems used in smart cities (D’Amico 

et al., 2020). 

Non-technical risks have an apparent effect on the implementation and operation of 

smart cities (Ahad et al., 2020). Non-technical risks include governance, legal, and 

organizational distinctions between public and private segments in smart cities 

(Löfgren & Webster,2020). Each of these risk categories is described next. 
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Table 1.7. Summary of Technical and Non-Technical Risks  

No Author Year Technical Risks Non-Technical 

Risks 

1 Ahad, Paiva, Tripathi, & Feroz, 2020 2020 Security risks, 

high adoption 

cost, 

interoperability 

between 

different IoT 

devices, lack of 

standards 

Citizens' mindset 

and acceptance of 

digital changes. 

Natural disasters, 

such as floods 

and earthquakes, 

will affect the 

infrastructure of 

smart cities. 

2 Ande, Adebisi, Hammoudeh, & 

Saleem, 2020 

2020 Security issues 

related to IoT 

systems 

 

3 Arroub, Zahi, Sabir, & Sadik (2016) 2016 Security and 

Privacy issues, 

Interoperability 

between IoT 

systems 

Lack of 

standardized laws 

related to 

cybercrimes and 

cyber-terrorism 

4 Atitallah, Driss, Boulila, & Ghézala, 

2020 

2020 Security and 

Privacy facing 

IoT 

applications. 

Storing big 

data generated 

from IoT 

applications 

The cost of 

infrastructure 

required to 

connect all smart 

city's systems 

5 Baig et al., 2017 2017 Cybersecurity, 

system 

desecration in 

smart energy 

systems 

 

6 Belanche-gracia, Casaló-ariño, & 

Pérez-rueda, 2015 

2015 Privacy and 

Security risks 

in e-

government 

applications 

 

7 Botello et al., 2020 2020 Security 

challenges in 

IoT systems 

 

8 Caviglione & Coccoli, 2020 2020 Privacy and 

Security risks 

in smart 
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No Author Year Technical Risks Non-Technical 

Risks 

learning in 

smart cities 

9 D’Amico, L’Abbate, Liao, Yigitcanlar, 

& Ioppolo, 2020) 

2020 IoT Data 

Security, IoT 

Data quality 

and integration 

 

10 Elahi, Wang, Peng, & Chen, 2019 2019 Privacy and 

Security risks 

of different 

smart systems 

 

11 Golubchikov & Thornbush, 2020 2020 Cybersecurity 

and Data 

Privacy in AI 

applications in 

smart cities 

 

12 Habibzadeh, Nussbaum, Anjomshoa, 

Kantarci, & Soyata, 2019 

2019 Security and 

Privacy risks 

associated with 

smart city 

technological 

infrastructure 

Policies and 

governance 

issues related to 

smart city 

technological 

infrastructure. 

13 Hamilton, 2020 2020 Cybersecurity 

and Privacy 

risks 

lack of policies 

related to smart 

cities 

14 Ismagilova, Hughes, Rana, & Dwivedi, 

2020 

2020 Privacy and 

Security risks 

for different 

smart city's 

applications 

 

15 Lee, 2020 2020 IoT systems 

Cyber security 

risks 

 

16 Löfgren & Webster, 2020 2020 Privacy and 

Security of big 

data generated 

from smart city 

systems 

Quality standards 

for the smart 

city's data 

Policies of Data 

Ownership 

17 Mehmood et al., 2017 2017 Security, 

Privacy, and 

Trust risks of 

IoT systems  

Interoperability 

risks  

IoT systems 
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No Author Year Technical Risks Non-Technical 

Risks 

connectivity 

risks 

18 Mikes, 2012 2012 Operational 

risks 

Legal, ethical 

risks  

strategy risks  

External risks: 

natural disasters 

19 Mohamed, Al-Jaroodi, Jawhar, & 

Kesserwan, 2020 

2020 IoT systems 

Security, cyber 

attacks 

 

20 Neshenko, Nader, Bou-Harb, & Furht, 

2020 

2020 Cybersecurity 

risks in smart 

city systems 

 

21 Nitoslawski, Galle, van den Bosc, & 

Steenberg, 2019 

2019 IoT device 

connectivity in 

smart 

environment 

applications 

 

22 Nižetić, Šolić, López-de-Ipiña 

González-de-Artaza, & Patrono, 2020 

2020 Networking 

infrastructure 

risks, Sensors' 

technological 

risks 

Lack of 

population 

education about 

smart 

applications 

23 Paiva et al., 2021 2021 Risks related to 

smart mobility 

Privacy 

Data 

Integration and 

standardization 

Environment 

risks affecting 

sensors' 

functionalities 

24 Perera, Zaslavsky, Christen, & 

Georgakopoulos, 2014 

2014 Risks of data 

privacy and 

security, Lack 

of standards 

Social 

acceptance, legal 

issues related to 

security and 

privacy 

25 Priyanka & Thangavel, 2020 2020 Risks related to 

big data, in 

terms of data 

storage, 

ownership, 

security, and 

privacy 

 

26 Radu, 2020 2020 Data Privacy 

risks 

environmental 

impact of e-
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No Author Year Technical Risks Non-Technical 

Risks 

waste, lack of 

society adoption 

risk 

24 Sengan et al., 2020 2020 Cybersecurity 

risks in smart 

cities 

 

28 Singh & Helfert, 2019 2019 Technology 

risks  

including data 

privacy and 

security, the 

interconnection 

between IoT 

devices 

risks related to 

network or 

discontinuing 

technology 

risks related to 

policies, 

regulations, and 

legal guidelines   

risks related to 

financial funding 

of smart city 

projects 

risks related to 

approvals of 

projects' starting 

29 Sovacool & Furszyfer Del Rio, 2020 2020 Privacy and 

Security risks 

for smart home 

applications  

Devices 

Interoperability 

risks related to 

costs, and 

citizen's 

education and 

acceptance of 

technology. 

30 Ullah, Al-Turjman, Mostarda, & 

Gagliardi, 2020 

2020 Lack of 

standardization 

of Data risk  

Data security 

and privacy 

 

31 Vidiasova & Cronemberger, 2020 2020 
 

risks ignorance of 

'citizens' 

perceptions and 

smart cities' 

stakeholders 

32 Vorakulpipat, Ko, Li, & Meddahi, 2021 2021 Security and 

Privacy issues 

in smart cities' 

systems 

 

33 Xie et al., 2019 2019 Security and 

Privacy of 

smart cities' 

blockchain 

application, 

Cost of 

blockchain 

applications 

Lack of 

regulations 
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No Author Year Technical Risks Non-Technical 

Risks 

data storage 

risks 

related to 

blockchain 

34 Yigitcanlar, Desouza, Butler, & 

Roozkhosh, 2020 

2020 Data Security 

and Privacy 

related to 

Smart Cities' 

AI applications 

unethical 

recommendations 

generated by AI 

applications 

 

1.2.1 Technological Risks  

 The following sections highlight the dominant technical risks based on the used 

technology. 

1.2.1.1 Technological Risks associated with IoT.  

IoT technology is often associated with cybersecurity risks. As the number of 

connected IoT devices rises to support 'smartness' in various sectors such as 

transportation, health, energy transmission, and others, its vulnerability to information 

hacking and misuse also increases. Therefore, the smart city should be supported with 

measures for cybersecurity risk management( Ande et al., 2020; Lee, 2020). 

Cybersecurity issues are not only limited to IoT systems but can also happen due to 

sensors, networks, and smart city portals (Habibzadeh et al., 2019). Data security and 

privacy are vital to maintaining the reputation of the smart city and the trust of residents 

(Mehmood et al.,2017; Sengan et al., 2020).  

Infractions in cybersecurity can lead to false alarms, such as fires, earthquakes, or 

circuit breakdowns, which can endanger the public in the city (Sengan et al., 2020). 

Therefore, governance causes of security risks and social aspects should be considered 

when using IoT tools properly. Also, implementing relevant security controls ensures 

safe data transfer within the smart city infrastructure and the cloud (Baig et al., 2017).  
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Technical and managerial frameworks should consider resource allocations, in addition 

to IoT ecosystems and infrastructure, to prevent cybersecurity risks ( Lee, 2021). 

It is essential to solve the security risks in smart cities holistically and incorporate 

interconnections between all ICT-related actors: infrastructure, data space, and IoT 

devices vulnerability (Caviglione & Coccoli, 2020).  

Other related risks to IoT technologies are interactions between devices and systems, 

absence of supporting infrastructure, unorganized data management, and unavailability 

of universal standards as related risks due to IoT technologies, IoT ethical risks, and the 

risk of hardware and software failure due to poor design (Mehmood et al. 2017; 

Kandasamy et al. 2020 ; Sovacool & Furszyfer 2020; ) In e-health applications, IoT 

risks increase because of technical data and applications, infrastructure, and network 

infrastructure (Zakaria et al., 2019).  

1.2.1.2 Technological Risks Associated with AI  

Artificial Intelligence (AI) has a significant role in smart cities, businesses, and 

society. There are various AI applications in smart cities, mainly related to data 

analytics in energy, education, health, security, transport, sustainable environment, and 

urban areas management. AI methods are used to develop investigation applications, 

motion detection, forecasting analysis, threat detection and frauds, crimes, fires, and 

accident recognitions.  The usage of  AI applications contributes to the enhancement of 

all smart city dimensions (Yigitcanlar et al., 2020),  

Associated risks with AI applications are security and privacy risks(Allam & Dhunny, 

2019). System complexity associated with AI technologies creates technical risks. 

These risks may create litigations and need many confirmations related to deference 

with existing laws related to fundamental rights protection (Yigitcanlar et al., 2020). 

However, risks associated with AI are mentioned in Table 1.8.  
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Table 1.8. Associated Risks with AI Applications in Smart Cities 

No Smart City 

Dimension   

AI Applications Associated risks  Reference  

1 Smart 

Economy  

Automated data 

management and 

analysis will enhance 

productivity and 

innovation.  

Pattern recognition will 

reduce costs and 

increase resources.  

Analyzing big data from 

multiple resources will 

improve decision-

making. 

Reaching a conclusion 

using logical reasoning  

Cybersecurity 

and data privacy  

(Yigitcanlar, Desouza, 

Butler, & 

Roozkhosh,2020) 

2 Smart living  Enhance health 

monitoring.  

Improve health 

diagnosis. 

Provide independent and 

interactive tutoring 

systems. 

Data privacy 

and protection 

(Yigitcanlar, Desouza, 

Butler, & 

Roozkhosh,2020) 

3 Smart 

Environment  

Monitor environmental 

changes.  

Optimize energy 

consumption and 

production. 

Enhance functional 

operations of smart 

transport systems 

Cybersecurity  (Yigitcanlar, Desouza, 

Butler, & 

Roozkhosh,2020) 

4 Smart 

Governance  

Enhance surveillance 

systems operations.  

Aid disaster 

management.  

Increase 'citizens' 

contribution to decision-

making.  

Cybersecurity (Yigitcanlar, Desouza, 

Butler, & 

Roozkhosh,2020) 

5 Smart People  Enhance Knowledge 

sharing applications.  

Improve learning and 

teaching tools  

Data Privacy 

and protection  

(Radu, 2020) 

6 Smart 

Mobility  

Improve predictions of 

traffic status, road 

Security and 

Privacy 

(Paiva et al., 2021) 
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No Smart City 

Dimension   

AI Applications Associated risks  Reference  

conditions, and 

streetlights  

 

AI and Robotic applications in smart cities are used worldwide, such as in Moscow, 

Toronto, Ottawa, Hong Kong, Dubai, Sydney, New York, and London, and yet, social 

risks need to be considered, in addition to cybersecurity and data privacy risks 

(Glouchkov & Thornbush 2020). 

Mitigation of  AI risks can be achieved by the incorporation of blockchain and other 

encryption technologies with AI, which can help to define asymmetrical behavior, 

identify the threat, and control it rapidly to assure data security within the smart city 

system (Botello et al., 2020;  Priyanka & Thangavel, 2020;Yigitcanlar et al., 2020).  

1.2.1.3 Technological Risks Associated with Blockchain   

Blockchain technology is considered a solution for security challenges related 

to IoT technologies. Blockchain technology is based on a point-to-point decentralized 

network where all transactions are validated by registered nodes and stored in a central 

ledger. This characteristic of blockchain is utilized to build a network to enhance data 

security within the IoT system (Botello et al., 2020). The adoption of blockchain 

technology within smart city dimensions has peripheral threats and risks, including 

security and privacy, low productivity, storage, and energy intake efficiency (Xie et al., 

2019).  

Blockchain technology is used to create autonomous governance platforms for smart 

cities to dissipate transparency related to privacy and cost efficiency. Such a platform 

will minimalize security and privacy risks in smart 'cities' applications (Coelho et al., 

2021).  
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Some of the applications of blockchain on smart city dimensions and main risks are 

given in Table 1.9. 

Table 1.9. Associated Risks with Blockchain Applications in Smart Cities 

No Smart city 

Dimension 

Blockchain Applications  Associated 

risks 

References 

1 Smart Living  Smart health applications 

for healthcare providers 

and medical researchers as 

a storage repository for 

chained medical data 

 Medical data access 

control to ensure access for 

authorized users  

Data security 

and privacy  

Xie et al., 

2019 

2 Smart 

Environment  

Storing Electricity 

consumption information 

using smart contracts to 

enable automatic payments.  

 

Data security 

and privacy 

 

Low 

productivity 

Xie et al., 

2019 

3       Smart 

Mobility  

Implementing a 

decentralized smart 

transport system 

Facilitate electricity trading 

for electric vehicles using 

Blockchain smart contracts   

Data security 

and privacy 

Energy 

consumption 

efficiency  

Xie et al., 

2019 

4 Smart 

Economy  

Sharing services using 

blockchain-based  

technology to ensure 

availability, confidentiality, 

and integrity 

Low 

productivity 

Sun, Yan, & 

Zhang (2016). 

 

5 Smart 

Governance  

Decentralized governance 

tool for smart cities to 

manage digital assets using 

blockchain technology.   

Data security 

and privacy 

 

Coelho, 

Oliveira, 

Tavares, & 

Coelho, (2021) 

6 Smart 

People  

Smart social 

communication 

applications using 

blockchain technology to 

avoid cyber attacks   

Data Privacy  Sadik, Ahmed, 

Sikos, & 

Najmul Islam,( 

2020) 

 

1.2.2 Non-technological Risks  

The following sections will illustrate non-technical risks: socio-economic, 
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governance, legal and strategic risks.   

1.2.2.1 Socio-economic risks  

Socio-economic risks include the traditional mindset of stakeholders and 

decision-makers. Implementing the smart city concept means handling 

multidisciplinary projects that require a considerable budget, trained personnel, and 

technology exposure to the citizens, decision-makers, and professionals. For instance, 

in smart grids, social risks involve the general proposition of specific technology. There 

is a need to examine social struggles on smart grids and the future of electricity systems 

because these systems involve different actors: regulators, customers, technology 

companies, and energy service providers for better efficiency, sustainability, and cost 

control (Meadowcroft et al., 2018).  

Other social risks are associated with the neglection of citizens' observations and other 

stakeholders' participation in smart cities. Ineffective community involvement will 

affect a smart city's capability to provide an increased quality of life and efficiency 

(Vidiasova & Cronemberger, 2020).  

Also, the effect of the culture of failure assumptions on entrepreneurial activities related 

to IoT is a main socio-economic risk. This culture may reduce or reject these activities, 

specifically with the lack of institutional support for individuals with smart city 

innovations due to associated risks with such initiatives (Kummitha & Crutzen 2019). 

1.2.2.2 Governance and Legal Risks  

Smart city projects face governance risks involving socio-political risks 

associated with policies, laws, rules, and political and social forces. Concerns related 

to approvals of smart city projects, competence in monitoring, resource management, 

and stakeholder management are some of the factors that should be considered in 
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governance (Singh & Helfert, 2019). A low level of decision-making involvement in 

solving technology is a main risk since it will lead to reduced intentions to finance smart 

city projects and threaten the sustainability of current smart cities (Vidiasova & 

Cronemberger, 2020) 

There is a relationship between technical and non-technical risks, such as governance 

and cybersecurity risks in e-government projects. The main issue is the limited attention 

given to cybersecurity risk by high-level management. Implementing efficient 

procedures to safeguard critical systems from cybersecurity risks is important to avoid 

cybersecurity risks, which requires good cooperation between all sectors. Clear policies 

and procedures are crucial to articulate prevention and protection measures for these 

risks.  (Malhotra et al., 2017). 

Constitutional issues related to data privacy and protection risks arise within smart city 

projects. Security and privacy issues become prominent when the legal system is not 

updated to address the issue of technology use, integration, and dissemination of 

information. The use of close-circuit television in the city, automated bank teller 

machines, city coverage with wireless frequency, e-payments and transactions, and 

collection of personal information can be examples of legal instruments that are to be 

established through analysis. Therefore, sufficient qualities should be formed to assure 

the public of the security and privacy of data and legal procedures in support of the 

victim in case of a breach  (Hamilton, 2020;Singh et al. (2020); Xie et al. (2019) ). 

Ethical standards concerning data privacy in smart cities, clear ownership policies for 

data, and approved standards for data storing, protection, and safety are essential to 

prevent governance and legal risks (Löfgren & Webster, 2020).  

1.2.2.3 Strategic Risks  

Strategic risk in smart cities emerges when the strategic approach lacks the link 
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between urban ICT development and sustainable development agendas. The lack of this 

linkage will condemn ICT investments and increase environmental and socio-economic 

concerns (Bibri & Krogstie, 2017). Smart city management should discuss tactical risks 

and difficulties in strategy formulation and implementation. The Strategic risks related 

to smart city administration or as a project are not explained explicitly in studies. Yet, 

management must identify generalized unforeseeable threats related to the 

organization's strategy and operation (Bibri & Krogstie, 2017). 

1.3 Purpose and the Scope  

Research shows that technical risks are generally considered when designing 

and implementing smart cities. The focus on non-technical risks is underrepresented. 

Non-technical risks are complex as they focus on human behavior. Therefore, 

mitigating the impact of such risks becomes more necessary as the impact of such risks 

can vary. Based on this, further research should focus on understanding the different 

types of non-technical risks, in addition to technical risks and their implications, to 

ensure the effective functioning of smart cities.  

Different assessment tools are introduced to assess smart cities concerning operation 

smartness, sustainability, or management ( Deveci et al., 2020; Fernandez-Anez et al., 

2018 ;Patrão et al., 2020 ). Further research can focus on developing better smart city 

assessment tools suitable for holistically assessing smart city dimensions and using the 

required procedures to increase performance. From a risk assessment point of view, the 

existing risk assessment and management methods are not comprehensive (Alawad et 

al.2020; Dimitriadis et al.2020; Domingos et al. 2008). The available tools lack 

adequate consideration of non-technology-related risks; technology risks are examined 

independently (Singh & Helfert, 2019). Also, it is crucial to consider risks in all 
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dimensions and their interrelations since these dimensions are not separated in real 

scenarios (Zheng et al., 2020). 

Therefore, this thesis aims to develop comprehensive research on the risk factors, 

individual assessment methodologies, and technology and non-technology-based risk. 

The proposed framework will integrate advanced management methodology and risk 

assessment theories, which are used as advanced uncertainty analytical methods, to 

calculate risks precisely and provide evaluated scenarios that will support smart city 

management's decisions regarding risk management and mitigation plans.  

1.4. Objectives and Research Questions 

Risk assessment tools and techniques that are explicitly used for risk assessment 

and management in smart cities are discussed in the previous section. A limited number 

of risk-related tools are designed specifically for smart cities. However, these tools are 

designed for a specific application within one dimension and lack comprehensive 

handling of different types of risks in all dimensions. Therefore, there is a partial 

understanding of the risk impact in smart city applications, so there are only a limited 

number of risk assessment frameworks. The absence of a comprehensive risk analysis 

framework hinders risk mitigation and management (Neshenko et al., 2020).  Therefore, 

the two main objectives of the thesis are as follows:  

1. Explore risks and their analysis techniques used in the literature for assessing 

risks and mitigating the impact of such risks.  

2. Propose a generic risk analysis framework and evaluate its applicability in 

smart city design and operation.  

The following are the research questions based on the objectives mentioned above. The 

first two research questions are related to the first objective, and the second two are 



 

26 

 

related to the second objective.   

RQ1: What risk types are applicable in a smart city project? 

RQ2: Are there any interrelations between different types of risks?  

RQ3: What should be integrated to develop a generic risk assessment 

framework for smart city projects? 

RQ4: How should such a risk assessment framework be applied to assess risk 

in a smart city design, planning, implementation, and operation?  

1.5. Thesis Organization 

This chapter introduces the smart city and smart city dimensions. The risks 

related to each dimension are also provided.   

In Chapter 1, conventional technical and non-technical risks related to the adoption of 

complex ICT in smart cities are also specified. The chapter also provided the purpose, 

objectives, research questions, and contributions. In Chapter 2, a review of the literature 

is provided. The review focuses on risk assessment methods, application of 

management theories, probabilistic graphical models, and decision-making techniques. 

In Chapter 3, the methodology used for this research and the proposed risk assessment 

framework and analysis methods are provided. In Chapter 4, data collection and the 

analysis of such data in relation to the framework are provided. In Chapter 5, the 

conclusion, contribution, and a list of future research directions are provided.  

  



 

27 

 

CHAPTER 2: LITERATURE REVIEW  

While planning for a smart city, understanding dimensions and associated 

technical and non-technical risks becomes essential. Without a good risk assessment 

and monitoring, the operation of a smart city may not be successful. Risk assessments 

are to be done through different tools, resulting in a certain strategy to mitigate risk 

impact. As the smart city is multidisciplinary, the best approach would be to 

independently associate risks for each project in each dimension (Helfert et al., 2015). 

Researchers have proposed certain general assessment tools, such as the Smart City 

Project Assessment Matrix-SC(PAM), a general risk assessment tool that uses project 

actions aligned with the risks related to a particular smart city dimension  (Fernandez-

Anez et al., 2018). Other tools are also used for analyzing different aspects of smart 

city: for example, ISO 37120 for city services and quality of life, ISO 37122 for 

sustainable development, ETSI indicators for the performance of digital multi-service 

cities, ITU 4901 to assess the use of ICT in resilience smart cities, ITU 4902 KPI  for 

the influence of using ICT in sustainable smart cities, and  ITU 4903, and UN SDG 11+ 

indicators for measuring the achievement of UN sustainable development goals in smart 

cities (Patrão et al., 2020).  

Frameworks are also used for smart city planning. For example, a framework is 

developed to value smart cities from eight aspects: management and organization, 

governance, technology, economy and finance, sustainability, data analytics, 

community engagement, and institutional context (Deveci et al., 2020). These 

frameworks are used in smart city decision-making since they are used in risk and 

challenge prioritization. 

In this chapter, risk assessment methods and frameworks are discussed to understand 

the techniques used and consider risks, smart applications, and dimensions. 
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Applications of management theories are explained since they will benefit the research 

by providing a method of comprehensive understanding (Elçi & Çubukçuo, 2014). 

Accordingly, an understanding of risks, including non-technical risks, in addition to the 

understanding and prediction of human beliefs of probabilities and impacts of risks, 

will be achieved.  

The probabilistic graphical models are illustrated since they are powerful in modeling 

uncertainties, risks, and dependencies(Spehr, 2015). The probabilistic graphical models 

will be used in this thesis to build risk scenarios that may occur during a smart city 

project.  

Then, multicriteria decision-making methods are elaborated since these methods 

provide a complete evaluation of complex problems, especially when multiple factors 

are considered. They are also used in risk management and can be used to integrate 

qualitative and quantitative data, which is crucial for this research(Taherdoost & 

Madanchian, 2023).  

2.1 Risk Assessment Methods  

Researchers have focused on specific tools for risk assessment for a definite 

purpose. Such risk assessment tools may or may not be applicable when the 

comprehensiveness of the smart city is considered.  

2.1.1 Failure Mode and Effect Analysis (FMEA) method  

One of the most popular methods to assess risk is the basic FMEA. This method 

is used mainly in evaluating the critical potential risk to support risk management in a 

project (Domingos et al.,2008). FMEA is a qualitative method used for risk mitigation 

during the design phase of a project. It assists engineers and project managers in 

identifying failure modes, causes, and effects during and before occurrence. 
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Accordingly, risks can be mitigated early in the project (Roghanian & Mojibian, 2015). 

Subriadi & Najwa (2020) use improved FMEA as an ICT risk assessment approach. 

The improved FMEA has four main phases: determining risk assessment requirements, 

identifying risks, assessing risks, and analyzing and evaluating risks. The exact 

parameters used in this technique are based on the risk impact category and are aligned 

with the failure effect. The used parameters are risk severity and time of occurrence. 

The study concluded that the improved FMEA provided more consistent results, and 

risks were assessed efficiently.  

Failure Mode Effect Analysis (FMEA) is also used in the smart city context 

(Kandasamy et al., 2020). The main advantage of FMEA is evaluating critical and 

potential risks to support risk management in a project (Domingos et al., 2008). The 

FMEA is used in security risk assessment as it can help to differentiate critical failure 

modes, problems, and conditions affecting the system's hardware and software from 

safety, consistency, and maintainability (Kandasamy et al., 2020).  

The main limitation of FMEA is that it is a qualitative method where risks cannot be 

estimated unless integrated with other techniques, such as the risk priority number 

technique that calculates risks using three conditions: occurrence, severity, and 

detection (Roghanian & Mojibian, 2015).  

2.1.2 Monte Carlo Simulation Method  

The Monte Carlo simulation method presents the outcome from a sequence of 

events. The main advantage of this method is its suitability for estimating outcomes 

from the product of multiple random variables, including sources of uncertainty. The 

method uses a mathematical formulation to provide results based on random variables 

that affect the outcome. Each variable is valued from a defined range of alternatives, 
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and the outcome is calculated (Ayres et al., 2017). The limitation of the Monte Carlo 

method is the computational requirements to run even a simple simulation (Hemantha 

&.Herathb, 2018). 

The Monte Carlo method is used by Hemantha &. Herathb (2018). The study evaluates 

the quality of IT security investment in organizations due to the importance of such 

investments in information technology projects. This study could apply to smart cities 

since they include multiple information technology applications and systems. The 

authors suggested combining the Monte Carlo method, Markov chain, and Bayesian 

model to achieve a detection model applied to e-mail intrusion detection. (Hemantha 

&.Herathb, 2018).  

2.1.3 Fuzzy Logic Theory 

The fuzzy logic theory defines some transitional values between 0,1, unlike 

Boolean logic, which strictly results in 0 or 1. Thus, there is no precise true or false 

evaluation. Values are between sharp evaluations like absolute true and false. The 

theory is developed to deal with commonly faced concepts in daily life, which makes 

it resemble human thinking. Fuzzy logic is based on fuzzy sets containing elements 

with membership levels. An element can be a member of different sets with different 

values.  The difference between probability and fuzzy logic is that probability estimates 

values about specific reality, whereas fuzzy logic denotes membership in an ambiguous 

set (Kayacan & Khanesar, 2016). 

The fuzzy logic theory is used in smart city risk assessment. A study by Ullah (2018) 

focuses on risk assessment for underground applications in smart cities, including 

underground railways, water supply systems, sewerage systems, parking, and 

electricity lines. The study aims to create one risk index for all the systems, although 



 

31 

 

each has different risk factors and indices. The author used three models to create and 

measure the generated final risk index: linear approximation, hierarchal fuzzy logic, 

and a hybrid model based on a combination of both models. The results for the third 

model to efficiently estimate the final risk index were promising. The resulting model 

can perform automatic clustering based on the risk index and assist maintenance teams 

in prioritizing their tasks. The author highlights the need for further research in risk 

estimation and assessment.  

Alawad & Kaewunruen (2020) investigate smart risk assessment methods in railway 

applications. The authors introduce a risk assessment framework called an intelligent 

system for managing risks (ISFMR) to increase security and safety and assess and 

manage risk effectively. The study uses an adaptive neuro-fuzzy inference system 

(ANFIS) to enhance risk management. AI trained through artificial neural networks 

(ANN) is used to predict risks and uncertainties based on actual values and risk 

information.  

The study's findings show the precision of the risk level performing estimates with the 

AI model's capabilities to learn, make projections, and acquire risk level values in real 

time. The limitation is that the risk assessment tool is the time needed for machine 

training and the assumption of linearity of the input parameters. 

2.1.4 Game Theory  

Game theory illustrates multiple people’s decision scenarios, represented as a 

game. The primary entity of this theory is the players who will take actions and 

decisions. Each player chooses the action that will result in their benefit. The game 

includes interactions, constraints, payoffs, and actions taken by the players. Based on 

the theory, the game will be played by applying the best strategies and estimating the 
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outcomes.  The game needs to consider consequences, and the relationship between 

consequences and players’ actions becomes essential to developing an outcome. The 

ideal state of equilibrium is Nash equilibrium, where the steady state of the game is 

reached (Song et al., 2020).  

Game theory's advantages are flexibility and its wide applications in different 

disciplines. Limitations to the theory appear when applied to information systems 

security because of a limited database of related games of network security. The players 

in this game are the hackers, network infrastructure, and the network administrator. The 

study by Song et al. (2020) proposed a security approach where players can start moves 

simultaneously;. However, it may be hard to keep track of moves, and the flow of the 

game may change with each move, the approach provides a determination of the best 

time to take action (Song et al., 2020). 

Game theory is used for security risk assessment in smart medical devices by Abie & 

Balasingham ( 2013), who introduced an adaptive security risk assessment framework 

to predict damages from related risks to e-Health smart systems. The model needs to 

operate on a continuous basis by accumulating information on managing risks, 

monitoring security, and making predictions (Abie & Balasingham, 2013).  

Game theory is also used for security risk assessment in cloud computing systems 

(Furuncu & Sogukpinar, 2015). It is used for security risk assessment with two 

competing actors, the attackers and the defense system. The application of theory in 

this study helps formulate an optimal strategy to help decision-makers take the proper 

security measures.(Furuncu & Sogukpinar, 2015). 
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2.1.5 Dempster Shafer Theory  

Dempster-Shafer Theory is a generalized discrete probability theory in a finite 

space. It was developed initially by Shafer (1976) by extending the work of Dempster 

(1967). In this theory, the probability of one possible event is assigned to mutually 

exclusive sets (Sentz & Ferson, 2002). 

Traditional theories assign a probability to one possible event. Still, in Dempster-

Shafer's Theory, probabilities can be correlated to multiple possible events, for 

example, calculating the probability of event A to occur over the subjective probability 

of event B (Certa et al., 2017).  

Three crucial functions construct the Dempster-Shafer theory; the first function is the 

basic probability assignment function, which is donated by (m), the belief function 

(Bel), and the plausibility function (Pl). The belief function (Bel) refers to the degree of 

confidence for one event relative to the individual probability of a related event. The 

basic probability assignment (m) or the mass function is the mathematical presentation 

of the belief function (Bel). Plausibility (Pl) is the quality of possibility to believe. 

Plausibility supports the evidence of the belief. 

Dempster-Shafer theory is used for security risk assessment in a study by Sun et 

al.(2006). It can be used for security risk assessment for smart city applications. The 

authors developed a risk analysis approach, depending on the evidence reasoning 

approach. The advantage of using this theory is incorporating security risk factors, 

interrelations, and countermeasures ( Sun et al., 2006). 

Another study by (Eduardo et al., 2021)concentrated on modeling uncertainties in IoT 

applications; the author mentioned that Dempster- Shafer theory is used to determine 

uncertainties in sensor data. Combining the theory with complex event processing 
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provided a better understanding of ambiguities, even in the case of conflicts between 

sensors’ data. The results showed that Dempster–Shaver theory is flexible and effective 

in dealing with conjectures.  

A study by (Ghosh et al., 2020) used Dempster -Shafer theory to detect faults in Sensor 

data fusion for IoT applications. The authors used the theory to combine data from 

sensors to make a decision concerning the sensor's faulty status from a data perspective. 

The study resulted in accurate data when tested in the laboratory and compared to the 

literature.  

A study provided the use of the Dempster-Shafer theory to manage uncertainties in 

expert systems. The author mentions that the theory is suitable for valuation-based 

system uncertainty. Other researchers highlighted the usage of Dempster -Shafer theory 

in determining uncertainties in transportation systems (Awasthi & Chauhan, 2011), 

determining financial and audit frauds, and providing a risk assessment framework 

(Srivastava et al., 2011), and modeling uncertainties in GIS systems (Delavar & 

Sadrykia, 2020) 

The main advantage of using Dempster-Shafer's theory is its flexibility in design to 

handle information precision and systems' uncertainty without further assumptions 

(Gan et al., 2020). Accordingly, this research will use the theory to analyze multiple 

risks facing smart city projects. 

Table 2.1. Risk Assessment Methods and Theories 

No Theory  Characteristics  Reference  Advantages for 

use in this 

research 

The disadvantage 

of use in this 

research 

1 Dempster 

Shafer 

theory  

A mathematical 

model to define 

uncertainty.  

(Sentz & 

Ferson, 

2002) 

Probabilities can 

be correlated to 

multiple possible 

events. 

Unreliable results 

in highly 

conflicting 

multiple pieces of 
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No Theory  Characteristics  Reference  Advantages for 

use in this 

research 

The disadvantage 

of use in this 

research 

Used for 

discrete and 

interval data. 

Related to 

traditional 

probability 

theory and set 

theory. 

Ability to 

combine various 

evidence types 

from several 

resources  

Flexible design to 

handle levels of 

precision of the 

information and 

can represent the 

uncertainty of 

systems without 

further 

assumptions. 

(Sentz & Ferson, 

2002) 

evidence. (Gan et 

al., 2020) 

2 Game 

Theory  

Game theory 

provides a 

mathematical 

model of 

stakeholders’ 

interactions.  

Based on two 

players  

Used in 

multidiscipline.  

 

(Soltani et 

al., 2016) 

Flexibility and 

wide applications 

in different 

disciplines(Song 

et al., 2020). 

Limited database 

of related games, 

both players can 

start moves 

simultaneously, it 

may be hard to 

keep track of 

moves, the flow of 

the game may 

change with each 

move, and it in the 

precise 

determination of  

the best time to 

take action (Song 

et al., 2020) 

3 Failure 

Mode 

Effect 

Analysis 

(FMEA) 

A systematic 

procedure to 

determine 

failure modes, 

causes, and 

effects.  

Rank failure 

models are 

created by 

combining 

severity, 

occurrence, and 

detection. 

(Certa et 

al., 2017) 

Evaluating critical 

and potential risks 

to support risk 

management in a 

project 

(Domingos et al., 

2008). 

Qualitative 

methods are used 

where risks cannot 

be estimated 

unless integrated 

with other 

techniques. 

(Roghanian & 

Mojibian, 2015). 
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No Theory  Characteristics  Reference  Advantages for 

use in this 

research 

The disadvantage 

of use in this 

research 

Severity, 

occurrence, and 

detection have 

equal weights.  

Different 

evaluations of 

severity, 

occurrence, and 

detection  

may lead to the 

same risk 

priority number. 

  

4 Monte 

Carlo 

Simulation 

method  

 

A mathematical 

formula that 

provides the 

outcome based 

on random 

variables. 

Simple 

simulation 

needs complex 

computational 

requirements. 

(Ayres et 

al., 2017) 

Suitability for 

estimating 

outcomes from the 

product of 

multiple random 

variables, 

including sources 

of uncertainty. 

(Ayres et al., 

2017) 

Complex 

computational 

requirements  

(Hemantha & C. 

Herathb, 2018) 

5 Fuzzy 

Logic 

theory  

Defines some 

transitional 

values between 

0,1. Thus, there 

is no precise 

true or false 

evaluation. 

Needs to be 

combined with 

other methods 

to provide 

precise 

indications. 

(Kayacan 

& 

Khanesar, 

2016). 

Can deal with 

commonly faced 

situations in real 

life.  

(Kayacan & 

Khanesar, 2016). 

No precise 

parameter values 

must be combined 

with other 

methods for better 

results. (Ullah, 

2018) 

 

The previous sections presented different risk assessment methods and theories. The 

Dempster-Shafer theory can be used as a risk assessment methodology. The beliefs 
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perceived by smart city designers, planners, implementers, and operators provide a 

basis for assessing risk occurrence, usually based on the absorption of technology in 

the country, the availability of technology, legislation, and skills.  

The theory is scalable and can be applied to a higher number of inputs from planners 

or experts through the pairwise comparisons of the analysis. As the theory is not based 

on the scale of the city, it should be applicable in other smart city planning.  

2.2 Risk Assessment Tools and Models   

Researchers have captured risk assessment tools and models; however, studies 

are related to a particular technology group example. The following paragraphs will 

discuss the risk assessment tools concerned with smart city applications, dimensions, 

or technology.  

Several studies highlight that cybersecurity is a significant risk associated with IoT 

technology( Lee, 2020; Ande et al., 2020). IoT supports different smart applications in 

a smart city, including transportation, energy, health, and other dimensions. 

Accordingly, cybersecurity risk assessment is essential to prevent this risk (Ande et al., 

2020; Lee, 2020).  

Dimitriadis et al. (2020) developed a cybersecurity risk assessment tool. The authors 

used a conjunction of OCTAVE and MAGERIT approaches in the proposed tool, 

proposing a computerized risk estimation in smart sensor environments (AERS). The 

tool regulates the re-engineering life cycle management process by deploying existing 

standards and platforms. Attack patterns extract the model for automatically evaluating 

risks in automated systems.  

The authors mention that the proposed assessment tool assists organizations in 

identifying operating assets within the business process and their related risks. 
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Accordingly, risk assessment is conducted consistently according to the business needs, 

which will increase readiness for incident response. 

Kandasamy et al. (2020) discussed cybersecurity risk in medical IoT devices and 

proposed a risk assessment model. The proposed model uses a risk vector for every 

medical IoT device. Then, the risk rank is provided based on risk impact weight, which 

will support the management of cybersecurity risks in medical devices. 

Security by design for smart city systems was tackled by Ye et al. (2023). This aspect 

is important in securing connected systems, devices, and applications during the smart 

city’s design phase. The authors introduce a model based on KPI–guided security, 

called SCKPISec (Smart City KPI-guided Security), that applies unified modeling 

language (UML) techniques.  

The model is tested, and the results proved that the model is highly automated compared 

to other security models and could efficiently evaluate potential losses in smart city 

KPIs during threats  (Ye et al., 2023).  

Ullah (2018) applied three models to construct and evaluate the final risk index: linear 

approximation, hierarchal fuzzy logic, and a hybrid model based on a combination of 

both models. The study's result provided that the hybrid model efficiently estimates the 

final risk index.  

The author mentioned that automatic clustering could be performed using the resulting 

model based on the risk index. The model aims to assist maintenance teams in 

prioritizing their tasks.  Also, the study verified the need for further investigation into 

advanced risk assessment and estimation methods (Ullah, 2018).  

Alawad et al. (2020) investigated smart risk assessment tools in smart mobility, 

specifically railway applications. The authors introduced an intelligent system for 

managing risks (ISFMR), a risk assessment model to enhance security and safety within 
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railway applications and to evaluate and control risk efficiently.  

The study used an adaptive neuro-fuzzy inference system (ANFIS) as a model to 

enhance risk management. Artificial neural networks (ANN) train an AI model to 

expect risks and insecurities based on actual risk information and values. The model 

improved the accuracy of the risk level projections, learning, and capturing actual-time 

risk levels. However, the limitation of the study is mentioned as the long time needed 

for the artificial neural network training and the assumption that the inputs to the risk 

assessment tool are linear.   

Gavurova et al. (2022) proposed a fuzzy risk assessment model to assist decision-

makers in managing and establishing required measures in smart cities to provide safe 

circumstances, including non-pandemics and regular life during pandemics such as 

COVID-19. The authors tackled different risks of smart city dimensions, including 

smart security, smart health care, and smart environments. The study mentioned that 

the suggested fuzzy risk assessment model provides a reasonable risk estimation that 

supports quality decision-making.  

A study by Sharma & Singh (2022)  highlighted the usage of AI and machine learning 

algorithms to advance a smart risk assessment model specifically for cloud computing 

as a smart city technology. The authors highlighted the need to extensively study 

security risks in cloud computing, which was not included in their study (Sharma & 

Singh, 2022). The authors used AI and machine learning algorithms to identify risk 

factors and predict future risks. The following Table 2.2  summarizes the reviewed 

models and tools.  
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Table 2.2. Risk Assessment Tools and Models 

Model /Tool Risk  Smart City 

Dimension  

    
Author  

  
Eco  Env Mob  Gov  Living  People  

 

cybersecurity 

risk 

assessment 

tool (AERS)   

Security  * * * * * * Dimitriadis 

et al. 

(2020) 

cybersecurity 

risk in medical 

IoT devices- 

Model  

Multiple  
    

* 
 

Kandasam

y et al. 

(2020)  

Smart City 

KPI-guided 

Security 

Security  * * * * * * Ye et al., 

(2023) 

Final risk 

index tool -

smart city 

underground 

systems   

Multiple  
  

* 
   

Ullah 

(2018) 

Intelligent 

system to 

manage 

railway 

applications in 

smart city  

Multiple  
  

* 
   

Alawad et 

al. (2020) 

Fuzzy risk 

assessment 

model for 

smart cities - 

health care and 

environmental 

systems  

Multiple  
 

* 
   

* Gavurova 

et al. 

(2022)  

Risk 

Assessment 

model for 

cloud 

computing as a 

smart city 

technology  

Multiple   * * * * * * Sharma & 

Singh, 

(2022)    

 

2.3 Applications of Management Theories  

A smart city strategy is created by the management of an organization. 
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Therefore, understanding management strategies is essential to design, plan, and 

implement a smart city (Visvizi & Troisi, 2022). The role of management is usually 

assessed through applicable management theories by researchers. Also, It is usually 

mentioned that management emphasizes significant functions related to leading the 

development, planning, controlling, identifying challenges, analyzing risks, 

forecasting, sustainable development, and economic growth, considering all smart city 

dimensions(Schiavone et al., 2020).  

Studies have focused on qualitative theories to understand the social factors affecting 

information technology and infrastructure projects. Different types of qualitative 

management theories are given( Gioia, 2021; Vanscoy & Evenstad, 2015). Among 

them, grounded theory and the Gioia method are considered important for large-scale 

planning. Below is a brief description of the main theories and their applicability in 

smart city design, planning, implementation, and operation.  

Grounded theory is a qualitative research method that considers the complexity of 

human action and the need to derive knowledge from common conceptual language 

(Wronowski, 2018). The grounded theory is a mechanism that includes data collection, 

analysis, explanation, and theoretical combination (Wronowski, 2018). The theory 

starts from data collection and lets theories develop from the data itself (Glaser et al., 

1968).  

Grounded theory is used in information technology research to understand human 

behavior and social factors affecting e-government projects in government 

organizations ( Lee & Kim, 2007). The authors provided that the theory  helps to 

achieve various levels of abstraction related to e-government projects, which are 

process integration, rewarding systems for employees, training programs, innovative 

methods to budget information systems, and employees and decision-making beliefs 
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and perception of a  project  Applying the findings will provide insights to manage 

IT/IS projects in government sector ( Lee & Kim, 2007)  

Another related application of grounded theory is given by Techatassaasoontorn & Suo 

(2010) to explore smart city broadband infrastructure risks. Using the theory, the 

authors identify risks and conduct a casual mapping analysis to study risk interrelations 

in broadband government projects. The study proposes five risk categories: social and 

political, financial, technical, and partnership and resource management risks, and 

suggests the relations between the five categories identified by applying the grounded 

theory. The authors mention that risks are interrelated and that management must 

consider risks from a holistic perspective for better risk management and mitigation. 

(Techatassaasoontorn & Suo, 2010). 

The Gioia method is another method used for management research based on grounded 

theory. The method focuses on new conception expansion and grounded theory diction. 

This method supports the initial analysis of scientific theorizing of the research topic 

(Gioia et al., 2013).  

It has been used for data aggregation and analysis to understand the sustainability 

procedures and their contribution to the logistics sector toward a circular economy 

(Jayarathna et al., 2022).  The authors mention that the Gioia method helped them 

identify sustainable logistics practices and categorize them into nine categories, which 

are aggregated into three themes.  

Based on Gioia’s results, the study concluded that the logistics sector could transfer to 

the circular economy through environmental preservation, dynamic capabilities, and 

social well-being (Jayarathna et al, 2022)  

Although most of the studies using management research theories focus on non-

technical studies, such as understanding social media engagement for pre-teen children  
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(Lichy et al., 2022) and organizational culture research studies (Gioia, 2000), it is also 

used to understand future developments and paths at the IT industry (Laato et al., 2022). 

Managerial decisions affecting agile information system project managers are studied 

using the GIOIA method by Virag (2021).  

The study provides reasons for engaging agile project managers in control activities 

since the traditional project management style is rarely used in information systems 

projects. The main reasons are enhancing communication and cooperation, facilitating 

the association with senior management, and having an overview of other projects 

(Virag,2021).  

Secinaro et al. (2021) used the Gioia method to validate the possibility of using hybrid 

organization management to manage smart cities. The study benefited from case 

studies, real natural phenomena, and the Gioia method. The study shows that hybrid 

theory improves the possibility of directing the output to benefit the smart city's 

citizens. 

Other theories, such as phenomenological theory, are used for management research. 

The theory centers on the direct examination and explanation of a phenomenon by 

experienced individuals (Biemel & Spiegelberg, 2024).  

The theory is used to study the library and information systems community (VanScoy 

& Evenstad, 2015). The study provides the effectiveness of the theory in understanding 

the experience of information specialists and academic library specialists. The authors 

could identify the details of burnout phenomena and the stages that employees may go 

through. These stages are the road to burnout, burnout, and life after burnout. Also,the 

authors provided main recommendations for personal development and  organizational 

enhancements (VanScoy & Evenstad, 2015)  

Narrative theory is used in management research since it explores how humans interact 
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with stories and build their meaning. The theory works as a strategy to support elements 

of peoples’ experiences, such as time, process, and support(Summers, 2022). A study 

by Joseph et al. (2007) used the narrative to understand the reasons for professional 

turnover in information technology. 

The authors mentioned that there are multiple levels affecting IT professional turnover 

related to the environment, organization, and individual. The study provides a 

theoretical model built on the results of the narrative method that will support future 

research on IT turnover(Joseph et al., 2007). Table 2.3 will summarize management 

theories used in information technology research. 
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Table 2.3. Management theories used in Information Technology Research 

 

No Theory  Characteristics  Advantages for 

Use in This 

Research 

Disadvantages 

for Use in This 

Research 

1 Grounded Theory Based on the inductive 

approach starts with 

data to reach theory.  

Precise, structured 

guidelines. 

It has a flexible and 

practical approach to 

understanding.(Hussein 

et al., 2014) 

 

A systematic 

approach to data 

analysis. 

Applied for 

perceptive claims. 

Depth in collected 

data.  

Effective data 

analysis. (Hussein 

et al., 2014) 

 

Long process  

Generalization 

limits. (Hussein 

et al., 2014) 

 

2 Gioia method  Based on the inductive 

approach starts with 

data to reach the theory.  

Systematic steps and 

guideline( Gioia et al., 

2013) 

Flexible and 

allows creativity. 

The method leads 

to reliable 

explanations.  

Scientific rigor. 

Results in 

convincing new 

theories. ( Gioia 

et al., 2013) 

Long Process. 

Time-

consuming in 

data analysis ( 

Gioia et al., 

2013). 

3 Phenomenological 

Theory  

Based on a 

philosophical approach.  

Depends on the 

experience of people. 

It creates shared and 

sometimes competing 

perceptions. 

(Leach,2014) 

Assets in the 

development of 

new theories 

(VanScoy & 

Evenstad, 2015) 

It depends on the 

experience of 

people and suits 

the small scale of 

research (Leach, 

2014) 

The subjective 

approach lacks 

scientific 

accuracy. 

General 

conclusions 

cannot be 

extracted since 

they are applied 

on a small scale. 

(Leach, 2014)  

 

4 Narrative theory Resolve important 

stories based on 

people’s lives. 

It can be used as a data-

gathering method and 

analytical method. 

(Ntinda, 2017)  

 

It is easy to 

convince people 

to participate 

since they will 

tell their stories.  

In depth data can 

be 

Challenges in 

understanding 

the relationship 

between the old 

story in data 

gathering and 

the story made 
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No Theory  Characteristics  Advantages for 

Use in This 

Research 

Disadvantages 

for Use in This 

Research 

gathered(Ntinda, 

2017)  

 

in data 

presentation.  

 

Challenges in 

setting 

boundaries 

between stories. 

(Ntinda, 2017)  

 

 

The grounded theory supports risk identification and finding risk interrelations 

(Techatassanasoontorn & Suo 2010). The theory is extensively used to understand the 

managerial and social aspects of smart cities and risk understanding and categorization 

for smart city projects. Gioia's method is based on grounded theory and has frequently 

been used in the last few years to identify management directions for smart cities.  

This research study uses the Gioia method, which is based on grounded theory, to 

analyze the data and explain the risks of smart cities in project phases’ design, planning, 

implementation, and operation. The Gioia method is flexible, allows creativity, leads to 

reliable explanations, and has scientific rigor that will lead to new theories. 

Accordingly, it will assist in understanding smart city risks, build connections between 

collected evidence from different experts to support the quantification process, and lead 

to the final theory.  
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2.4 Probabilistic Graphical Models  

Managing uncertainties can be achieved using probabilistic graphical models 

(PGMs). PGMs present a framework based on the probability theory, considering 

independent relations for a specific challenge. These models lower the complexities of 

problems under study regarding computational time. The graphs symbolize dependence 

and independence relations between variables. The joint probability distribution is used 

in these models to acquire conditional probability. PGMs have several advantages: 

efficient, easier to communicate and understand, and easy to construct based on experts' 

knowledge(Spehr, 2015). 

Various applications use probabilistic graphical models, including medical diagnosis, 

engineering, risk assessment, information technology, robotics, and the environment 

(Spehr, 2015). For instance, PGMs assess economic risks within a project's life cycle. 

The results showed that using Bayesian Networks, one of the discussed models, can 

provide qualitative and quantitative information, including dependencies between 

variables, depending on experts' beliefs (Shishkina, 2015). The main probabilistic 

models discussed in the following subsections are Bayesian Networks and Markov 

Networks (Spehr, 2015).  

2.4.1 Bayesian Networks 

Bayesian network (BN) is a directed acyclic graph where all edges present a 

specific direction. There should be no cycles within the model. The Bayesian network 

can be presented in Figure 2.1 (Stephenson, 2000).  

The set is represented as E=. {(𝐴, 𝐵), (𝐴, 𝐶)} , B and C are considered conditionally 

independent, then P (B|A, C) = P(B|A), which means that the probability of B is 

conditioned by A, and the value of the probability of C is unrelated.  
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Similarly, P (C|A, B) = P(C|A), which means that the probability of C is conditioned 

by A and the probability of C is unrelated. 

Accordingly, the joint probability in this example, as presented by the Bayesian 

network, can be demonstrated as follows:  

P (A, B, C) = P(B|A). P(A).P(C|A).                                                        (2.10) 

The general equation for the joint probability function in the Bayesian network is 

presented as follows:  

P(X) = ∏ (𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑋𝑖))𝑛
𝑖=1                                                           (2.11).  

 

 

Figure 2.1 Bayesian Network 

The joint probability of variables is calculated as each variable's probability, 

considering the parent’s value using the Bayesian network. In addition, Bayesian 

network edges are considered causal relations between parent nodes that affect the child 

node(Stephenson, 2000).  

Bayesian networks (BN ) have been used in project management to identify risks and 

challenges (Guinhouya, 2023). Guinhouya, (2023) also mentions that (BN) is used in 

manufacturing and engineering, construction, IT, and software projects.  

BN is used in smart city optimization decisions. For instance, Zhang et al. (2022) 

combined the naïve Bayesian network with three-way decision-making and filtering 

algorithms. The suggested model was tested in a smart movie recommendation system 
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and presented better results than two-way decision models. The study provided a model 

that can be used to promote the construction of smart cities (Zhang et al., 2022). The 

authors mention that by using this model, the cost is reduced, and the quality is 

improved of the recommended option(Zhang et al., 2022)   

The advantages include its suitability in analyzing uncertainties and calculating joint 

probabilities. This thesis will use a Bayesian network as a probability graphical model 

to identify causal relations between smart city risks. 

2.4.2 Markov Networks 

Markov analysis is used to define the possibility of forthcoming actions given the 

current condition of a variable. Once the future conditions’ probability is determined, a 

decision tree can be built to calculate the final probability(Beenish et al., 2023),  

Markov network is one of the undirected graphical models used to present independent 

random variables. Edges of the models are undirected; Figure 2.2 presents a Markov 

network example(Spehr, 2015). 

 

Figure 2.2 Markov Network 

Independent variables are defined in the Markov network based on the graph presenting 

the model. If three variables are presented as (A, B, C), then variable A is independent 

of variable C given variable B if variable B disconnects A and C in the graph.  
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Each variable consists of a subset of random variables denoted as “q.” The subset is 

denoted as a clique. Accordingly, the joint probability distribution for a Markov 

Network can be calculated using the formula:  

P (q1, q2, q3, q4, q5) = (1/Z) P(q1, q4, q5) P(q1, q2, q5)P(q2, q3, q5)                           (2.12) 

Where Z is a normalization factor, Markov probability is applied in this model; the 

variable is considered independent if all other variables are its neighbors. 

The general joint probability formula is denoted as follows:  

P(X) = (
1

𝑍
∏ ∅ 𝑐 𝑋𝑐 𝑐∈𝐶𝑙𝑖𝑞𝑢𝑒𝑠 (𝐺) )                                                                        (2.13) 

 Z is a normalizing factor, and ø c is a local function across the variables in the 

resultant set C (Spehr, 2015). 

The Markov Network model is used in diverse fields, such as engineering, medicine, 

and information technology. It is also used in smart city applications like transportation 

systems and IoT to estimate transportation density (Beenish et al., 2023)  

Beenish et al. (2023) used the Markov Network model as a novel technique for 

transportation density estimation of a smart transportation system. The research paper 

showed that the model provided accurate results when estimating traffic density using 

multiple factors, such as vehicle speed, mean speed, location, and acceleration (Beenish 

et al., 2023).  

In terms of big data analysis, the hidden Markov model is used in smart city networks 

to solve complexity and uncertainty issues. The model provided a solution even with a 

minimum amount of data, and reliable results were achieved. Accordingly, smart 

decisions could be introduced (Prevelianaki & Sherratt, 2023).  

In their research, Shanmuganathan & Suresh (2023) combined the Markov model with 

a long, short-term memory network to detect attacks on IoT devices. Real-time 
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temperature sensors are used to test the proposed models, and results provided effective 

attack detection with a value of 90% and 94% training accuracy. 

Although the Markov Network is used in smart city applications, the main 

disadvantages of the Markov Network are the requirements of a large number of states, 

the model is hard to build and validate, and complex systems require a combination of 

other techniques(Boyd, 1998). Accordingly, the model will not be used in this thesis 

for risk probability calculations because of the limited number of states of incidents 

causing risks, but it may be used in risk scenarios’ probability calculations. 

2.5 Decision Making Techniques  

Decision analysis aims to assist the decision-maker in systematic thinking. Where 

decisions are based on a comprehensive understanding of the problem, this 

understanding will improve the decision’s quality and provide subjective judgments 

(Clemen & Reilly, 2004). 

The decision-making process is constructed from the following steps: problem 

identification, gathering alternatives, alternatives evaluation, choosing the most 

suitable alternative, decision implementation, and decision effectiveness evaluation 

(Danisi et al., 2021). 

Accordingly, there are many decision-making tools used to reach a rational decision, 

such as multidisciplinary tools, decision trees (Shubik, 1958), analytical hierarchy 

process (AHP) (Clemen & Reilly, 2004), and technique for Order preference by 

similarity to ideal solution (TOPSIS) The AHP, and TOPSIS will be examined in detail 

in the following sections.  
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2.5.1 Analytical Hierarchy Process  

The Analytical Hierarchy Process (AHP) is extensively used to process multi-

criteria decision-making (MCDM) problems. The core of AHP is based on defining 

criteria and calculating their weights to assess alternatives.(Russo et al., 2015).   

AHP, as a decision-making technique, is performed in several steps that are recognized 

and used by researchers and summarized in a study by Russo et al. (2015). It is applied 

in various disciplines, including urban planning and construction of smart cities (Yang 

& Ma, 2021), business decision-making (Canco et al., 2021), smart city project 

selection (Wu & Chen, 2021), and Smart city evaluation and ranking  ( Ye et al., 2022). 

AHP is used as a decision-making tool in risk assessment studies related to smart cities. 

For instance, a study by Lyu et al. (2023) reviewed the multicriteria decision-making 

methods for smart city flood risk assessment. The authors mentioned that incorporating 

GIS with MCDM will increase the effectiveness of flood risk assessment. To overcome 

the subjective analysis of MCDM, a fuzzy number is added to better quantitative results 

(Lyu et al., 2023). 

Another study by Bouramdane (2024) used AHP to prioritize and evaluate criteria used 

for disaster management strategies in smart cities. The authors mentioned that the AHP 

provided acceptable weights for each management strategy based on the comparison 

with previous studies.  

The main advantages of AHP are its ability to disintegrate the problem into its 

fundamental elements, and it is easy to use since it allows comparisons between 

alternatives using a specific criterion in pairs, permitting the identification of relations 

between alternatives. In addition, it depends on qualitative data, so results are 

measurable (Zapolskytė et al., 2020). The AHP will be used in this research to evaluate 
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the impacts of risks and calculate the weights of these impacts on smart city 

sustainability. The risk scenarios will be evaluated based on their impacts.  

2.5.2 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)  

The technique for order preference by similarity to ideal solution (TOPSIS) is 

developed by (Hwang & Yoon, 1981). The approach is designed to select alternatives 

by calculating the shortest geometric distance from a positive superlative solution and 

the longest distance from a negative superlative solution. The technique is used in 

various disciplines, including information technology and smart applications. For 

instance, it is used to analyze the performance of electronic- supply chain management 

systems (e-SCM) in the automobile industry. The method is used to evaluate investment 

alternatives to enhance e-SCM systems. The result supports managers and decision-

makers in making robust decisions when setting supply chain strategies (Tyagi et al., 

2014). Other studies highlighted using the TOPSIS technique to implement smart waste 

management strategies. The technique supports decision-makers in deciding successful, 

reasonable, and appropriate smart waste management strategies(Demircan & 

Yetilmezsoy, 2023). 

Risk assessment is tackled by (Chang, 2015). In his study, the traditional failure mode, 

effect, and critical analysis (FMECA) are integrated with the TOPSIS technique to 

solve the challenges of having incomplete data since TOPSIS is suitable for uncertain 

and incomplete data and situations. The resulting model could handle decision-making 

problems effectively (Chang, 2015). The TOPSIS technique is reviewed in case the 

research faces an incomplete set of data.  

In summary, this chapter reviews the literature, considering risk assessment tools and 

methods and concentrating on the methods used in smart city research. Also, 
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applications of management theories in engineering research, probabilistic graphical 

models, and their usage in different disciplines, including smart applications studies, 

are examined. Then, the decision-making techniques, namely, multiple criteria 

decision-making techniques, are explored. 

2.6 Literature Review Summary and Gaps   

The literature review shows different models for specific risk assessments, and 

they are applied in different contexts, often focusing on a particular application 

situation. As per Alawad et al. (2020),  there are limited risk assessment models that 

consider a comprehensive view of smart city design, planning, implementation, and 

operation. The review further shows that there are opportunities to analyze the risks 

perspectives from the managerial point of view by considering the total design, plan, 

implementation, and operation of smart cities.  

Although comprehensive risk assessment is necessary, there is a lack of research on the 

risk assessment tools and the assessment frameworks that help to analyze the impact of 

risks in different aspects of smart city development. Without such a tool, it is difficult 

to understand the integrated impact of risks in smart cities. Therefore, the research can 

be extended to develop a comprehensive and flexible framework by using risk 

assessment tools. The framework should be valid for use during any phase of smart city 

development and operation.  

The smart city is also a social system, and the decision-making to integrate different 

services and technology is also based on the given decision-making environment. This 

requires thorough management research so the experts' perceptions can be compiled for 

designing, planning, implementing, and operating smart cities. Therefore, the second 

research direction is to focus on management research based on grounded theory for 
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understanding smart city risks, their probabilities of occurrence, and their impacts. 

Therefore, in this research, a comprehensive risk assessment tool is proposed. The tool's 

utility for risk assessment is verified and validated through a comprehensive directed 

study of smart city design, planning, implementation, and operation processes. The 

second aspect of the research is to develop a grounded theory on risk based on 

management research by using the Gioia method to analyze the data and explain the 

risks of smart city design, planning, implementation, and operation.  

The thesis adopts the Gioia method due to the systematic approach it utilizes to elicit 

and analyze data. The tool and the management approach are integrated to propose a 

holistic smart city risk assessment framework, which will be discussed in the next 

chapter.   
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CHAPTER 3: RESEARCH METHODOLOGY  

The research methodology adopted in this research uses the design research 

science paradigm, which combines behavioral science and design science. Behavioral 

science relates to the understanding of human and organizational behavior in a case 

(Hevner & Chatterjee, 2010). Design science relates to scientific patterns used by 

scientists to solve a scientific problem. (Van Aken, 2004)  

Design research science is used to create innovative frameworks, artifacts, or systems 

to find solutions to a specific case (Adikari et al., 2009). This paradigm is widely used 

in engineering disciplines (Hevner & Chatterjee, 2010).  

The details of the research methodology are discussed in the following sections.  

3.1 Sampling Strategy  

A purposive and convenient sample is used in this research to seek information 

for the development of a risk assessment model. A purposive sample is a sample where 

the researcher selects subjects that only satisfy the objectives of the research based on 

the researcher’s belief. A convenient sample is a sample obtained from a population 

that is available and accessible to the researcher (Isaac, 2023).  

Purposive sampling is used in research related to many disciplines (López, 2022). The 

usage of this sampling method for engineering-related research is supported by a study 

by Smith et al. (2013). The author used the sampling method to determine the main 

system engineering processes in high-development projects. The purposive sample is 

recognized as an efficient, consistent, and unbiased sample  (López, 2022). 

Also, a convenient sample presented reliable results as per a study by Escorcia-Guzman 

et al. (2021). The author used a convenient sampling method to study information 

technology distribution and its usage in higher education organizations.  
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Accordingly, the used sample for the research is considered purposive since the 

interviewed candidates are smart city experts who are involved in the design, planning, 

implementation, or operation of the smart city, use and manage smart applications, 

manage information technology department within a smart city, support or operate 

smart applications, or has a strategic or high management role within a smart city. Also, 

the sample is convenient because the experts are accessible through work connections. 

Forty experts are interviewed, the researcher has a direct work relationship with ten of 

these experts, and the remaining thirty candidates are reached out through snowballing, 

where research participation is recommended by the first ten candidates to their 

connections.  

3.2 Proposed Holistic Smart City Risk Assessment Framework. 

Based on the discussion in earlier chapters, a risk assessment framework 

developed based on the BLOC-ICE concept is proposed in Figure 3.1. The BLOC-ICE 

concept is proposed by Pokharel (2023) and helps to visualize, explore, and elaborate 

the risk assessment. The approach is used to study problems and opportunities in 

different fields, including technical, business, and social systems (Pokharel, 2023). The 

description of the framework is given in the sections below, for the framework inputs 

are obtained from the interviews with the stakeholders.  

The proposed framework is structured in three phases: Phase 1—initial data analysis; 

Phase 2—calculation of the basic probability assignment and incidents classification 

and interrelations; and Phase 3—identification and evaluation of risk scenarios. Each 

phase produces an outcome that contributes to the suggested risk assessment model. 

Each phase is described in detail in the following sections. 
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Figure 3.1: Risk Assessment framework for smart city 

3.2.1 Data streamlining 

Data is collected through interviews with open-ended questions to initiate the 

discussion. The resulting data is processed and streamlined for analysis. The data 

streamlining includes writing interview scripts, assigning the ranks to risks and risk 

incidents gathered from the interviews, and performing statistical analysis, including 

the Cronbach reliability test and Pearson Correlation test for the gathered data.  

3.2.2 Phase 1: Initial Data Analysis 

Initial data analysis is based on the grounded theory approach, and as discussed 

earlier, the Gioia method is used for this analysis. The use of the method for initial data 

analysis is also recommended by Corbin & Strauss (1990) and Secinaro et al. (2021).  

For this purpose, interviews are conducted, the scripts are studied and coded, and data 

analysis is performed to understand the incidents causing the risks. Open coding is 
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applied to experts' descriptions of the implemented applications in a smart city and the 

main challenges faced during designing and planning, implementation, and operation. 

Open coding generates the first-order codes. The mentioned challenges are coded as 

incidents (I) that may cause risks. Then, the risks that may occur during the planning, 

implementation, and operation are defined and coded to develop the second-order 

themes. The method also involves basic probability assignment coded as (m) of a 

specified incident causing a risk. Axial coding, which is the process of relating defined 

categories to the sub-categories, is used to relate different risks to the defined incidents 

(I).  

 Second-order themes are created based on the Gioia method (Gioia et al., 2013). The 

second-order themes are the risks of specific incidents (I). Then, the third-order themes 

are defined through further consolidation of the second-order theme. The consolidation 

of the grounded theory is based on analyzing the scripts and discussions with each 

participant. The method allowed data analysis and consolidation until the aggregated 

dimension was reached (Gioia et al., 2013).  

The method is applied based on the above theoretical explanation in this research, 

which is as follows: The resulting scripts from the interviews are analyzed line by line, 

keywords related to smart city challenges and threats are highlighted and coded using 

open coding as incidents causing risks (I). The participants are asked to rank the chance 

of occurrence for each threat or challenge, and these ranks are coded as the basic 

probability assignments for incidents (m). The incidents causing risks (I) and the ranks 

incidents' basic probability assignments (m) represent the first-order theme. From the 

discussions with experts, the most common incidents causing a specific risk have been 

identified. Accordingly, the risks are linked to the incidents that caused them, and the 

second-order theme resulted. Also, inspecting the scripts, the different risks were 
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related to specific phases of the smart city project: design, planning, implementation, 

and operation. The risks that may occur within a specific project phase are aggregated, 

forming the third-order theme, which presents project phase risk. The impacts of risks 

on smart city projects and smart city sustainability are highlighted and linked to the 

smart city project phase. Therefore, the aggregated dimension presents the impacts and 

their links to the project phase risk, which is defined per the experts' observation as a 

major impact at this specific phase, and then grounded theory results. The results of this 

phase are shown in section 4.4.1.  

The incidents causing risks (I)  and the ranks of incidents' basic probability assignments 

(m), which are the first-order themes, will be used to calculate combined probability 

assignments for each risk using the Dempster – Shafer theory in the second phase of 

the framework.   

3.2.3 Phase 2: Combined (m) Calculation and Risks’ Interactions  

In this phase, the risk assessment tool in the proposed framework in Figure 3.1 

is developed by combining the Dempster-Shafer theory with the Bayesian theory to 

provide a rich understanding of risks and uncertainties.  

The Dempster-Shafer theory is used to get the combined basic probability assignment 

(𝑚12) for incidents causing each risk. Resulted from the initial data analysis, phase 1 

of the framework.  

The basic probability assignment (m) is envisioned by evidence theory. The 

theory has three main functions: the basic probability assignment function (m), the 

Belief function (Bel), and the Plausibility function (Pl). The basic probability function 

distinguishes the function of the power set for the interval from 0 to 1 equation (3.1), 

and m (∅) is zero, equation (3.2), and the total of (m) for all subsets of the power set is 
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1 equation (3.3) 

Suppose the definition is applied for a set A; for instance, the basic probability 

assignment for a set A is represented as m(A) and formulates the fraction of related 

indication to support the assumption that a specific element of X (universal set) belongs 

to set A. Another basic belief function, m, will represent more evidence in the subset 

(Sentz and Ferson 2002). Then, the presentation of basic probability is as follows:  

 

P(X) is the power of set X and ∅ the null set. 

The interval (0,1) is constrained by two determines: the belief and the plausibility. The 

belief function of set A: Bel(A) is the sum of all basic probability assignments (m) of a 

subset (B) of set A. 

The plausibility: Pl(A) is the sum of the basic probability assignments of a set (B) that 

intersects with set A (Sentz and Ferson 2002). 

The values of the belief function and plausibility are nonadditive. Accordingly, the sum 

of all belief measures is not required to be 1, and the same applies to plausibility 

measures (Sentz and Ferson 2002). Additionally, the two functions can be derived from 

each other as follows: 

𝑚: 𝑃(𝑋) → [0,1] (3.1) 

𝑚(∅) = 0 (3.2) 

∑ 𝑚(𝐴)𝐴∈𝑃(𝑋)  = 1 (3.3) 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)

𝐵|𝐵⊆𝐴

 (3.4) 

𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)

𝐵|𝐵∩𝐴≠∅

 (3.5) 
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𝑃𝑙(𝐴) = 1 − 𝐵𝑒𝑙(¬𝐴) (3.6) 

Where (¬𝐴) (note A) complements A, this definition comes from the sum of basic 

probability assignments as 1. 

Aggregating multiple basic probability assignments (m) based on experts’ knowledge 

and experience of risk incidents is achieved using the Dempster-Shafer combination 

rule. This rule strongly emphasizes the agreement of different sources and overlooks 

conflicting evidence using a normalization factor. 

 The combination rule symbolizes a strict AND operation (Sentz & Ferson, 2002). Joint 

basic probability assignment (𝑚12 ) is calculated by summing the products of basic 

probability assignments of all sets (incidents in this study), as equation (3.7). The 

combined basic probability assignment 𝑚12 of the null set is (0) equation (3.8). K is the 

basic probability assignment of a conflict situation when the intersection between the 

incidents is a null equation (3.9). 1-K is the normalization factor used to ignore the 

effect of conflict.  

Table 3.1: Dempster Shafer Combination Rule Parameters  

Notation  Description  

𝑚12 (A) Combined basic probability assignment of a set of interest (A) 

 𝑚1 (𝐵) Basic probability assignment of a subset (B)  

 𝑚2 (𝐶) Basic probability assignment of a subset (C)  

K Basic probability assignment of a conflict situations 

 

The following formulas illustrate the combination rule. The rule combines the basic 

probability assignment of a subset (B), in the case of this research, is risk’s incident (1), 

with the basic probability assignment of a subset (C), Incidents (2), where A is the set 

of incidents causing this specific risk. 
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𝑚12 (𝐴) =
∑ 𝑚𝐵∩𝐶=𝐴  1 (𝐵) 𝑚2 (𝐶)

1−𝐾
, when 𝐴 ≠ ∅   (3.7) 

𝑚12 (∅) = 0 (3.8) 

Where: 

K= ∑ 𝑚1  (𝐵)𝑚2 (𝐶)𝐵∩𝐶=∅    (3.9) 

Using the above theory and equations on the resulting data from phase 1 is performed 

as follows :  

• The incidents causing risks (I)  and the ranks of incidents (are tabulated for each 

risk, where incidents are mentioned, and the rank given by each expert is provided. 

• The basic probability assignment is calculated by dividing the number of experts 

ranked in the incident with rank R by the total number of experts mentioned in this 

incident.  

• The incident will have multiple basic probability assignments based on experts' 

ranking. For instance, incident one will have a basic probability assignment. 

𝑚1 based on experts ranking it high, 𝑚2  based on experts ranking it low.  

• Each risk is caused by multiple incidents, and the incidents’ basic probability 

assignments are calculated.  

• Using the Dempster- Shafer combination rule equation (3.7), the combined basic 

probability assignments 𝑚12 for incidents causing each risk are generated, results 

are illustrated in section 4.4.2  

• The resulting combinations are used to calculate the probability of risk to occur 

using Bayesian theory and to identify the interrelations using Bayesian Network 

(BN) as discussed in the following paragraph. 

Bayesian network (BN) is a probabilistic graphical model, as discussed in 2.4.1.BN is 
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used to show incident relations to a specific risk graphically and to present various risk 

interrelations derived from expert interviews and the analysis of the common incidents 

between risks. Resulted from the initial data analysis phase. 

Bayesian network edges are causal relations between parent nodes that affect the child 

node (Stephenson, 2000). All the edges in the graph present a specific direction. Figure 

3.2 presents the Bayesian network. The scenarios of risk interrelations are graphically 

presented in section 4.4.2.  

 

Figure 3.2 Bayesian Network Application at The Research Data 

Based on the graphical presentation of BN, for each relation, the set of edges of the 

Bayesian network is represented as E= {(A, B) (A, C) }, B and C are considered 

conditionally independent, then P(A|B, C) = P(A|B), which means that the probability 

of risk A to occur is conditioned by the value of the probability of combined incidents 

B occurrence and the value of the probability of combined incidents C is unrelated. 

Similarly, P (A| C, B) = P(A|C), which means that the probability of risk A to occur is 

conditioned by combined incidents C occurrence and the probability of combined 

incidents B is unrelated. 

Based on the above discussion, the probability of risk A to occur due to combined 

incidents B and combined incidents C can be calculated using Bayes theory as follows:  

• Let U be the event that risk A occurs due to combined incidents B and combined 

incidents C, i.e., U = B ∩ C. Using Bayes’ theorem, we have: 
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𝑃(A|U)  =   
P(U|A)P(A)

P(U)
                                                                 (3.10) 

P(U∣A) is the probability of risk A risk due to the combined incidents B and C, 

and P(U) is the marginal probability of risk A considering both combined incidents 

occur. 

• To calculate P(U∣A), we can use B and C as independent events given A. 

P(U∣A) =P(B∣A) P(C∣A)                                                                              (3.11) 

• To calculate P(U), we can use the law of total probability and the fact that A and 

¬A are separate events, according to the below formula:  

P(U)=P(U∣A) P(A)+P(U∣¬A) P(¬A)                                                          (3.12) 

P(U∣¬A) is the probability of combined incidents B and C to happen, given that 

risk A does not occur, and P(¬A) is the probability of risk A not occurring. 

• Given that B and C are independent events given ¬A, the formula below is used 

to calculate. P(U∣¬A).  

P(U∣¬A) =P(B∣¬A) P(C∣¬A)                                                                       (3.13) 

• P(U) is calculated using the formula (3.12), then the P(A|U) is calculated using 

the formula (3.10).  

The mentioned mechanism is used to calculate risk probabilities caused by combined 

incidents.  

Bayesian network (BN) is suitable for analyzing uncertainties and calculating joint 

risk probabilities in this study. The result of this phase is a graphical representation of 

the risks based on the experts’ interviews and analysis of the common incidents 

between risks. Risk probabilities are calculated using the Bayes theorem. 
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The relationship between different identified risks is presented following Bayesian 

network characteristics that will lead to risk scenarios. Identifying scenarios is 

essential to guide the analysis towards the targeted decision-making criteria. 

Accordingly, the probability of each scenario is quantified using Bayesian joint 

probability in phase 3 of the framework. 

3.2.4 Phase 3: Risk Scenarios Identification and Evaluation  

In this phase, risk scenarios are defined using the graphical model. Bayesian 

probability theory is applied to calculate the joint probability for each scenario. The 

theory will be applied to the combined basic probability assignment for a risk. 

Accordingly, the joint probability resulted from other risks causing risk (A), for 

instance, is demonstrated as:  

P (A, B, C) = P(B|A). P(A).P(C|A).                                                                (3.14) 

The general equation for the joint probability function in the Bayesian network is 

presented as follows: 

P(X) = ∏ (𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑋𝑖))𝑛
𝑖=1                                                              (3.15)  

Stephenson (2000), in his study introducing and using Bayesian theory, provides that 

the joint probability of variables under study is the probability of each variable, 

considering the parent’s value. In addition, Bayesian network edges are considered 

interrelations between parent nodes that affect the child node (Stephenson, 2000). The 

following steps illustrate how this theory is applied to reach outcomes.  

• The graphical presentation of an identified risk scenario based on the outputs of 

phase 1, where common incidents of risks are highlighted and relations are 

mentioned by smart city experts, are illustrated.  

• The probability of the parent risk to occur due to its incidents is calculated using 
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the Bayes theorem equation (3.10).  

• The probability of the risk scenario is calculated using the Bayesian network joint 

probability equation (3.15). The results of this phase are presented in 4.4.3 

The resulting joint probability for each risk scenario is used to reach the decision-

making criteria by evaluating the risk scenarios against the impacts on smart city 

sustainability using the Analytical Hierarchy Process (AHP). The process is used to 

explain multi-criteria decision-making (MCDM) problems.  

The technique will be applied by structuring the problem hierarchy and identifying the 

evaluation criteria. The evaluation criteria are the impact of the smart city project on 

the main defined aspects: service continuity, service efficiency, resource productivity, 

smart city reputation, and revenue generation. Concerning each criterion, 

mathematically, risk scenarios will be ranked; then, the ranks will be combined to set a 

score for each scenario. Decision-making criteria are developed based on the resulting 

scores of risk scenarios.  

The process of AHP is described as follows:  

• Problem definition and goal determination.  

• Hierarchy structuring the hierarchy from high-level objectives to low-level 

alternatives. 

• Pair-wise comparison matrices (size 𝑛 × 𝑛) are constructed, where one matrix is 

for each element in the level.  

• The pair-wise comparisons are determined by the preference of one element over 

the other using a scale from 1 to 9  introduced by ( Saaty, 1987). One is given 

when both criteria have the same significance. This matrix is denoted as A1. 

• The relative normalized weight (𝑊𝑗  ) is found for each criterion by normalizing 
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the mean of rows in the comparison matrix( Saaty, 2013). 

•  The consistency is verified by using the eigenvalue of a matrix 𝛾𝑚𝑎𝑥 , by 

calculating the consistency index CI where 

•  𝐶𝐼 =
𝛾𝑚𝑎𝑥 −𝑛

𝑛−1
                                                     (3.16)  

n is the matrix size. 

• Concluded evaluation matrix consistency can be checked by calculating the 

consistency ratio CR for matrix size.  If CR≤ 0.1, the concluded evaluation matrix 

is accepted.(Awasthi & Chauhan, 2011). 

•  An evaluation vector is used in evaluating each risk scenario using the weighted 

sum method. If there are m alternatives and n criteria, the suitable alternative is 

the one that satisfies the equation (Mateo, 2012).   

𝐴𝑤𝑠𝑚
∗  = Max ∑ 𝑎𝑖𝑗  𝑤𝑗

𝑗
𝑖                                                           (3.17) 

For i =1,2, … m Where  𝐴𝑤𝑠𝑚
∗  is the score resulting from the weighted sum method. 

The number of decision criteria is denoted by n, 𝑎𝑖𝑗 represents the actual value of the i 

th alternative about the j th criterion and 𝑤𝑗 Represents the weight of importance of the 

jth criterion. The following steps are followed to use the theory :  

• The hierarchy is constructed, where the goal is to reach smart city sustainability. 

The second level presents the impacts on smart city sustainability. The third level 

is the smart city project phase risk, and the lower level is the risk scenarios.  

• The impacts of risks are extracted from the data and analyzed using the Gioia 

method.  

• The ranks of the impacts in comparison to each other are derived based on the 

experts’ views.  

• AHP  steps are applied to derive the pair-wise comparison matrix for the impacts 
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and get the weight for each impact. 

• The ranks of risks based on the project phase are generated based on the initial 

beliefs of experts.  

• AHP  steps are applied to derive the pair-wise comparison matrix for each of the 

smart city projects and compare them with each impact. Accordingly, The weights 

are derived. 

• The final decision matrix is constructed using the results from the previous steps.  

For this study, the highest value presents a risk scenario with the highest probability 

and impact on smart city projects. The results are presented in section 4.4.3  

3.3 Validation of the Framework 

Focus group with candidates from two smart city projects in Qatar are targeted 

to validate and evaluate the model. The first project is in the operation phase, and the 

second is in the implementation phase. Fifteen candidates participated in the focus 

group meeting. During the focus group, the outcome of each phase of the smart city 

risk assessment framework is explained and discussed. Participants are requested to 

evaluate the outcomes of each framework phase using. The system usability scale 

(SUS) (Brooke, 2020). The evaluation was sent to the candidates after the meeting, and 

responses were received in a week’s time. The evaluation results are provided in section  

4.5 

3.4 Chapter Summary 

In this chapter, the smart city risk assessment framework is presented. The 

suggested framework will identify incidents causing risks using the Gioia method from 

expert interviews. The identified incidents and related risks will be checked and 

compared with those mentioned in the literature. Experts’ beliefs about the occurrence 
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of each incident will be used to calculate combined basic probability assignments for 

each risk. The interview data will be used to derive risk interrelations and presented 

using a Bayesian network as a graphical probability model. Bayesian theory will 

calculate joint probability for each scenario, and then, scenarios will be evaluated using 

the analytical hierarchy process.  
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CHAPTER 4: DATA ANALYSIS AND RESULTS 

This chapter will present the results from the analysis of the proposed research 

framework. The results for each framework phase are shown and described in detail.  

4.1 Data Collection  

The targeted sample is seventy-five smart city experts. The sample is purposive 

and convenient since the first ten candidates satisfy the research objective and are 

accessible to the researcher. Snowball sampling is used after the initial sample is drawn. 

The sampling technique is non-random and empirical, depending on networking to 

identify obscure populations (Dragan & Isaic, 2022). For the interviews, respective 

smart city experts are targeted, including strategic planners, decision-makers, 

application designers, analysts, enterprise architects, IT directors, and smart application 

users. 

Interviews are scheduled with experts in face-to-face setup or MS Teams ®. The 

interviews are designed as semi-structured and open-ended Interview questions 

available at (APPENDIX A) started with identifying the smart applications used in the 

smart city, the risks associated with these systems, their classification as technology or 

non-technology risks, incidents causing such risks, and their impact on smart city 

implementation and operation. Detailed notes were taken to allow analysis in the 

following steps. 

The interviewing process was stopped after interviewing 40 experts since the 

respondents identified no new risk. Table 4.1 demonstrates the responses of experts, 

arranged based on the interview sequence and the risks mentioned. It is seen that the 

replication of the identified risks started after the results of interviews obtained from 

Expert 12. Accordingly, saturation points of the data resulted. Hennink and Kaiser 



 

72 

 

(2022) also mention this type of saturation level. The authors mentioned that the 

saturation level for the inductive research approach is between 9 and 17 interviews, 

especially when the sample is homogeneous.  

Based on their role in smart city design, implementation, and operation, the 

interviewees are categorized into four categories: smart city strategic planners, smart 

city implementers, smart city operators, and smart city application users. The 

percentage of smart city planners in relation to the total number of participants is 15%; 

smart city implementers create 57.5% of the sample, smart city operators are 15% of 

the sample, and smart city application users are 12.5% of the sample. Table 4.2 below 

will present the groups of experts and their years of experience, ranging from 3 years 

to 30 years, and their job titles within the smart city project. 

  



 

    73 

Table 4.1. Candidates Profiles and Mentioned Risks 
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Application 
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SC 
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* * * * * * *         

2 IT Director  
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User 

* *     *             

3 IT Director  
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*             *       

4 Head of IT  
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User 

    *         *       
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Expert  Expert Profile  Category  

C
y
b
er

-s
ec

u
ri

ty
 R

is
k
 

T
ec

h
n
ic

al
 D

at
a 

an
d
 

A
p
p
li

ca
ti

o
n
 R

is
k
  

D
at

a 
S

ec
u
ri

ty
 a

n
d
 

P
ri

v
ac

y
 R

is
k
 

In
te

g
ra

ti
o
n
 R

is
k
  

S
tr

at
eg

ic
 R

is
k
 

S
ta

k
eh

o
ld

er
s’

 

E
n
g
ag

em
en

t 
R

is
k
 

B
u
si

n
es

s 
co

n
ti

n
u
it

y
 

R
is

k
  

R
es

o
u
rc

es
, 
re

so
u
rc

e 

m
an

ag
em

en
t,

 R
is

k
  

F
in

an
ci

al
 R

is
k
  

L
aw

s,
 r

eg
u
la

ti
o
n
s,

 a
n
d
 

S
ta

n
d
ar

d
s 

R
is

k
 

N
et

w
o
rk

 I
n
fr

as
tr

u
ct

u
re

 

R
is

k
  

5 

Smart City 

Rollout Project 

Manager  

SC 

Implementers 

      * * *   *       
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Research and 

Development 

Engineer  

SC 

Implementers 

*             *       

7 

Senior Client 

Service Architect  

SC 

Implementers 

* *     *             

8 

Managing 

Director  

SC Strategic 

Planners  

* * *   * *   * * *   

9 Chairman - CEO  

SC 

Implementers 

* *               *   
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10 

Smart Platform 

Channel Lead  

SC 

Implementers 

                  *   

11 Program Manager  SC Operators          *       *     

12 

ICT Operation 

Manager  

SC Operator s *     *             * 

13 

Senior Smart 

Campus 

Integration 

Specialist  

SC Strategic 

Planners  

        * *   * *     

14 Chairman - CEO  

SC Strategic 

Planners  

*   * *     * *     * 

15 

Lead Support 

Engineer  

SC Operators    *   *   * *     *   
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Expert  Expert Profile  Category  
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16 

Applications 

Consultant 

SC 

Implementers  

* * *   * *   *       

17 SC Consultant  

SC 

Implementers 

          *     *     

18 Smart City Expert  

SC 

Implementers 

*       * *       *   

19 

Regional Service 

Provider Director  

SC 

Implementers 

*       *   * * * *   

20 CEO-Founder  

SC 

Implementers 

*     *   * * * * *   

21 SC Consultant  

SC 

Implementers 

* * * * * *   *   * * 
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Expert  Expert Profile  Category  

C
y
b
er

-s
ec

u
ri

ty
 R

is
k
 

T
ec

h
n
ic

al
 D

at
a 

an
d
 

A
p
p
li

ca
ti

o
n
 R

is
k
  

D
at

a 
S

ec
u
ri

ty
 a

n
d
 

P
ri

v
ac

y
 R

is
k
 

In
te

g
ra

ti
o
n
 R

is
k
  

S
tr

at
eg

ic
 R

is
k
 

S
ta

k
eh

o
ld

er
s’

 

E
n
g
ag

em
en

t 
R

is
k
 

B
u
si

n
es

s 
co

n
ti

n
u
it

y
 

R
is

k
  

R
es

o
u
rc

es
, 
re

so
u
rc

e 

m
an

ag
em

en
t,

 R
is

k
  

F
in

an
ci

al
 R

is
k
  

L
aw

s,
 r

eg
u
la

ti
o
n
s,

 a
n
d
 

S
ta

n
d
ar

d
s 

R
is

k
 

N
et

w
o
rk

 I
n
fr

as
tr

u
ct

u
re

 

R
is

k
  

22 SC Consultant  

SC Strategic 

Planners  

        * * * *       
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Risk and 

Compliance 

Consultant  

SC Strategic 

Planners  

        * *   * * * * 

24 Chairman - CEO  

SC 

Implementers 

*     *       *   *   

25 Project Manager  

SC 

Implementers 

*             *   * * 

26 

Service Delivery 

Manager  

SC 

Implementers 

  * *     *   *   *   

27 Project Manager 

SC 

Implementers 

*       *             
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28 

Digital 

Transformation 

Expert  

SC 

Implementers 

        * * * * * *   

29 Smart City Expert  

SC 

Implementers 

  *     * * *       * 

30 

Managing 

Director  

SC 

Implementers 

*   * *   *   *   *   

31 ICT Engineer SC  SC Operators  * *     * *   *       

32 Project Manager 

SC 

Implementers 

    * * * *   * * * * 

33 

Lead 

Cybersecurity 

Engineer  

SC 

Implementers 

*   * *       *   *   
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Expert  Expert Profile  Category  
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34 

Senior Program 

Manager  

SC 

Implementers 

*   * *   *   *   * * 

35 

Cluster IT 

Director  

Smart 

Application 

User 

*       *     * * * * 

36 

Cyber Security 

Engineer  

SC 

Implementers 

    * *           *   

37 

Cluster IT 

Director  

Smart 

Application 

User 

*   *   * * * * * *   

38 SC IT Director  SC Operators  *   * * *     * * *   

39 

SC security 

Engineer  

SC Operators  *   * * * *   * * * * 
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Expert  Expert Profile  Category  
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40 

Digital 

Transformation 

Expert   

SC Strategic 

Planners  

*   * * * * * * * *   

 

Table 4.2 Categories of Candidates and Percentage in Relation to the Sample  

No Category  Job Title  Years of Experience  Number of Experts  Percentage  

E5 

SC Implementers   

Smart City Rollout Project Manager  25     

E1 Senior Enterprise Application Architect  17 23 0.575 

E6 Research and Development Engineer  3     

E7 Senior Client Service Architect  25     

E9 Chairman - CEO  35     

E10 Smart Platform Channel Lead  15     

E16 Applications Consultant 30     
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No Category  Job Title  Years of Experience  Number of Experts  Percentage  

E17 SC Consultant  30     

E18 Smart City Expert  30     

E19 Regional Service Provider Director  30     

E20 CEO-Founder  20     

E21 SC Consultant  26     

E24 Chairman - CEO  20     

E25 Project Manager  10     

E26 Service Delivery Manager  23     

E27 Project Manager  20     

E28 Digital Transformation Expert  20     

E29 Smart City Expert  20     

E30 Managing Director Cybersecurity 25     

E32 Project Manager  18     

E33 Lead Cybersecurity Engineer  5     

E34 Senior Program Manager  23     

E36 Cyber Security Engineer  5     
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No Category  Job Title  Years of Experience  Number of Experts  Percentage  

E11 

SC Operators  

Program Manager  35 6 0.15 

E12 ICT Operation Mananer  25     

E15 Lead Support Engineer  25     

E31 ICT Engineer SC  15     

E38 SC IT Director  25     

E39 SC Security Engineer  15     

E8 

SC Strategic Planners  

Managing Director  30 6 0.15 

E13 Senior Smart Campus Integration Specialist  28     

E14 Chairman - CEO  28     

E22 SC Consultant  26     

E23 Risk and Compliance Manager  30     

E40 Digital Transformation Expert   25     

E2 

Smart Application User 

IT Director  20 5 0.125 

E3 IT Director  26     

E4 Head of IT  17     

E35 Cluster IT Director  25     
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No Category  Job Title  Years of Experience  Number of Experts  Percentage  

E37 Cluster IT Director  25     
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4.2 Time Frame of Research Work  

The interviews are conducted over six months. Due to the FIFA World Cup 

2022 organization in Qatar, many local experts expressed their unavailability before, 

during, and after the tournament. Yet the interviews took place through MS Teams, 

after the tournament.  

4.3 Data Reliability  

The reliability of the collected data is tested using the Cronbach alpha (Cronbach, 

1951) test, which is widely used for reliability tests of data (Schweizer et al., 2015). In 

this thesis, the test is performed using SPSS® Software. Table 4.3 shows the reliability 

factors for different sample sizes(Bujang et al., 2018). The analysis of the collected data 

shows that for a response size of 40, the Cronbach Alpha value is 0.852. Therefore, 

based on the table, the data obtained is considered reliable.  

Table 4.3. Cronbach Alpha for Different Sample Sizes 

Sample Size  (n)  Cronbach Alpha  

130 0.65 

64 0.7 

36 0.75 

22 0.8 

14 0.85 

 

4.4 The Smart City Risk Assessment Framework Results 

4.4.1 Phase1: Initial Data Analysis   

This section gives the results of Phase 1 from the suggested framework in Figure 

3.1. Using the Gioia method, interview responses are analyzed and transcribed to elicit 

the challenges related to smart city design, planning, implementation, and operation. 
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Threats and incidents causing risks during the smart city project and organizational 

factors affecting planning, implementation, and operation are also defined. The 

interrelations between identified risks and business impacts are specified, in addition to 

the rank of each incident to occur. Then, the second-order themes are derived from 

incidents causing risks, and the basic probability assignment for each incident is 

determined to be used to identify the probability of each of the risks faced in the smart 

city project.  

The risks are regrouped based on their effect to construct the third-order themes. The 

third-order themes are four risk groups: design risks, planning risks, implementation 

risks, and operation risks. 

 The aggregated dimension represents the impacts of these groups on smart city 

sustainability; these impacts are related to smart city service continuity, service 

efficiency, resource productivity, reputation, and revenue generation. The detailed steps 

of the mechanism used to achieve the outcomes of this phase are mentioned in section 

3.2.2. The results of the Gioia method are illustrated in Figure 4.1 and described in the 

following paragraphs
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Figure 4.1: Data Analysis results using the Gioia method.
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4.4.1.1 Smart City Strategic Planners  

As mentioned earlier, strategic planners made up 15% of the responses for this 

research. Candidates’ profiles are mainly chief executives, managing directors, and 

senior smart city specialists with 25 to 30 years of experience in information 

technology.  

The data shows that strategic planners emphasized non-technical risks, although 

technical risks were mentioned by some of the interviewees. Planners also mentioned 

organizational factors that could be the cause of risks resulting in a lack of coordination 

between different stakeholders, the culture of smart applications’ users, and their 

resistance to using smart systems, which are major incidents causing stakeholder 

engagement risk.  

One Managing Director mentioned: “Poor communication between different 

stakeholders is a main source of stakeholder engagement risk that will decrease work 

efficiency and productivity.”  

Strategic planners mentioned change management as a source of strategic risk, like the 

SC operators’ category. Another incident causing strategic risk is the change in the 

organizational hierarchy or unclear hierarchy to make decisions at the right time. 

Managing Director: “Change of management is challenging when design and 

decisions are already taken; this may cause implementation operation disturbance and 

low efficiency and productivity.”  

Standards, procedures, and laws for smart cities are also discussed in the interviews. 

The lack of awareness of standards, laws, and regulations of the country implementing 

the smart city is a main source of this risk.  

Managing Director: “Violating laws and regulations in the country where smart city 

implementation is taking place is a challenge that must be avoided since this may cause 
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delays due to legal accountability and will cause smart city reputation issues.” 

Regarding business continuity risk, a lack of clear planning is the main cause; the 

candidates mentioned that there should be a plan to encourage national companies to 

invest in smart city applications to avoid system discontinuity in case of force majeure 

circumstances.   

Chief Executive mentioned: …. “The lack of national companies may cause businesses 

to discontinue in case of pandemics or wars; thus, revenues will be decreased.” 

A deprivation of budget is also highlighted as the main source of financial risk within 

this category of candidates. The effect of such incidents will minimize the scope of 

implementation or hinder future development.  

Senior smart Campus  specialist highlighted: “Lack of budget will cause weak 

implementation or minimize the scope of work; accordingly, the benefits of the smart 

applications will decrease, revenues will be decreased, and reputation will be 

negatively affected due to the disturbance that may occur in services or their 

efficiency.” 

All participants in this category agree that the scarcity of smart city resources is the 

main incident causing major risks during smart city planning, implementation, and 

operation phases. Smart city experts with implementation, operation, and integration 

expertise are limited, causing a major source of resource risk.  

Technical risks are discussed; smart city strategic planners believe cybersecurity, data 

security, and privacy are the main technical risks affecting a smart city project. The 

main incidents causing cybersecurity risk are improper security updates and lack of 

security awareness. At the same time, cyberattacks are major incidents causing data 

security and privacy risks.  

Managing Director mentioned: “Lack of security awareness among smart city citizens 
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and employees will be a main cause of cybersecurity risk, that will cause services 

disturbance.” 

Chief Executive declared: “Data security and privacy risk is a high probability risk 

since the smart city is always connected to the internet. Cyberattacks are major 

incidents that will cause this risk impacting the availability of services and data and 

the reputation of the smart city.”  

Technical data and application risk is stated, and the absence of security awareness is 

declared as the main incident causing this risk.  

Managing Director mentioned: “Human errors due to a lack of security awareness 

will cause technical data and application risk. It causes damage in smart applications 

and collected data from different IoT devices.”  

Another discussed technical risk is integration risk. The smart city specialist stated that 

the deficiency in integrating different devices, the deficit in integration between smart 

applications, and improper integration between some hardware devices and software 

are major incidents causing this risk.  

The chief executive mentioned: “End-to-end process should be considered when 

implementing smart city applications. …., proper integration between smart 

applications is a must”. 

Strategic planners mentioned network infrastructure risk as negligible since most 

countries invest in and build proper IT networks as part of their infrastructure. Yet, they 

consider interoperability between systems as the main cause of this risk.  

The chief executive mentioned …. “  interoperability of the used technologies must be 

considered at the initial design stages of the smart city. This risk will impact services 

that may be discontinued or disturbed.”  
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4.4.1.2 Smart City Implementers   

This category represents 57.5% of the sample for this research. Candidates’ 

profiles ranged from development engineers with five years of experience to smart city 

consultants with over 30 years of experience.  

The candidates highlight technical and non-technical risks at the interviews. Identifying 

non-technical risks requires the discussion to start with classifying the organizational 

factors that can be considered as sources of risks; candidates mentioned the unclear 

roles and responsibilities within the smart city implementation team and different 

stakeholders. The coordination between different stakeholders is a main source of risk. 

An example from the interview scripts confirms the above results:  

Senior Enterprise Application Architect: “The key objective for the smart city is to 

provide services for citizens to lead a better life, ensuring sustainable usage of natural 

resources. To fulfill this vision, a clear responsibility matrix (RACI) should be defined 

between all stakeholders at the early stages of the project. ……A gap in this aspect will 

decrease the efficiency and productivity of working candidates in the smart city 

project.” 

It was highlighted that if the business model of the implemented smart city was not 

planned and defined before implementation, and the technology model and design were 

decided without having a clear vision and strategy for the future business model, then 

there is a high probability of the risk of downgrading the scope of work to occur.  

Smart City Consultant: “When the business model for a smart city is not well defined, 

the return of an investment will be impacted; accordingly, this may impact the offering 

of new services or synchronize with accelerating technology. Also, the smart city vision 

is always ambitious, but implementation may end with fewer services”. 

Another factor is the Change in the management of the smart city that will cause, in 
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many cases, changes in the management vision of the smart city; this is described by:  

Senior Client Service Architect: “Change of management will cause a change in the 

vision and thus will affect the required deliverables and operational model. Frequent 

changes will negatively affect a smart city's implementation and operation in terms of 

efficiency and productivity.” 

Although there are technical standards that can be utilized for smart city applications 

and hardware implementation, there is a lack of specific regulations and procedures that 

suit these smart applications, as mentioned below:  

Senior Enterprise Application Architect highlighted: “There are no clear procedures 

for facilities consumptions and rent wages, which will disturb the business model of the 

smart city and thus affect the investments in such projects.” 

Finding the proper resources for smart city implementation and operation is a main risk 

factor; the number of trained personnel is scarce and may be found in different parts of 

the world.  

This idea is supported by the Smart City Rollout Project Manager, who mentioned 

that: “finding personnel with the know-how to develop, operate and integrate smart 

applications is rare. Accordingly, smart city services may be disturbed, leading to 

decreasing revenues and reputation defects.” 

Another aspect investigated during the interview is the definition of incidents that cause 

non-technical risks. When the return-on-investment model is not well defined due to an 

unclear business model, then there is a risk of having a low income. 

Senior Enterprise Application Architect highlighted, “There is a lack of return of 

investment model; the used technology is not designed to generate income for the smart 

city, which means that the business model is not well defined .” 

The limited smart city resources force decision-makers to employ vendors for software 
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development, hardware installation, and integration. Therefore, the city's technology 

infrastructure depends on a closed code environment. Consequently, a monopoly may 

occur for maintenance contracts.  Also, it is difficult to change the mindset of the smart 

city implementation team to the operational concept.  

The Smart City Rollout Project Manager mentioned, “Vendors are controlling the 

hardware and the software in smart cities. Smart city systems integrators are very 

limited, which will lead to efficiency and productivity issues.”  

A lack of budget and high cost will cause financial risk, leading to operational 

challenges and hindering the development and innovation of provided services within 

the smart city.  

Regional Service Provider Director highlighted, “Smart city is a complex project that 

costs millions of dollars, therefore if there is a financial risk. It may cause failure in 

operation and limitation in scaling the smart services, so revenue is affected.”  

From the technical side, cybersecurity risk was mentioned by 65% of the interviewees 

of smart city implementers. Different incidents are mentioned as causes of 

cybersecurity risk, including lack of maintenance model for smart city systems, lack of 

integration between systems, improper security updates, lack of security awareness 

within employees and smart applications users, and low voltage devices vulnerability. 

This risk will disturb smart city services and affect its reputation. Examples of the 

scripts are mentioned as follows:  

Senior Enterprise Application Architect: “Smart city decision-makers must identify 

the maintenance model to avoid improper security updates for different smart 

applications and to minimize IoT devices' vulnerability.” 

Senior Client Service Architect highlighted, “Cybersecurity is one of the major 

challenges in smart cities; voltage devices are vulnerable to attacks. It will disrupt 
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smart services and thus affect the reputation.” 

Technical data and application risks are other technical risks related to smart city 

implementation and operation. This risk is caused by multiple incidents, including 

power supply outages that fall into the wrong operation, lack of interoperability 

between systems, sharing two incidents with cybersecurity risk, lack of integration 

between systems, and lack of security awareness. Experience with technical data and 

application risk will cause service disruption. These incidents are supported by 

examples of candidates’ scripts as follows:  

Senior Enterprise Application Architect mentioned: “During implementation, power 

supply was provided to different systems using the temporary generator. These 

generators went down, and the applications were disconnected….” 

Chairman-CEO Smart Applications Consultancy mentioned that: “lack of security 

awareness within the smart city community, including users and operators, is a primary 

cause of multiple risks such as …. Technical data and application risk”. 

Data security and Privacy risk are highlighted by 20% of the candidates within this 

group. Two major incidents were identified: the lack of security awareness and 

cyberattacks.  

Senior Enterprise Application Architect mentioned, "Cyber-attacks will increase if 

maintenance of different smart systems is not done continuously. Accordingly, data 

security and privacy risks may occur due to these attacks impacting provided services 

and data availability, thus affecting the reputation of the smart city.” 

Smart City Applications Consultant highlighted that “human errors due to lack of 

security awareness and improper security training will negatively affect data security 

and privacy and may put the data at risk.” 

Smart city Implementers highlighted the integration risk that can result from a lack of 
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integration between different systems (in terms of hardware and software), a lack of 

trained resources who can build the integration between different systems, and the 

usage of closed code out of the box applications, that will negatively influence smart 

city services.   

Senior Enterprise Application Architect mentioned: “Lack of compatibility between 

hardware devices and challenges in integration are main causes of integration risk, 

which will create weak points vulnerable to cyber-attacks.” 

Smart City Roll out Project Manager: mentioned that “Lack of system integrators and 

the dependency on vendors with closed code software are main incidents of integration 

risk.” 

4.4.1.3 Smart City Operators  

This category represents 15% of the sample for this research. Candidates’ profiles 

are mainly operation managers, program managers, and lead support engineers with 15 

to 30+ years of experience in information technology.  

Candidates in this category highlight both technical and non-technical risks during the 

interviews. Discussions about organizational factors that could be causes of risks 

resulted in highlighting Change of management as a major incident to cause strategic 

risks, as highlighted by: 

Program Manager: “Change of management is a main cause of strategic risk since 

this will cause some resistance to the current implementation and operation model. It 

will influence the productivity and efficiency of the team.” 

Another non-technical risk is the financial risk resulting mainly from the concern of 

necessary return to justify the budget to build and operate a smart city, which is 

considered the cost of capital.  

Program Manager: “Investors usually fear the Cost of Capital in Smart City Projects 
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due to complexity. The financial risk will impact the generated revenue from smart 

applications and may affect the reputation of the smart city due to limited provided 

smart services.” 

Stakeholder engagement risk is considered within this category; the candidates consider 

human factors to be major causes of risks, where coordination between different 

stakeholders is challenging and limited collaboration is a source of risk. Another 

incident that causes this risk is residents' reluctance to use implemented technologies.   

This risk is elaborated on by the lead support engineer as follows: 

Lead Support Engineer: “The main challenge in smart city operation is lack of 

collaboration; people are not working together. Accordingly, the impact will be a 

decrease in work efficiency”.  

Standards, procedures, and laws for smart cities are discussed. There are limited 

standards for data anthology from different smart applications. This limitation is the 

main source of this risk. Although some industry standards exist for data modeling, 

more work is needed to connect data with proper naming conventions from smart 

applications developed by different vendors.  

Lead Support Engineer: “There is a dedicated team to normalize the data due to the 

lack of data anthology standards... Non-compliance with standards will lead to 

legalization issues that may affect the city's reputation and decrease revenues.”  

Regarding business continuity risk, the absence of clear planning is a main cause; the 

candidates mentioned that there should be a clear vision and plan to continuously 

develop the smart city, considering the culture and the environment. This development 

can be achieved by having innovative plans for new smart applications to sustain the 

city. 

Lead Support Engineer highlighted: “Culture should be considered when 
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implementing and operating the smart city to ensure sustainability and acceptance of 

the smart city in the society; otherwise, the ability to add innovative smart services will 

be negatively affected; thus, the revenues will be reduced.” 

Technical risks are discussed; the Smart City operation team believes that technical 

risks in the operational phase are minimal since the Smart City systems are constructed 

to be resilient, scalable, and secure to ensure smooth operation. However, candidates 

highlighted cybersecurity risk as the highest-rank risk. This risk is mainly caused by 

the vulnerability of low-voltage devices (IoT) used in most smart applications. 

The ICT Operation Manager mentioned, “Low voltage devices vulnerability is a weak 

point and a main cause of cybersecurity risk. It will disturb smart city services and 

damage the city's reputation.”  

Technical data and application risk is mentioned, and lack of integration between 

systems is highlighted as the main incident causing this risk.  

Lead Support Engineer highlighted: “When systems are not properly integrated, 

connecting applications and collecting holistic data will be challenging.” In addition, 

integration risk is discussed based on the previous responses. The ICT Operation 

Manager and Lead Support Engineer mentioned that the limited number of system 

integrators, high turnover of system integrators during the operation stage, lack of 

integration between smart applications, and improper integration between some 

hardware devices and software are major incidents causing this risk.  

Lead Support Engineer highlighted: “When Smart city implementation is completed, 

many system integrators leave the project, so the risk of integration will be high. 

Integration risk may occur, which will cause the disturbance in smart services.” 

The ICT Operation Manager mentioned, “Different hardware and software need to 

be linked. Systems in different Smart buildings must be integrated into the main central 
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management system to allow better control.”  

4.4.1.4 Smart City Application Users  

The smart city application user category also presents 12.5% of the sample for 

this research. Candidates in this category are IT directors using smart applications.   

The discussion about non-technical risks highlighted two main risks: strategic risk and 

resource and resource management risk.  

Change of management is the main incident causing the strategic risk, as one of the IT 

directors highlighted: “Change of management may cause the change of vision that 

will affect the design and the implementation, which will be a major cause of strategic 

risk. That will lead to low efficiency and productivity of different teams due to 

changes.” 

Regarding resources and resource management risk, a lack of knowledgeable resources 

is the main cause of this risk. Smart application users highlighted: “It is challenging 

to find resources with adequate skills to develop, operate, and maintain smart 

applications. Accordingly, efficiency, productivity, revenues, and reputation will be 

affected.”  

Although limited technical risks are mentioned in the smart applications user’s 

category, three main risks are highlighted: cybersecurity, technical data and 

applications risks, and data security and privacy risks.  

From their point of view, cybersecurity is caused by improper security updates and a 

lack of security awareness.  

The IT director mentioned, “If the smart systems are not properly maintained from 

security perspectives and updates are not installed, then security vulnerability will 

occur, causing disturbances in the smart services.” 

Head of IT mentioned: “When users lack the awareness about security threats and 
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lack the knowledge to handle smart applications, then cybersecurity risk will have a 

high probability to occur.” 

As discussed with this group, the lack of security awareness causes technical data and 

application risks.  

 IT Director mentioned that: “When users misuse the system, because of the absence 

of security knowledge, applications, and data will be at risk of cyberattacks, that may 

cause systems to stop, or data to be corrupted.” 

Finally, data security and privacy risks are also highlighted. The candidates believe that 

wrong operations, cyber-attacks, and a lack of security awareness are the causes of this 

risk.  

IT Director mentioned that “Cyber-attacks will cause key damage to data and threaten 

the data privacy. It will affect the reputation of the smart city and will cause a lot of 

disturbance.”  

Another IT Director stated, … “Lacking the knowledge to use smart applications may 

wrongly operate the system, which creates vulnerability, which will cause security 

issues.” 

 IT Director mentioned that “…. Absence of security knowledge, data privacy will be 

at risk, …., which will put data privacy in danger”. 

Based on the 1st order themes, incidents causing each risk are summarized and grouped; 

as a result, the second-order themes are descended. The following Table 4.4 presents 

the second-order concepts, which are part of the outcomes of Phase 1 as illustrated in 

the suggested framework  Figure 3.1 
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Table 4.4. The Second Order Theme Based on the Gioia Method. 

No Risk  Incidents causing risk 

(Components) 

Component  

1 Cybersecurity risk (CR)  Lack of maintenance model for 

systems  

A 

    Lack of Integration and 

interoperability between 

systems 

B 

    Improper security updates  C 

    Lack of security awareness  D 

    IoT devices vulnerability E 

  Cyber attacks F 

2 Technical Data and Application 

Risk (TR)  

Wrong Operation G 

    Lack of Integration and 

interoperability between 

systems 

B 

    Lack of security awareness  D 

3 Network Infrastructure risk (NR)  Lack of Integration and 

interoperability between 

systems 

B 

    Lack of maintenance model for 

systems 

A 

    Wrong Operation  G 

    Lack of security awareness  D 
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No Risk  Incidents causing risk 

(Components) 

Component  

4 Data Security and Privacy (DR) Wrong Operation  G 

    Cyber attacks F 

    Lack of security awareness  D 

5 Integration Risk (IR)  Lack of Integration and 

interoperability between 

systems 

B 

    Limited knowledgeable human 

resources and experts  

I 

    Usage of closed code 

programs   

J 

6 Strategic Risk (SR) Change of Management   K 

    Organizational Process - 

Planning  

L 

    Change of Vision  M 

    Change of hierarchy  N 

7 Stakeholder engagement risk 

(SER) 

Resistance to using the 

systems  

O 

    Lack of communication 

between different stakeholders  

P 

    Citizens’ mindset and 

acceptance of digital changes  

Q 

8 Laws, regulations, and Standards 

(LR) 

Lack of application of policies, 

regulations, and standards  

R 
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No Risk  Incidents causing risk 

(Components) 

Component  

    Lack of knowledge of policies, 

regulations, and standards  

S 

9 Business continuity risk (BCR) No clear business continuity 

plan  

T 

    Lack of Data Analysis U 

10 Financial Risk (FR)  Lack of budget            V 

    Fear of Capital Cost   W 

11 Resources, resource management 

risks (RMR) 

Lack of knowledgeable human 

resources and experts   

I 

  Lack of budget V 

 

The third-order theme is extracted by grouping the risks based on the smart city project 

phase. Four groups are defined: design, planning, implementation, and operation risks. 

Design risks are mainly non-technology related: strategic risks, stakeholder 

engagement risks, laws, regulations, standards risks, business continuity risks, and 

financial risks. In the planning phase, resource and resource management risk is a major 

risk, in addition to strategic risk, stakeholder engagement risk, and financial risk. In the 

smart city implementation phase, stakeholder engagement risk, laws, regulations and 

standards risk, resource and resource management risk, integration risk, network 

infrastructure risk, and cybersecurity risk must be considered. 

The smart city operation risks are mainly technology-related, including cybersecurity, 

technical data and application, data security and privacy, network infrastructure, and 

integration risks. Also, resource and resource management and stakeholder engagement 

risks must be studied. 
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The aggregated dimension is developed based on expert insights about the impacts of 

risks. The results show that risks will affect service continuity, efficiency, resource 

productivity, revenue generation, and smart city reputation. 

Also, findings show that during the planning phase, smart city management should 

consider all technical and non-technical risks identified in this study to avoid any 

problems in the project’s next phases. Strategic planning experts focus less on technical 

risks and more on non-technical risks.  

Awareness of technical risks is crucial during the planning phase to avoid incidents 

causing major risks. Furthermore, all risks must be addressed in the implementation 

phase of the smart city project. Smart city implementation experts have a low 

concentration on non-technical risks, although they have a major effect on 

implementation.  

During the smart city operation phase, technical risks must be addressed in combination 

with non-technical risks to ensure smooth and effective operation. SC operation group 

presented moderate awareness about the mentioned non-technical risks; accordingly, 

increasing awareness and including these risks in the risk management plan is 

fundamental for sustainable smart city operation.  

The resulting impact relations from Gioia's analysis emphasize that adequate risk 

management will assure service continuity and support efficiency that will maintain a 

smart city reputation. Service continuity and revenue generation are mutually related, 

and their enhancement will ensure smart city sustainability. Resource productivity will 

enhance service efficiency and support smart city sustainability. A respectful reputation 

will elevate the smart city's sustainability and ensure the project's continuity. Figure 4.2 

below represents the resulting impact relations, the output of Phase 1. 
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Figure 4.2: Impacts relations  based on Gioia Analysis 

4.4.2 Phase 2: Combined (m) calculation and risks’ causal relations results 

The incidents from the previous phase are used as inputs to Phase 2 to calculate 

the combined basic probability assignments since the basic probability assignment (m) 

for each incident is determined by the experts.  In this Phase 2, the risks’ interrelations 

are determined. 

The interviewees are asked to rank the likelihood of incidents occurring for each risk 

during the interviews to be able to apply the Dempster-Shafer theory. The ranks used 

the Likert scale, where five is considered a very high likelihood, and one is considered 

a very low likelihood, as per Table 4.5.  
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Table 4.5. Likert scale table values.  

Rank  Likert scale value 

Very High  5 

High 4 

Medium  3 

Low  2 

Very Low 1 

 

The resulting data presents the value given by each expert for incidents causing the risk 

that the expert mentioned during the interview. Pearson correlation coefficient is 

calculated between risk incidents to determine the dependence relation within incidents 

causing a specific risk. Table 4.6 displays a sample of the data for the Cybersecurity 

risk, where experts mentioned and ranked the incidents of this risk are considered. 

Pearson correlation coefficient is calculated, and the results verified a significant 

correlation between the incidents: lack of maintenance model for systems 

component(A), lack of integration and interoperability between systems component 

(B), improper security updates component (C), and lack of security awareness 

component (D). Meanwhile, IoT devices' vulnerability component (E) is correlated with 

improper security updates component (C) and lack of security awareness component 

(D). Other components have minor correlations. Table 4.7 presents the significant 

correlation results within cybersecurity risk components.  
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Table 4.6.Cybersecurity Risk Experts’ Ranks 

Cybersecurity Risk  Experts’ ranks 

Incident Name  

C
o
m

p
 

E
1
 

E
2
 

E
6
 

E
7
 

E
8
 

E
9
 

E
1
2
 

E
1
4
 

E
1
6
 

E
1
8
 

E
2
0
 

E
2
1
 

E
2
4
 

E
2
5
 

E
2
7
 

E
3
0
 

E
3
1
 

E
3
3
 

E
3
4
 

E
3
5
 

E
3
7
 

E
3
8
 

E
3
9
 

E
4
0
 

Lack of 

maintenance 

model for 

systems  

A 4 4 2 2 4 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 3 

Lack of 

Integration and 

interoperability 

between systems  

B 4 2 2 4 4 2 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 3 

improper 

security updates  

C 2 4 4 2 2 2 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 3 

Lack of security 

awareness  

D 2 4 4 2 2 4 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 3 

IoT devices 

vulnerability  

E 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 

Cyber-attacks   F 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 
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Table 4.7. Significant Correlation Results Within Cybersecurity Risk Components.  

Component  B C D 

A 

Pearson Correlation Value  

0.451* 0.473* 0.592** 

E -0.016 0.370 0.328 

 

*Correlation is substantial at the 0.05 level (2-tailed). 

 

**.Correlation is substantial at the 0.01 level (2-tailed). 

 

The next step is to convert the scale into a percentage that will present the basic 

probability assignment  as per the following steps used by (Murray, 2017):  

1- Count the number of experts who ranked the incident as high (n).  

2- Assign the weight from the Likert scale (4) for high (w).  

3- Multiply the number of experts by weight (n*w). 

4- Calculate the value of multiplication if all experts considered this incident as high 

(W). 

The basic probability function is calculated as: 
𝑛∗𝑤

𝑊
The basic probability assignment for 

Cybersecurity risk is presented in Table 4.8:  

Table 4.8. Cybersecurity Risk Basic Probability Assignment Values. 

Risk  Incident Name  Component  Very 

High  

High  Moderate  Low  Very 

low  

Cybersecurity 

Risk (CR) 

Lack of 

maintenance 

model for 

systems  

A 0 0.6667 0.0417 0.2917 0 
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Risk  Incident Name  Component  Very 

High  

High  Moderate  Low  Very 

low  

 Lack of 

Integration and 

interoperability 

between 

systems  

B 0 0.7917 0.0417 0.1667 0 

 improper 

security 

updates  

C 0 0.7083 0.0417 0.2500 0 

 Lack of 

security 

awareness  

D 0 0.6667 0.0417 0.2917 0 

 IoT devices 

vulnerability  

E 0 0.9167 0.0417 0.0417 0 

 Cyber-attacks   F 0 0.9583 0.0417 0.0000 0 

 

The Dempster-Shafer combination rule will combine the basic belief functions of 

experts for several incidents to get possible combinations of incidents for each risk, and 

the combined basic probability assignment for each combination of incidents.  

 4.4.2.1 Cybersecurity Risk (CR)  

Let 𝑚1 represents the basic probability function assigned by experts considering 

the high occurrence of the risk (Experts H),𝑚2 represents the basic probability 

assignment  assigned by experts considering the low occurrence of the risk (Experts L) 

and 𝑚3  represents the basic probability assignment assigned by Experts considering 

Moderate risk occurrence (Experts M). As shown in Table (4.8), components from A 
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to F are incidents causing cybersecurity risk (CR), and the basic probability assignment 

values for each incident  

As per experts considering high values (Experts H), CR occurs due to lack of 

maintenance of the systems component (A) with a basic probability assignment of 

0.6667, due to lack of integration and interoperability between systems component (B) 

with a basic probability assignment of 0.7917,  due to improper security updates 

component (C) with a basic probability assignment of 0.7083, due lack of security 

awareness component (D) with basic probability assignment of 0.6667,  due IoT 

devices vulnerability component (E) with a basic probability assignment of 0.9167, or 

due to Cyber-attacks component (F) with a basic probability assignment of 0.9583.  

For Expert L, cybersecurity risk (CR) occurs due to component (A) with a basic 

probability assignment of 0.2917or due to component (B) with a basic probability 

assignment of 0.1667, due to component (C) with a basic probability assignment of 

0.2500, due to component (D) with a basic probability assignment of 0.2917, due to 

component (E) with basic probability assignment of 0.0417, cyber-attack (F) incident 

was not rated as low accordingly plausibility using equation (3.4)  is calculated for this 

incident. Based on this information, the steps below are used to find the combined belief 

function of incidents causing cybersecurity risk. Table 4.9 below is used to apply the 

Dempster-Shafer combination rule. 
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Table 4.9. Cybersecurity risk (CR) Combinations. 

Cybersecurity Risk 

  

Experts with High beliefs 

A B C D E F 

𝑚1 0.666 0.791 0.708 0.66 0.916 0.958 

E
x
p
er

ts
 w

it
h

 l
o

w
 b

el
ie

fs
. 
 

Component  𝑚2             

A 0.291 0.194 0.230 0.206 0.194 0.267 0.279 

B 0.166 0.111 0.131 0.118 0.111 0.152 0.159 

C 0.250 0.166 0.197 0.177 0.166 0.229 0.239 

D 0.291 0.194 0.230 0.206 0.194 0.267 0.279 

E 0.041 0.027 0.032 0.029 0.027 0.038 0.039 

F 1.000 0.666 0.791 0.708 0.666 0.916 0.958 

 

1. The combined basic probability assignment is computed for each cell by 

multiplying the basic probability from the related column and row. 

2. The resulting values from the combination of like components appearing in two 

cells are added.  

3. If there is a conflict between experts, one expert assigns 0 basic probability for an 

incident, then plausibility is to be calculated using equation (3.4).  

The combined basic probability assignment 𝑚12 that cybersecurity risk is due to 

component A, and component B is 0.342; this value is derived by multiplying the basic 

probability assignment from the related column and row equals the 0.230 (row 1),  

0.111 (row 2); the combined basic probability assignment 𝑚12 presents that 

cybersecurity risk is due to components A and B calculated by adding the two values, 

resulting in the combined basic probability assignment. Then, the cybersecurity risk 
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due to components A and B is 0.230 + 0.111 = 0.341. The combinations of other 

incidents are shown in Table 4.10 below.  

Table 4.10. Incident Combinations Causing Cybersecurity Risk (CR). 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

AA 0.19444 

AB 0.34201 

AC 0.37326 

AD 0.38888 

AE 0.29513 

AF 0.94618 

BB 0.13194 

BC 0.31597 

BD 0.34201 

BE 0.18576 

BF 0.82638 

CC 0.17708 

CD 0.37326 

CE 0.25868 

CF 0.94791 

DD 0.19444 

DE 0.29513 

DF 0.94618 

EE 0.03819 

EF 0.95659 

FF 0.95833 
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The highest values have resulted from the combinations of cyber-attack incident (F) 

and all the other incidents, lack of maintenance of the systems component (A), lack of 

integration and interoperability between systems component (B), improper security 

updates component (C), lack of security awareness component (D), and IoT devices 

vulnerability component (E).  

Application of the Dempster-Shafer combination rule is considered for experts who 

believed in high values and believed in low values because the basic probability 

assignment resulted from experts considering moderate values to be 0.04 for all 

incidents, and applying the combination rule resulted in negligible values.  

4.4.2.2 Technical Data and Application Risk (TR) 

Technical data and applications risk is caused by multiple incidents, such as 

wrong operation component (G), lack of integration and interoperability between 

systems component (B), or lack of security awareness component (D). Correlation is 

calculated for the components, and a minor correlation exists between the wrong 

operation component (G) and the lack of integration and interoperability between 

systems component (B) has a value of 0.233. Other components have a slight 

correlation. 

The combined basic probability assignment is calculated using the Dempster- Shafer 

combination rule; the basic probability assignment  of the group of experts  considering 

the high possibility of the incident occurring (Experts H) is presented by  𝑚1 , while the 

basic probability assignment  of the group of experts considering the low possibility of 

the incident occurring (Experts L)  is presented by  𝑚2, the basic probability function 

of the group of experts considering the moderate  possibility of the incident occurring 
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(Experts M)  is presented by  𝑚3, and the basic probability function of the group of 

experts considering the very low  possibility of the incident occurring (Experts VL)  is 

presented by  𝑚4 . 

The Dempster combination rule is applied in two steps, where the combined basic 

probability assignment of (Expert H) and (Expert L) is calculated.  𝑚 12, then   

combined basic probability assignment of (Expert M) and (Expert VL) is calculated  

𝑚 34 . 

The results of combining the basic probability assignment of (Expert H) and (Expert L) 

present considerable values for the combination of wrong operation component (G) and 

lack of security awareness component (D), which is equal to 0.20138. The second 

significant combined basic probability assignment resulted from a lack of integration 

and interoperability between systems component (B)and lack of security awareness 

component (D), equal to 0.180555. The following Table 4.11 presents combinations of 

incidents/combined components and combined basic probability assignments for 

(Experts H) and (Experts L).  

Table 4.11. Incidents Combinations Causing Technical Data And Application Risk 

(TR) - (Expert H) And (Expert L) 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

GG 0.04166 

GB 0.11111 

GD 0.20138 

BB 0.055555 

BD 0.180555 

DD 0.138888 
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The results of combining the basic probability assignment of (Expert M) and 

(Expert L) are calculated as 𝑚 34. For this step, the combined basic probability 

assignment values are significant for the combined basic probability assignment 

resulting from a lack of integration and interoperability between systems component 

(B) and lack of security awareness component (D), equal to 0.17361. The following 

Table 4.12 presents combinations of incidents/combined components and combined 

basic probability assignment for (Experts M) and (Experts VL). 

Table 4.12: Incidents Combinations Causing Technical Data and Application Risk (TR) 

- (Expert M) And (Expert VL) 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚34) 

GG 0.02777 

GB 0.11111 

GD 0.06250 

BB 0.08333 

BD 0.17361 

DD 0.01388 

 

4.4.2.3 Network Infrastructure Risk (NR) 

Multiple incidents cause Network Infrastructure Risk, and it shares incidents with 

cybersecurity risk (CR), which are the lack of maintenance of systems (Component A), 

lack of integration and interoperability between systems (Component B), and lack of 

security awareness (Component D). While it shares the wrong operation incident 

(Component G) with technical data and applications risk (TR). Correlation is tested, 
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and considerable correlation with a value of 0.944 between lack of integration and 

interoperability between systems (Component B) and lack of security awareness 

(Component D). Other incidents have a minor correlation. 

The basic probability assignment of the group of experts considering the high 

possibility of the incident to occur (Experts H) is presented by 𝑚1 , while the basic 

probability assignment of the group of experts considering the low possibility of the 

incident occurring (Experts L) is presented by  𝑚2.  

Dempster -Shafer combination rule is applied, where the combined basic probability 

assignment of (Expert H) and (Expert L) is calculated.  𝑚 12. Experts considering 

moderate probability for incidents to occur are not considered because of the resulting 

basic probability assignment's negligible values.  

The results provide that the combined basic probability assignment is considerable for 

the combined basic probability assignment of lack of security awareness (Component 

D) with the wrong operation (Component G), with a value of 0.2975. The other 

significant values resulted from combining lack of maintenance of systems (Component 

A), lack of security awareness (Component D), lack of maintenance of systems 

(Component A), and wrong operation (Component G) with the value of 0.2727. Table 

4.13 below presents the combined basic probability assignment causing network 

infrastructure risk (NR). 

Table 4.13. Incidents combinations causing Network Infrastructure risk (NR) - (Expert 

H) and (Expert L) 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

AA 0.11570 
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Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

AD 0.27272 

AG 0.27272 

BA 0.09917 

BB 0.09917 

BD 0.24793 

BG 0.24793 

DD 0.14876 

GD 0.29752 

GG 0.14876 

 

4.4.2.4 Data Security and Privacy Risk (DPR) 

There are three incidents causing data security and privacy risk: wrong operation 

(Component G), cyber-attacks (Component F), and lack of security awareness 

(Component D). The correlation is tested for these incidents and a minor correlation 

with a value of 0.202 between wrong operation (Component G), cyber-attacks 

(Component F), and with a value of 0.100 between cyber-attacks (Component F) and 

lack of security awareness (Component D). 

The basic probability assignment  of the group of experts  considering the high 

possibility of the incident occurring (Experts H) is presented by  𝑚1 , while the basic 

probability assignment of the group of experts considering the low possibility of the 

incident occurring (Experts L)  is presented by  𝑚2, and the basic probability 

assignment of the group of experts considering the moderate possibility of the incident 

occurring (Experts M)  is presented by  𝑚3. Dempster -Shafer combination rule is 
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applied, where the combined belief assignment of (Expert H) and (Expert L) is 

calculated as  𝑚 12. 

In this risk, none of the experts considered a low probability of having a cyber-attack 

incident (Component F). Accordingly, plausibility is calculated for this value using 

equation (3.4) (Sentz & Ferson, 2002). For a cyber-attack (Component F), when 

combined with a wrong operation (Component G), the combined basic probability 

assignment has a high value of 0.783933. When combined with a lack of security 

awareness (Component D), the combined basic probability assignment is elevated with 

a value of 0.88088. The results are presented below in Table 4.14. 

Table 4.14. Combined basic probability assignment for Data Security and Privacy Risk (DPR) 

- (Expert H) and (Expert L) 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

GG 0.07202 

GF 0.78393 

GD 0.24653 

FF 0.94736 

FD 0.88088 

DD 0.16620 

  

 4.4.2.5 Integration Risk (IR) 

There are multiple incidents causing integration risk, lack of integration and 

interoperability between systems (Component B), limited knowledgeable human 

resources and experts (Component I), and the usage of closed code programs 

(Component J). The correlation coefficient between these components is calculated. 
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The results present a significant relationship between lack of integration and 

interoperability between systems (Component B) and limited knowledge of human 

resources and experts (Component I), with a coefficient of 0.714.  

Also, the lack of integration and interoperability between systems (Component B) has 

a substantial connection with using closed code programs (Component J). The value of 

the coefficient is 0.535. 

Dempster - Shafer combination rule is applied to calculate the combined basic 

probability assignment. The basic probability assignments for (Expert H) that are 

presented by  𝑚1 , and basic probability assignments (Experts L), which are presented 

by 𝑚2. The results declare substantial combined basic probability assignment when 

combining the lack of integration and interoperability between systems                            

(Component B) and limited knowledgeable human resources and experts (Component 

I). The value for this combination is 0.26222. The value of the combined basic 

probability assignment rises to 0.368888 when combining the lack of integration and 

interoperability between systems (Component B) and the usage of closed code 

programs (Component J). The results are presented in Table 4.15:  

Table 4.15. Combined basic probability assignment for Integration Risk (IR) - (Expert H) 

and (Expert L) 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

BB 0.11555 

BI  0.26222 

BJ  0.36888 

II 0.13333 

IJ 0.34222 
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JJ 0.20000 

 

Some experts provided moderate basic probability assignments for incidents to occur. 

However, these values are not considered because of the resulting basic probability 

assignment's negligible numerical value.  

4.4.2.6 Strategic Risk (SR) 

Experts introduce four incidents causing strategic risk, which are change of 

management (Component K), organizational process and planning (Component L), 

changes in vision (Component M), and change of hierarchy (Component N). The 

correlation coefficient is calculated, and the change of management (Component K) is 

correlated with organizational process and planning (Component L) with a value of 

0.464, with changes in vision (Component M) with a value of 0.601, and with the 

change of hierarchy (Component N) with the value 0.632. 

Dempster- Shafer combination rule is applied in two stages. The first stage of the basic 

probability assignment of the group of experts considering the very high possibility of 

the incident to occur (Experts VH) that is presented by 𝑚1 , and basic probability 

assignment of the group of experts considering the moderate possibility of the incident 

occurring (Experts M), which is presented by 𝑚2.  

This stage resulted in negligible combined basic probability assignments, as presented 

in Table 4.16. These values will not be used in the calculations.  
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Table 4.16.Combined Basic Probability Assignment For Strategic Risk (SR) - (Expert 

VH) And (Expert M) 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

KK 0.01134 

KL 0.02646 

KM 0.01890 

KN 0.02268 

LL 0.01512 

LM 0.02268 

LN 0.02646 

MM 0.00756 

MN 0.01890 

NN 0.01134 

 

Then, the combination rule is applied to the basic probability assignment of the group 

of experts considering the high possibility of the incident occurring (Experts H) that is 

presented by  𝑚3 , and   basic probability assignment of the group of experts considering 

the low possibility of the incident occurring (Experts L), which is presented by  𝑚4. 

This stage resulted in combined basic probability assignments 𝑚34, as presented in 

table 4.17.  

The significant value results from combining a change of management (Component K) 

with a change of hierarchy (Component N). The combined basic probability assignment 

has a value of 0.23818.  

Other high values of combined basic probability assignment resulted from combining 
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organizational process and planning (Component L) and change of hierarchy 

(Component N) with the value of 0.19962 and from combining change of hierarchy 

(Component N) and changes in vision (Component M) with the value 0.19281.  

Table 4.17: Combined basic probability assignment for Strategic Risk (SR) - (Expert 

H) and (Expert L) 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚34) 

KK 0.09829 

KL 0.17088 

KM 0.14744 

KN 0.23818 

LL 0.07258 

LM 0.13459 

LN 0.19962 

MM 0.04914 

MN 0.19281 

NN 0.13610 

 

4.4.2.7 Stakeholder Engagement Risk (SER) 

Experts state three incidents causing stakeholder engagement risk: resistance to 

using the systems (Component O), lack of communication between different 

stakeholders (Component P), and citizens’ mindset and acceptance of digital changes 

(Component Q). Correlation results present a substantial relationship with a value of 

0.657 between the resistance to using the systems (Component O) and the lack of 

communication between stakeholders (Component P). Also, the relationship between 
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resistance to using the systems (Component O) and citizens’ mindset and acceptance of 

digital changes (Component Q) is considerable, with a value of 0.885. 

Dempster- Shafer combination rule is applied in two stages. The first stage of the basic 

probability assignment of the group of experts considering the very high possibility of 

the incident to occur (Experts VH) that is presented by  𝑚1 , and basic probability 

assignment of the group of experts considering the moderate possibility of the incident 

occurring (Experts M), which is presented by  𝑚2. This stage resulted in negligible 

combined basic probability assignments, as presented in Table 4.18. These values will 

not be used in the calculations.  

Table 4.18 Combined Basic Probability Function for Stakeholder Engagement Risk 

(SER)- (Expert VH) And (Expert M).  

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

OO 0.0192 

OP 0.0384 

OQ 0.032 

PP 0.0192 

PQ 0.032 

QQ 0.0128 

 

The second stage is applying the combination rule on the basic probability 

assignment of the group of experts considering the high possibility of the incident 

occurring (Experts H) that is presented by  𝑚3 , and   basic probability assignment of 

the group of experts considering the low possibility of the incident occurring (Experts 

L), which is presented by  𝑚4. This stage resulted in combined basic probability 
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assignments 𝑚34, as presented in table 4.19. 

Significant combinations resulted from joining resistance when using the systems 

(Component O). Lack of communication between different stakeholders (Component 

P) with a value of 0.2416, combining resistance to using the systems (Component O) 

and citizens’ mindset and acceptance of digital changes (Component Q) with a value of 

0.2592, and joining lack of communication between different stakeholders (Component 

P), and citizens’ mindset and acceptance of digital changes (Component Q) with the 

value 0.248.  

Table 4.19 Combined Basic Probability Function For Stakeholder Engagement Risk 

(SER)- (Expert H) and (Expert L).  

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(m34) 

OO 0.1152 

OP 0.2416 

OQ 0.2592 

PP 0.048 

PQ 0.248 

QQ 0.144 

 

4.4.2.8 Laws, Regulations, and Standards Risk (LR) 

Experts declare two incidents causing risk for laws, regulations, and standards: 

lack of application of policies, regulations, and standards (Component R) and lack of 

knowledge of policies, regulations, and standards (Component S). Correlation is tested 

between the two components, and the results present a substantial relationship between 

the two components with a value of 0.657. 
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Application of the Dempster -Shafer combination rule is performed on the basic 

probability assignment of the group of experts considering the high possibility of the 

incident to occur (Experts H) that is presented by  𝑚1 , and basic probability assignment 

of the group of experts considering the low possibility of the incident occurring (Experts 

L), which is presented by 𝑚2. The resulting combined basic probability assignment 

demonstrates significant value when combining the lack of application of policies, 

regulations, and standards (Component R) and the lack of knowledge of policies, 

regulations, and standards (Component S) with a value of 0.20661. Single incidents 

have a basic probability assignment of 0.10330. Table 4.20 presents the results.  

Table 4.20 Combined basic probability function for Laws, Regulations, and 

Standards Risk (LR)- (Expert H) and (Expert L)  

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

RR 0.10330 

RS 0.20661 

SS 0.10330 

 

The basic probability assignment 𝑚3 of experts considering moderate probability 

(Expert M)   resulted in very low values, which will not be used in phase 3 calculations. 

4.4.2.9 Business Continuity Risk (BCR) 

According to experts ' beliefs, two incidents are causing Business Continuity risk: 

lack of a clear business continuity plan (Component T) and lack of data analysis in 

analyzing collected data from different sensors to create innovative and advanced smart 

applications (Component U). The two components are independent since the 

correlation coefficient is 0. 
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Application of the Dempster – Shafer combination rule is performed in two stages. The 

first stage of the basic probability assignment of the group of experts considering the 

very high possibility of the incident to occur (Experts VH) that is presented by  𝑚1 , 

and   basic probability assignment of the group of experts considering the moderate 

possibility of the incident occurring (Experts M), which is presented by  𝑚2 to get the 

combined basic probability assignment 𝑚12. The resulting values are considered low 

and presented in Table 4.21. 

Table 4.21 Combined Basic Probability Assignment Business Continuity Risk (BCR)-

(Expert VH) And (Expert M). 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

TT 0.04 

TU 0.06 

UU 0.02 

 

The application of the combination rule on the basic probability assignment of 

the group of experts believing a high possibility of the incident to occur (Experts H) 

that is presented by  𝑚3 , and   basic probability assignment  of the group of experts 

considering the low possibility of the incident occurring (Experts L), which is presented 

by  𝑚4 to get the combined basic probability assignment 𝑚34  , provides higher values, 

as presented in Table 4.22.  

Where combining the lack of a clear business continuity plan (Component T) and 

lack of data analysis in terms of analyzing collected data from different sensors to create 

innovative and advanced smart applications (Component U) results in a value of 

combined basic probability assignment of 0.1, that is higher than the resulted 
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combination when combining the same incidents when considering basic probability 

assignments of (Expert VH) and (Expert M). 

Table 4.22 Combined Basic Probability Assignment Business Continuity Risk (BCR)-

(Expert H) And (Expert L). 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚34) 

TT 0.05 

TU 0.1 

UU 0.05 

4.4.2.10 Financial Risk (FR) 

The experts mentioned two incidents causing financial risk: a lack of budget 

(Component V) and fear of capital costs (Component W). Correlation is tested, and the 

results present a significant relation between the two incidents with a value of 0.851.  

Dempster – Shafer combination rule is performed, the basic probability assignment of 

the group of experts considering the high possibility of the incident to occur (Experts 

H) that is presented by  𝑚1 , and basic probability assignment of the group of experts 

considering the low possibility of the incident (Experts L) that is presented by  𝑚2.  

The combined basic probability assignment 𝑚12 is significant when combining the two 

components, lack of budget (Component V) and fear of capital cost (Component W), 

with a value of 0.204. In contrast, the value rises for combined basic probability 

assignment of fear of capital cost   (Component W)  is calculated. It has a value of 0.24.  

The results are presented in Table 4.23. When the combination rule is applied to 

calculate the combination of basic probability assignment of the group of experts 

considering the moderate possibility of the incident (Experts M) 𝑚3with the combined 

basic probability assignment 𝑚12, the resulting values are very low, so they will not be 
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considered in the calculations. 

Table 4.23. Combined Basic Probability Assignment Financial Risk (FR)-(Expert H) 

And (Expert L). 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

VV 0.102041 

VW 0.204082 

WW 0.24 

 

4.4.2.1 Resources and Resource Management Risk (RMR) 

Experts stated that there are two incidents causing resources and resource 

management risk: lack of knowledgeable resources and experts (Component I) and lack 

of budget (Component V). Correlation is tested, and the results present a minor 

relationship between the two components with a value of 0.273.  

Application of the Dempster – Shafer combination rule is performed on the basic 

probability assignment of the group of experts considering the high possibility of the 

incident to occur (Experts H) that is presented by  𝑚1 , and basic probability assignment 

of the group of experts considering the low possibility of the incident occurring (Experts 

L), which is presented by  𝑚2.  

The results present a combined basic probability assignment with a value of 0.09949 

when combining a lack of knowledgeable resources and experts (Component I) and a 

lack of budget (Component V). Other combinations are presented in Table 4.24. When 

the combination is applied to calculate the combination of basic probability assignment 

of the group of experts considering the moderate possibility of the incident (Experts M) 

𝑚3with the combined basic probability assignment 𝑚12, the resulting values are very 



 

  

  127 

low, so they will not be considered in the calculations. 

Table 4.24. Combined Basic Probability Assignment Resource and Resource 

Management Risk (RMR) (Expert H) and (Expert L). 

Incidents Combinations /Combined 

Components  

Combined basic probability assignment 

(𝑚12) 

II 0.098214 

IV 0.09949 

VV 0.020408 

 

The resulting combinations from this phase are inputs to calculate the joint probability 

of risk scenarios. The identified risk scenarios are based on experts’ interviews and the 

common incidents between risks. The following section provides the defined risk 

scenarios for a smart city project.  

4.4.3 Phase 3: Risk Scenarios Identification and Evaluation Results 

To assess smart city risks resulting from the initial analysis of the Gioia method. 

Bayesian Network is used as a probabilistic modeling method to graph relationships 

between identified risks during expert interviews (Shishkina, 2015).  

The graphical model combines the experts’ combined beliefs resulting from applying 

the Dempster-Shafer theory as a result of Phase 2 section 4.4.2. In this section, risk 

scenarios are graphed based on the experts’ interviews and discussions about different 

risks and relations between them. Then, the scenarios are evaluated using an Analytical 

Hierarchical Process (AHP). The mechanism to reach the results is discussed in section 

3.2.3. 
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4.4.3.1 Smart City Design Phase Risks’ Scenarios  

The design phase risk resulted from stakeholder engagement risks(SER), 

strategic risk (SR), financial risk (FR), business continuity risk (BCR) and lows, and 

regulations and standards risk (LR). This result is presented in the Gioia method results 

from Figure 4.1. The graphical presentation of the relationship for this scenario, 

scenario one, is presented in Figure 4.3 

 

Figure 4.3 Design Phase  Risk Scenario 1 

The joint probability of this scenario is calculated, considering the combination of 

incidents causing each risk, where combinations with a value less than 10% are not 

considered since the values will be negligible.  

The formula of Bayesian theory and joint probability  (3.14 ) is used, and the marginal 

probability of design risk occurring is calculated by counting the number of experts 

who mentioned any of the risks causing design phase risk.  

The following paragraph will explain the calculation for one case in this scenario :  
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Figure 4.4 Detailed Design Risk Scenario1 

1. Let U be the event that stakeholder engagement risk (SER) occurs due to combined 

incidents OO and combined incidents OP, i.e., U = OO ∩ OP. Using Bayes’ 

theorem, we have: 

    𝑃(SER|U)  =   
P(U|SER)P(SER)

P(U)
                                                                  

P(U∣SER) is the probability of SER risk due to the combined incidents OO and OP, and 

P(SER) is the marginal probability of risk SER, which is 0.625.  

To calculate P(U∣SER), we can use OO and OC as independent events given SER. 

P(U∣SER) =P(OO∣SER) P(OP∣SER)    

P(OO∣SER) and P(OP∣SER)    are calculated using the Dempster-Shafer theory as per 

table 4.17. 

P(U∣SER) =  0.027832 

To calculate P(U), we can use the law of total probability and the fact that SER and 

¬SER are separate events, according to the below formula:  

P(U)=P(U∣SER) P(SER)+P(U∣¬SER) P(¬SER) 

P(U∣¬SER) is the probability of combined incidents B and C happening, given that SER 
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does not occur, and P(¬SER) is the probability of SER  not occurring. 

2. Given that OO and OP are independent events given ¬SER, the formula below 

calculates P(U∣¬SER).  

P(U∣¬SER) =P(OO∣¬SER) P(OP∣¬SER) 

P(U∣¬SER) = 0.972167 

P(U) is calculated using the equation (3.12), then the P(SER|U) is calculated using the 

equation (3.10).  

P(U) = P(U∣SER) P(SER)+P(U∣¬SER) P(¬SER) 

         = 0.027832*0.625 + 0.972167*0.375 

         = 0.38195808 

Then, the probability of  SER to occur due to OO and OP is calculated to equal  

0.04554217.  

The probability of design risk DES to occur due to stakeholder engagement risk(SER) 

due to  OO and OP  incidents is calculated using equation (3.10).  

P(DES∣ SER) = 0.042186717. Table 4.25 will provide the different cases for this 

scenario. 
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Table 4.25 Causal Probability for Design Risk. 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(SER|U)  P(DES| SER) 

SER SER Due to OO, OP 0.04554 0.04219 

  SER Due to OQ, PP 0.02057 0.01901 

  SER Due to PQ, QQ 0.05814 0.05390 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(SR|U)  P(DES| SR) 

SR SR Due to KL, KM 0.04130 0.03825 

  SR Due to KN, LM 0.05231 0.04848 

  SR Due to LN, MN 0.06255 0.05801 

  SR Due to NN 0.20797 0.19510 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(FR|U)  P(DES| FR) 

FR FR Due to VV, VW 0.01132 0.01046 

 FR Due to WW 0.14533 0.13567 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(BCR|U)  P(DES| BCR) 

BCR BCR Due to TU 0.03571 0.03306 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(BCR|U)  P(DES| BCR) 

LR LR Due to RR, RS 0.02596 0.02401 

 LR Due to SS 0.12343 0.11503 

 

To calculate the joint probability of the design phase risk to occur due to SER, 

SR, FR BCR, and LR, the maximum probability of design phase risk to occur due to 

each risk is used, considering the worst-case scenario. Accordingly, the probability of 

design phase risk to happen due to SER, SR, FR, BCR, and LR is calculated using 

equation (3.14) as negligible ≈ 5.4 × 10−6  . 
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The probability of the first scenario is calculated considering that each risk may occur 

due to one combination of incidents. Equation (3.14) is used, and the maximum 

probability value from Table 4.26 is considered to calculate the worst-case scenario.  

Accordingly, the probability of design phase risk due to SER, SR, FR, BCR, and LR 

equals 0.000115747.   

Table 4.26: Causal Probability for Design Phase Risk Considering One Combination of 

Incidents. 

Risk  Risk Due to Combined Incidents P(SR| Combined Incidents) P(DES|SR ) 

SR SR Due to KL 0.255685032 0.240752084 

  SR Due to KN 0.342577488 0.324784122 

  SR Due to LN 0.29362696 0.277303642 

  SR Due to NN 0.20797227 0.195095516 

  SR Due to KM 0.223752151 0.210157618 

  SR Due to LM 0.20585174 0.193074274 

  SR Due to MN 0.284757119 0.268739297 

Risk    P(SER| Combined Incidents) P(DES|SER ) 

SER SER Due to OO 0.178306092 0.166879129 

  SER Due to OP 0.346807533 0.328904378 

  SER Due to OQ 0.36834925 0.349929798 

  SER Due to PP 0.07751938 0.071985603 

  SER Due to QQ 0.218978102 0.205596802 

  SER Due to PQ 0.354691076 0.336590662 

Risk    P(LR| Combined Incidents) P(DES|LR ) 

LR LR Due to RR 0.123429084 0.115026665 

  LR Due to RS 0.24143986 0.227085054 
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Risk  Risk Due to Combined Incidents P(SR| Combined Incidents) P(DES|SR ) 

  LR Due to SS 0.123429084 0.115026665 

Risk    P(BCR| Combined Incidents) P(DES|BCR ) 

BCR BC Due to TU 0.035714286 0.033057851 

Risk    P(FR| Combined Incidents) P(DES|FR ) 

FR FR Due to VV 0.057660626 0.053462322 

  FR Due to VW 0.121317158 0.113039968 

  FR Due to WW 0.14532872 0.135666218 

 

The results are more reasonable when considering one combination because the 

combined basic probability assignment results from the Dempster- Shafer combination 

rule, which is considered a strict AND operation. Accordingly, applying Bayesian 

theory will apply one more AND, resulting in a lower probability when considering 

more than one combined incident.  

The second scenario consideration for design phase risk to occur is due to financial 

risk (FR) that may result from the cascaded effect of lows, regulations, standards risk 

(LR), and business continuity risk (BCR). Figure 4.5 presents this scenario.  

 

Figure 4.5  Design phase Risk Scenario 2  

To calculate the probability of design risk to occur, the probability of lows, regulations, 

and standards risk (LR) because of the combined incidents (RS), which is the lack of 

knowledge of policies, regulations, and standards, and lack of application of policies, 
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regulations, and standards using Bayes theory equation (3.10).   P(LR∣ RS) = 0.24144. 

The combined incidents RS is used since it has the maximum probability of occurring.  

The probability of Design risk due to the second scenario is calculated using the 

equation (3.14) as follows in Table 4.27:  

P (LR, BCR, FR, DES) = P(DES|FR). P(FR|BCR). P(BCR|LR) .P(LR)   = 0.001595 

The values are summarized as follows :  

Table 4.27.The Values Used  to Calculate Design Phase Risk Scenario 2  

Probability  Value  Source  

P(DES|FR) 0.13566 Maximum value of this risk ( Table 4.26)  

P(FR|BCR) 0.21428 Calculated statistically from the data.  

P(BCR|LR) 0.22727 Calculated statistically from the data. 

P(LR)  0.24144 This is calculated as P(LR∣ RS) using equation (3.10) 

 

The probability of design phase risk due to the second scenario is insignificant.  

The third scenario for the design phase risk to occur is stakeholder engagement risk  

(SER), which may result from the effect of strategic risk (SR). The Strategic risk 

probability is calculated using Bayesians’ theory 3.10. Since it occurs due to multiple 

combined incidents, the highest value is used to calculate the probability of this scenario 

arising. 

The graphical presentation is provided in Figure 4.6.  
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Figure 4.6 Design Phase Risk Scenario 3  

To calculate the probability of Design risk to occur in this scenario, the probability of 

strategic risk (SR) because of the combined incidents (KN), which are the change of 

management (component K) and change of hierarchy (component N), is calculated 

using equation (3.10)  P(SR∣ KN) = 0.342577. KN is used for combined incidents since 

it has the maximum occurrence probability.  

The probability of Design phase risk due to the third scenario is calculated using the 

equation (3.14) as follows :  

P (SR, SER, DES) = P(DES|SER). P(SER|SR).P(SR)   = 0.0863 

The values are summarized in Table 4.28 as follows :  

Table 4.28. The Values Used  to Calculate Design Phase Risk Scenario 3  

Probability  Value  Source  

P(DES|SER) 0.34992 Maximum value of this risk ( Table 4.26)  

P(SER|SR) 0.72 Calculated statistically from the data.  

P(SR)  0.342577488 This is calculated as P(SR∣ KN) using equation (3.10) 

 

The probability of design phase risk due to the third scenario is significant compared to 

the first and the second scenarios.  

The probability of Design phase risk to occur is summarized in Table 4.29 as follows:  



 

  

  136 

Table 4.29. Design Phase Risk Probabilities   

Scenario P(DES| Scenario)  

Scenario 1  0.000115747 

Scenario 2 0.001595161 

Scenario 3 0.086312211 

 

4.4.3.2 Smart City Planning Phase Risks’ Scenarios  

 The planning phase risk resulted from stakeholder engagement risks(SER), 

strategic risk (SR), financial risks (FR), and resource and resource management risks 

(RMR). The graphical presentation of the causal relationship for this scenario, scenario 

one, is presented in Figure 4.7 

 

Figure 4.7 Planning Phase Risk Scenario1  

The joint probability of this scenario is calculated, considering the combination of 

incidents causing each risk, where combinations with a value less than 10% are not 

considered since the values will be negligible.  
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The formulas of Bayesian theory and joint probability (3.14) are used. The marginal 

probability of planning phase risk occurring is calculated by counting the number of 

experts who mentioned any of the risks causing planning phase risk.  

The following Table 4.30 represents the probabilities of planning phase risk occurrence 

due to scenario 1. 

Table 4.30:Planning Phase Risk Scenario 1 Probabilities.  

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(SER|U)  P(PLAN| SER) 

SER SER Due to OO, OP 0.04554 0.06064 

  SER Due to OQ, PP 0.02057 0.02762 

  SER Due to PQ, QQ 0.05814 0.07707 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(SR|U) P(PLAN| SR) 

SR SR Due to KL, KM 0.04130 0.055075 

  SR Due to KN, LM 0.05231 0.069492 

  SR Due to LN, MN 0.06255 0.082793 

  SR Due to NN 0.20797 0.262133 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(FR|U)  P(PLAN| FR) 

FR FR Due to VV, VW 0.01132 0.01525 

 FR Due to WW 0.14533 0.187028 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 𝑃(RMR|U) 

 P(PLAN

| RMR) 

RMR RMR Due to IV 0.03571 0.258587 

 

To calculate the joint probability of the planning phase risk to occur due to SER, SR, 

FR, and RMR, the maximum probability of planning phase risk to occur due to each 

risk is used, considering the worst-case scenario. Accordingly, the probability of 
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planning phase risk due to SER, SR, FR, and RMR is calculated using equation (3.14) 

as very low ≈ 0.00056183. The joint probability is calculated, considering that one 

combined incident causes each risk, and the combination of the highest value is used 

considering worst-case occurrence; thus, the value is 0.007677522. Table 4.31 presents 

the probabilities for each case.  

Table 4.31. Planning Phase Risk Scenario 1 Probabilities Considering One Combined 

Incident. 

Risk  

Risk Due to Combined 

Incidents 

P(SR| Combined Incidents) P(PLAN|SR ) 

SR SR Due to KL 0.25568 0.31729 

  SR Due to KM 0.22375 0.28056 

  SR Due to KN 0.34257 0.41349 

  SR Due to LM 0.20585 0.25964 

  SR Due to LN 0.29362 0.35995 

  SR Due to MN 0.28475 0.35007 

  SR Due to NN 0.20797 0.26213 

Risk    P(SER| Combined Incidents) P(PLAN|SER ) 

SER SER Due to OO 0.17830 0.22695 

  SER Due to OP 0.34680 0.41804 

  SER Due to OQ 0.36834 0.44101 

  SER Due to PP 0.07751 0.10208 

  SER Due to PQ 0.35469 0.42648 

  SER Due to QQ 0.21897 0.27500 

Risk    P(FR| Combined Incidents) P(PLAN|FR) 

FR FR Due to VV 0.05766 0.07645 
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Risk  

Risk Due to Combined 

Incidents 

P(SR| Combined Incidents) P(PLAN|SR ) 

  FR Due to VW 0.12131 0.15739 

  FR Due to WW 0.14532 0.18702 

Risk    

P(RMR| Combined 

Incidents) 

P(PLAN|RMR 

) 

RMR RMR Due to IV 0.20495 0.25858 

 

The second scenario consideration for planning phase risk is the occurrence of planning 

risk due to financial risk (FR) that may result in the cascaded effect of resources 

resource management risk (RMR). Figure 4.8 presents this scenario. 

 

Figure 4.8: Planning Phase Risk Scenario 2 

The probability of this scenario is calculated using equation 3.14 and denoted as :  

P (FR, RMR, PLAN) = P(PLAN|RMR). P(RMR|FR).P(FR) =  0.013421. The value is 

calculated using the probabilities as shown in Table 4.32. 

Table 4.32: The Values Used  to Calculate Planning Phase Risk Scenario 2 

Probability  Value  Source  

P(PLAN|RMR) 0.25858 Maximum value of this risk ( Table 4.31)  

P(RMR|FR) 0.35714 Calculated statistically from the data.  

P(FR)  0.14532 This is calculated as P(FR∣ WW) using equation (3.10) 
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The third scenario for planning phase risk occurs due to stakeholder engagement risk  

(SER), which may result from the effect of strategic risk (SR). The Strategic risk 

probability is calculated using Bayesian theory (3.10.) Since it occurs due to multiple 

combined incidents, the highest value is used to calculate the probability of this scenario 

arising. 

The graphical presentation is provided in Figure 4.9.  

 

Figure 4.9 Planning Phase Risk Scenario 3  

To calculate the probability of planning phase risk to occur due to this scenario, the 

probability of strategic risk (SR) because of the combined incidents (KN), which are 

the change of management (component K) and change of hierarchy (component N), is 

calculated using equation 3.10. P(SR∣ KN) = 0.34258. KN is used for combined 

incidents since it has the maximum occurrence probability.  

The probability of planning  phase risk due to the third scenario is calculated using the 

equation (3.14) as follows :  

P (SR, SER, PLAN) = P(PLAN|SER). P(SER|SR).P(SR)   = 0.10877 

The values are summarized as follows in table 4.33 :  

Table 4.33. The Values Used  to Calculate Planning Phase Risk Scenario 3  

Probability  Value  Source  

P(PLAN|SER) 0.44101 Maximum value of this risk ( Table 4.29)  

P(SER|SR) 0.72 Calculated statistically from the data.  
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P(SR)  0.34257 This is calculated as P(SR∣ KN) using equation 3.10 

 

The third scenario results in the highest probability of planning phase risk. The 

following Table 4.34 will present a summary of implementation phase risk probabilities 

due to different scenarios:  

Table 4.34:Planning Phase Risk Probabilities. 

Scenario P(PLAN| Scenario)  

Scenario 1  0.007677 

Scenario 2 0.013421 

Scenario 3 0.10877 

 

4.4.3.3 Smart City Implementation Phase Risks’ Scenarios  

 The implementation phase risk resulted from seven risks, namely cybersecurity 

risk (CR), network infrastructure risk (NR), integration risk (IR), stakeholder 

engagement risks(SER), resource and resource management risks (RMR), laws, 

regulations, and standards risk (LR), and financial risks (FR). The graphical 
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presentation of the causal relationship for this scenario, scenario one, is presented in 

Figure 4.10 

 

Figure 4.10 Implementation Phase Risk Scenario1  

The joint probability of this scenario is calculated, considering the combination of 

incidents causing each risk, where combinations with a value less than 10% are not 

considered since the values will be negligible.  

The formula of Bayesian theory and joint probability (3.14) is used, and the marginal 

probability of implementation phase risk occurring is calculated by counting the 

number of experts who mentioned any of the risks causing implementation phase risk.  

Table 4.35 represents the probabilities of implementation phase risk occurrence due to 

scenario 1. 
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Table 4.35.Implementation  Phase Risk Scenario 1 Probabilities.  

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(CR| U) P(IMP|CR ) 

CR CR Due to AE, AF 0.36756 0.36425 

  CR Due to BF, CC 0.20454 0.20223 

  CR Due to CF, DD 0.25315 0.25045 

  CR Due to DE, DF 0.36756 0.36425 

  CR Due to AB, AD 0.18707 0.18490 

  CR Due to EF, FF 0.94291 0.94213 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(NR| U) P(IMP|NR ) 

NR NR Due to BG, BD 0.02424 0.02391 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(IR| U) P(IMP|IR ) 

IR IR  Due to IJ 0.23790 0.23532 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(RMR| U) P(IMP|RMR ) 

RMR RMR Due to IV 0.20495 0.20264 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(SER| U) P(IMP|SER ) 

SER SER Due to OO, OP 0.04554 0.04493 

  SER Due to OQ, PP 0.02057 0.02028 

  SER Due to PQ, QQ 0.05814 0.05736 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(LR| U) P(IMP|LR ) 

LR LR Due to RR, RS 0.02596 0.02561 

  LR Due to SS 0.12343 0.12189 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(FR| U) P(IMP|FR ) 

FR FR Due to VV, VW 0.01132 0.01116 

  FR Due to WW 0.14533 0.14356 
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To calculate the joint probability of the implementation phase risk to occur due 

to CR, NR, IR, RMR, SER, LR, and FR, the maximum probability of implementation 

phase risk to occur due to each risk is used, considering the worst-case scenario. 

Accordingly, the probability of planning phase risk due to CR, NR, IR, RMR, SER, 

LR, and FR is calculated using equation (3.14 )as very low ≈ 0.00000108. The joint 

probability is calculated, considering that one combined incident causes each risk, and 

the combination of the highest value is used considering worst-case occurrence; thus, 

the value is calculated as 0.000063627. Table 4.36 presents the probabilities for each 

case.  

Table 4.36: Implementation Phase Risk Scenario 1 Probabilities Considering One 

Combined Incident. 

Risk  Risk Due to Combined Incidents P(CR| Combined Incidents) P (IMP|CR) 

CR CR Due to AC 0.47184 0.46828 

  CR Due to AD 0.48837 0.48480 

  CR Due to AE 0.38578 0.38240 

  CR Due to AF 0.96346 0.96296 

  CR Due to BF 0.87715 0.87560 

  CR Due to CC 0.24402 0.24139 

  CR Due to CF 0.96466 0.96417 

  CR Due to DD 0.26582 0.26304 

  CR Due to DE 0.38578 0.38240 

  CR Due to DF 0.96346 0.96296 

  CR Due to EF 0.97064 0.97023 

  CR Due to FF 0.97183 0.97144 

Risk  Risk Due to Combined Incidents P(NR| Combined Incidents) P (IMP|NR) 
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NR NR Due to BG 0.11115 0.10974 

  NR Due to BD 0.11115 0.10974 

Risk  Risk Due to Combined Incidents P (IR |Combined Incidents) P (IMP|IR) 

IR IR Due to IJ 0.23790 0.23532 

Risk  Risk Due to Combined Incidents P (RMR |Combined Incidents) P (IMP|RMR) 

RMR RMR Due to IV 0.20495 0.20264 

    

    

Risk  Risk Due to Combined Incidents P (SER| Combined Incidents) P (IMP|SER) 

SER SER Due to OO 0.17831 0.17622 

  SER Due to OP 0.34681 0.34358 

  SER Due to OQ 0.36835 0.36503 

  SER Due to PP 0.07752 0.07650 

  SER Due to PQ 0.35469 0.35143 

  SER Due to QQ 0.21898 0.21654 

Risk  Risk Due to Combined Incidents P (LR| Combined Incidents) P (IMP|LR) 

LR LR Due to RR 0.12343 0.12189 

  LR Due to RS 0.24144 0.23883 

  LR Due to SS 0.12343 0.12189 

Risk  Risk Due to Combined Incidents P (FR| Combined Incidents) P (IMP|FR) 

FR FR Due to VV 0.05766 0.05689 

  FR Due to VW 0.12132 0.11980 

  FR Due to WW 0.14533 0.14356 
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The second scenario consideration for implementation phase risk is caused by 

cybersecurity risk (CR), resulting in the cascaded effect of integration risk (IR). Figure 

4.11 presents this scenario. 

 

Figure 4.11: Implementation Phase Risk Scenario 2 

The probability of this scenario is calculated using equation (3.14 )and denoted as :  

P (CR, IR, IMP) = P(IMP|IR). P(CR|IR).P(CR)  

The values for this scenario are shown in Table 4.37 since many incidents cause 

cybersecurity risk, and the combined probability assignment values for these incidents 

are more than 10%. The probability values are low when combining two combined 

probability assignments of cybersecurity risk. Thus, the calculations are performed 

using one combined incident, as Table 4.38 presents.  

Table 4.37 Probability of Implementation Phase Risk Scenario 2 

P(CR|IR) = 0.54166   

P(IMP|IR) = 0.23532    

(U) = Combined incidents 1 ∩ Combined incidents 2 P(CR|U) P (CR, IR, IMP) 

CR Due to AC, AD 0.20300 0.02558 

CR Due to AE, AF 0.36756 0.04643 

CR Due to BF, CC 0.20454 0.02578 

CR Due to CF, DD 0.25314 0.03192 

CR Due to DE, DF 0.36756 0.04643 

CR Due to AB, AD 0.18706 0.02357 

 

The highest implementation phase risk probability occurs when cybersecurity 
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probability is calculated using one combined incident, as follows: when cybersecurity 

risk happens due to cyber-attacks (Component F) when combined with lack of 

maintenance of model for systems (Component A), or with lack of integration and 

interoperability between systems (Component B), or with improper security updates 

(Component C), or with lack of security awareness (Component D), or with IoT devices 

vulnerability (Component E) with a value of 0.12274. 

Table 4.38 Probability of Implementation Phase Risk Scenario 2, Using One Combined 

Incident. 

P(CR|IR)  = 0.54166   

P(IMP|IR) = 0.23532    

Combined incident P(CR| Combined Incidents)  P (CR, IR, IMP)  

CR Due to AC 0.47183 0.05969 

CR Due to AD 0.48837 0.06180 

CR Due to AE 0.38577 0.04874 

CR Due to AF 0.96346 0.12274 

CR Due to BF 0.87714 0.11161 

CR Due to CC 0.24401 0.03077 

CR Due to CF 0.96466 0.12290 

CR Due to DD 0.26582 0.03353 

CR Due to DE 0.38577 0.04874 

CR Due to DF 0.96346 0.12274 

CR Due to EF 0.97064 0.12367 

CR Due to FF 0.97183 0.12382 

 

The third scenario for implementation phase risk is to occur due to network 

infrastructure risk  (NR), which may result from cybersecurity risk (CR). The 
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cybersecurity risk probability is calculated using Bayesian theory (3.10). Since 

cybersecurity risk occurs due to multiple combined incidents, the values of 

implementation risk probabilities are presented in Table 4.39 because the combined 

probability assignments for incidents causing cybersecurity risk are high.  

The graphical presentation is provided in Figure 4.12.  

 

Figure 4.12 Implementation Phase Risk Scenario 3  

The probability of this scenario is calculated using the equation 3.14 as : 

P (CR, NR, IMP) = P(IMP|NR). P(CR|NR).P(CR)  

Table 4.39: Probability of Implementation Risk Scenario 3  

P(CR|NR)  = 0.3043   

P(IMP|NR) = 0.11114   

Combined incident P(CR| Combined Incidents)  P (CR, NR, IMP)  

CR Due to AC 0.47183 0.01595 

CR Due to AD 0.48837 0.01651 

CR Due to AE 0.38577 0.01304 

CR Due to AF 0.96346 0.03257 

CR Due to BF 0.87714 0.02965 

CR Due to CC 0.24401 0.00825 

CR Due to CF 0.96466 0.03261 

CR Due to DD 0.26582 0.00899 

CR Due to DE 0.38577 0.01304 

CR Due to DF 0.96346 0.03257 
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P(CR|NR)  = 0.3043   

CR Due to EF 0.97064 0.03282 

CR Due to FF 0.97183 0.03286 

 

The probability of the third scenario is low because the probability of network 

infrastructure risk (NR) occurring is low, although the occurrence of cybersecurity risk 

is high.  

The fourth scenario for the implementation phase risk to occur is due to integration risk  

(IR), which may result from the cascading effect of laws, regulations, and standards 

risk (LR), as presented graphically in Figure 4.13. The probability of this scenario is 

calculated using equation 3.14:  

P (LR, IR, IMP) = P(IMP|IR). P(LR|IR).P(LR) =0.01124 

The laws, regulations, and standards risk (LR) probability is calculated using Bayesian 

theory (3.10), using the combined probability assignment of (Component R), the lack 

of application of policies, regulations, and standards, and (Component S), the lack of 

knowledge of policies, regulations, and standards, since it the has the maximum value, 

considering the worst-case scenario. Table 4.40 below summarizes the values used to 

calculate the probability of the fourth scenario.  
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Figure 4.13 Implementation Phase Risk Scenario 4  

Table 4.40: Summary of probabilities used to calculate implementation phase risk 

scenario 4 

Probability  Value  Source  

P(IMP|IR) 0.23532 Maximum value of this risk ( Table 4.36)  

P(LR|IR) 0.2 Calculated statistically from the data.  

P(LR)  0.23883 This is calculated as P(LR∣ RS) using equation (3.10) 

 

The fifth scenario causing implementation phase risk is resulting from the cascaded 

effect of financial risk (FR) that will cause resource and resource management risk 

(RMR), causing integration risk (IR) that will result in implementation phase risk. The 

scenario is graphically presented in Figure 4.14.  

 

Figure 4.14 Implementation Phase Risk Scenario 5 

The probability of this scenario is calculated using equation (3.14):  

P (FR, RMR, IR, IMP) = P(IMP|IR). P(IR|RMR). P(RMR|FR).P(FR) =0.00479 

The financial risk (FR) probability is calculated using Bayes theory (3.10), where the 

incident of the fear of capital cost (Component W) has the highest combined basic 

probability assignment. Table 4.41 below summarizes the values used to calculate the 

probability of the fourth scenario.  
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Table 4.41. Summary Of Probabilities Used to Calculate Implementation Phase Risk 

Scenario 5 

Probability  Value  Source  

P(IMP|IR) 0.23532 Maximum value of this risk ( Table 4.34)  

P(IR|RMR) 0.39285 Calculated statistically from the data.  

P(RMR|FR) 0.35714 Calculated statistically from the data. 

P(FR)  0.14533 This is calculated as P(FR∣ WW) using equation (3.10) 

 

This scenario's probability is low compared to the other scenarios. Accordingly, the 

most significant probabilities are the probabilities of the implementation phase risk 

occurring due to the second and third scenarios.  

4.4.3.4 Smart City Operation Phase Risks’ Scenarios  

 The operation phase risk resulted from seven risks, namely cybersecurity risk 

(CR), technical data and applications risk (TR), network infrastructure risk (NR), 

integration risk (IR), data security and privacy risk (DR), stakeholder engagement 

risks(SER), and resource and resource management risks (RMR). The graphical 
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presentation of the relationship for this scenario, scenario one, is presented in Figure 

4.15 

 

Figure 4.15 Operation Phase Risk Scenario1  

The joint probability of this scenario is calculated, considering the combination of 

incidents causing each risk, where combinations with a value less than 10% are not 

considered since the values will be negligible.  

The formula of Bayesian theory and joint probability (3.14) is used, and the marginal 

probability of operation phase risk occurring is calculated by counting the number of 

experts who mentioned any of the risks causing operation phase risk.  

Table 4.42 represents the probabilities of Operation phase risk occurrence due to 

scenario 1. 
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Table 4.42.Operation Phase Risk Scenario 1 Probabilities.  

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(CR|U) P(OP|CR ) 

CR CR Due to AC, AD 0.20300 0.21723 

  CR Due to AE, AF 0.36756 0.38771 

  CR Due to BF, CC 0.20454 0.21885 

  CR Due to CF, DD 0.25315 0.26970 

  CR Due to DE, DF 0.36756 0.38771 

  CR Due to AB, AD 0.18707 0.20046 

  CR Due to EF, FF 0.94291 0.94735 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(TR|U) P(OP|TR ) 

TR TR Due to BD, DD 0.01090 0.01187 

  TR Due to GB, GD 0.00971 0.01057 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(NR|U) P(OP|NR ) 

NR NR Due to BG, BD 0.02424 0.02636 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(IR|U) P(OP|CR ) 

IR IR  Due to BB, BI 0.01840 0.02002 

  IR  Due to BJ, II 0.03010 0.03271 

  IR  Due to IJ, JJ 0.04222 0.04583 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(DR|U) P(OP|DR ) 

DR DR Due to DD, FD 0.13434 0.14463 

  DR Due to FF, GD 0.21613 0.23101 

  DR Due to GF 0.76650 0.78150 

Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(SER|U) P(OP|SER ) 

SER SER Due to OO, OP 0.04554 0.04942 

  SER Due to OQ, PP 0.02057 0.02237 

  SER Due to PQ, QQ 0.05814 0.06301 
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Risk  (U) = Combined incidents 1 ∩ Combined incidents 2 P(RMR|U) P(OP|RMR ) 

RMR  RMR Due to IV 0.20495 0.21928 

 

To calculate the joint probability of the operation phase risk to occur due to CR, TR, 

NR, IR, DR, SER, and RMR, the maximum probability of operation phase risk to occur 

due to each risk is used, considering the worst-case scenario. Accordingly, the 

probability of planning phase risk due to CR, TR, NR, IR, DR, SER, and RMR is 

calculated using equation 3.14 as very low ≈0.00000014666.  

The joint probability is calculated, considering that one combined incident causes each 

risk, and the combination of the highest value is used considering worst-case 

occurrence; thus, the value is calculated as 0.000063627. Table 4.43 presents the 

probabilities for each case.  

Table 4.43. Operation  Phase Risk Scenario 1 Probabilities Considering One Combined 

Incident. 

Risk  Risk Due to Combined Incidents  P(CR| Combined Incidents) P (OP|CR) 

CR CR Due to AC 0.47183 0.49324 

  CR Due to AD 0.48837 0.50981 

  CR Due to AE 0.38577 0.40629 

  CR Due to AF 0.96346 0.96636 

  CR Due to BF 0.87715 0.88609 

  CR Due to CC 0.24401 0.26018 

  CR Due to CF 0.96466 0.96747 

  CR Due to DD 0.26582 0.28289 

  CR Due to DE 0.38577 0.40629 
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  CR Due to DF 0.96346 0.96636 

Risk  Risk Due to Combined Incidents  P(CR| Combined Incidents) P (OP|CR) 

  CR Due to AB 0.43810 0.45931 

  CR Due to AD 0.48837 0.50981 

 CR Due to EF 0.97064 0.97298 

 CR Due to FF 0.97183 0.97408 

Risk  Risk Due to Combined Incidents  P(TR| Combined Incidents) P (OP|TR) 

TR TR Due to BD 0.08628 0.09328 

 TR Due to DD 0.06465 0.07004 

 TR Due to GB 0.05084 0.05515 

 TR Due to GD 0.09753 0.10534 

Risk  Risk Due to Combined Incidents  P(NR| Combined Incidents) P (OP|NR) 

NR NR Due to BG 0.11114 0.119908 

 NR Due to BD 0.11114 0.119908 

Risk  Risk Due to Combined Incidents  P(DR| Combined Incidents) P (OP|DR) 

DR DR Due to DD 0.152795 0.16423 

 DR Due to FD 0.869978 0.879376 

 DR Due to FF 0.942149 0.94665 

 DR Due to GD 0.228421 0.243888 

 DR Due to GF 0.7665 0.781499 

Risk  Risk Due to Combined Incidents  P(DR| Combined Incidents) P (OP|IR) 

IR IR  Due to BB 0.072693 0.078691 

 IR  Due to BI 0.17577 0.188542 

 IR  Due to BJ 0.259645 0.276469 

 IR  Due to II 0.084507 0.091383 

 IR  Due to IJ 0.237899 0.253796 
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  IR  Due to JJ 0.130435 0.140475 

Risk  Risk Due to Combined Incidents  P(RMR| Combined Incidents) P (OP|IR) 

RMR RMR Due to IV 0.204955 0.219284 

Risk  Risk Due to Combined Incidents  P(SER| Combined Incidents) P (OP|SER) 

SER SER Due to OO 0.178306 0.19122 

 SER Due to OP 0.346808 0.366483 

 SER Due to OQ 0.368349 0.38852 

 SER Due to PP 0.077519 0.083879 

 SER Due to PQ 0.354691 0.374557 

 SER Due to QQ 0.218978 0.233999 

 

The second scenario consideration for operation phase risk Figure 4.16 is caused by 

cybersecurity risk (CR) that will cause data security and privacy risks resulting in 

operation phase risk.  

 

Figure 4.16: Operation Phase Risk Scenario 2 

The probability of this scenario is calculated using equation (3.14) and denoted as :  

P (CR, DR, OP) = P(OP|DR). P(DR|CR).P(CR)  

The values for this scenario are shown in Table 4.44 since many incidents cause 

cybersecurity risk, and the values of combined probability assignment for these 

incidents are more than 10%. Considering the worst-case scenario, P(OP|DR) will use 

the maximum probability value.  



 

  

  157 

Table 4.44 Probability of Operation Phase Risk Scenario 2 

P(DR|CR) = 0.54166   

P(OP|DR) =  0.78150 (Table 4.42)   

(U) = Combined incidents 1 ∩ Combined incidents 2 P(CR|U) P (CR, DR, OP) 

CR Due to AC, AD 0.20300 0.085931 

CR Due to AE, AF 0.36756 0.155591 

(U) = Combined incidents 1 ∩ Combined incidents 2 P(CR|U) P (CR, DR, OP) 

CR Due to BF, CC 0.20454 0.086583 

CR Due to CF, DD 0.25315 0.10716 

CR Due to DE, DF 0.36756 0.155591 

CR Due to AB, AD 0.18707 0.079188 

CR Due to EF, FF 0.94291 0.399141 

  

The highest probability of operation phase risk occurs when cybersecurity risk happens 

due to cyber-attacks (Component F) combined with IoT device vulnerability 

(Component E) with a value of 0.399141. 

The probabilities of the second scenario are calculated using one combined incident for 

cybersecurity risk, considering the highest value of P(OP|DR) to calculate the worst-

case scenario. The values are considerably high when cybersecurity risk happens due 

to cyber-attacks (Component F) combined with a lack of maintenance model for 

systems (Component A), lack of integration and interoperability between systems 

(Component B), improper security updates (Component C) lack of security awareness 

(Component D), and IoT devices vulnerability (Component E).  Table 4.45 below will 

provide the calculated probabilities. 



 

  

  158 

Table 4.45 Probability of Operation Phase Risk Scenario 2, using one combined 

incident. 

P(DR|CR)  = 0.54166                        Calculated statistically   

P(OP|DR) =   0.94665  Table (4.41)  

Combined incident P(CR| Combined incidents) P(CR,DR, OP) 

CR Due to AC 0.49324 0.25291 

CR Due to AD 0.50981 0.26141 

CR Due to AE 0.40629 0.20833 

Combined incident P(CR| Combined incidents) P(CR,DR, OP) 

CR Due to AF 0.96636 0.49551 

CR Due to BF 0.88609 0.45435 

CR Due to CC 0.26018 0.13341 

CR Due to CF 0.96747 0.49608 

CR Due to DD 0.28289 0.14505 

CR Due to DE 0.40629 0.20833 

CR Due to DF 0.96636 0.49551 

CR Due to AB 0.45931 0.23551 

CR Due to AD 0.50981 0.26141 

CR Due to EF 0.97298 0.49891 

CR Due to FF 0.97408 0.49947 

 

The third scenario for operation phase risk is due to network infrastructure risk  (NR), 

which may result from cybersecurity risk (CR). The cybersecurity risk probability is 

calculated using Bayesian theory (3.10). Since cybersecurity risk occurs due to multiple 

combined incidents, the values of operation risk probabilities are presented in Table 
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4.46. The calculations will consider one combined incident causing cybersecurity risk 

to reflect worst-case scenarios. The graphical presentation is provided in Figure 4.17  

 

Figure 4.17 Operation Phase Risk Scenario 3  

The probability of this scenario is calculated using the equation 3.14 as : 

P (CR, NR, OP) = P(OP|NR). P(NR|CR).P(CR)  

Table 4.46. Probability of Operation Risk Scenario 3  

P(NR|CR)  = 0.3043                            Calculated statistically from the data  

P(OP|NR) = 0.119908     Table (4.43)   

Combined incident P(CR| Combined Incidents)  P (CR, NR, OP)  

CR Due to AC 0.49325 0.01800 

CR Due to AD 0.50981 0.01860 

CR Due to AE 0.40629 0.01482 

CR Due to AF 0.96637 0.03526 

CR Due to BF 0.88610 0.03233 

CR Due to CC 0.26019 0.00949 

CR Due to CF 0.96747 0.03530 

CR Due to DD 0.28289 0.01032 

CR Due to DE 0.40629 0.01482 

CR Due to DF 0.96637 0.03526 

CR Due to AB 0.45932 0.01676 

CR Due to AD 0.50981 0.01860 

CR Due to EF 0.97299 0.03550 

CR Due to FF 0.97409 0.03554 
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The probability of the third scenario is low because the probability of network 

infrastructure risk (NR) occurring is low, although the probability of occurrence of 

cybersecurity risk is high.  

The fourth scenario for operation phase risk to occur is due to the occurrence of 

integration risk (IR), which may result from the cascading effect of resources and 

resource management risk (RMR), as presented graphically in Figure 4.18. The 

probability of this scenario is calculated using equation 3.14:  

P (RMR, IR, OP) = P(OP|IR). P(IR|RMR).P(RMR) = 0.02226 

The resources and resource management risk (RMR) probability is calculated using 

Bayes theory (3.10), using the combined probability assignment of (Component I), the 

limited knowledgeable human resources, and (Component V) the lack of budget, since 

it the has the maximum value, considering the worst-case scenario. Table 4.47 below 

summarizes the values of this scenario.  

  

Figure 4.18 Operation Phase Risk Scenario 4  
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Table 4.47: Summary of Probabilities Used to Calculate Operation Phase Risk Scenario 

4 

Probability  Value  Source  

P(OP|IR) 0.2764 Maximum value of this risk ( Table 4.41)  

P(IR|RMR) 0.3929 Calculated statistically from the data.  

P(RMR)  0.20495 This is calculated as P(RMR∣ IV ) using equation (3.10) 

 

The value of this scenario is low in comparison with the second scenario.  

The fifth scenario causing operation phase risk is resulting from the cascaded effect of 

cybersecurity risk (CR), which will cause technical data and applications risk (TR) in 

operation phase risk. The scenario is graphically presented in Figure 4.19.  

 

Figure 4.19: Operation Phase Risk Scenario 5 

The probability of this scenario is calculated using equation 3.14:  

P (CR, TR, OP) = P(OP|TR). P(TR|CR). P(CR) 

The cybersecurity risk (CR) probability is calculated using Bayesian theory (3.10), 

considering one combined incident. The basic probability assignments for combined 

incidents causing cybersecurity risk are above 10%. Thus, the cases in this scenario are 

presented in Table 4.48.  

Table 4.48: Summary Of Probabilities Used To Calculate Operation Phase Risk 

Scenario 5. 
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P(TR|CR)  =  Calculated statistically from the data  

P(OP|TR) = 0.10534        Table (4.41)   

Combined incident P(CR| Combined Incidents)  P (CR, TR, OP)  

CR Due to AC 0.49325 0.017320 

CR Due to AD 0.50981 0.017901 

CR Due to AE 0.40629 0.014266 

CR Due to AF 0.96637 0.033932 

CR Due to BF 0.88610 0.031114 

CR Due to CC 0.26019 0.009136 

CR Due to CF 0.96747 0.033971 

CR Due to DD 0.28289 0.009933 

CR Due to DE 0.40629 0.014266 

CR Due to DF 0.96637 0.033932 

CR Due to AB 0.45932 0.016128 

CR Due to AD 0.50981 0.017901 

CR Due to EF 0.97299 0.034165 

CR Due to FF 0.97409 0.034204 

   

 

The probability of this scenario to occur is low compared to the other scenarios. 

Accordingly, the most significant probability of operation phase risk is when this risk 

occurs due to the second scenario.  

The previous section provided the risk and incidents graphical model outcome of Phase 

2 of the suggested framework Figure 3.1. Also, this section provided the calculation 
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using the risk assessment tool to calculate risk probabilities by combining Dempster 

Shafter theory and Bayesian Joint probability.  

4.4.3.5 Evaluation Criteria using AHP.   

The analytical hierarchy process is used to develop the evaluation criteria based 

on Gioia results Figure 4.1, to evaluate the risk scenario probabilities. As per the 

resulting grounded theory provided in section 4.4.1, The main goal is to ensure smart 

city sustainability through proper risk management. As per the defined steps of  AHP, 

the problem is defined in the following chart illustrated in Figure 4.20 

  

Figure 4.20 AHP Problem Definition. 

To achieve smart city sustainability through proper risk assessment. Five criteria are 

defined based on the discussions with experts: service continuity, service efficiency, 

resource productivity, reputation, and revenue generation. The second level illustrates 

the project’s phase risks resulting from the identified risks’ scenarios in section 4.4.3.  

 A pair-wise comparison matrix between the five impacts affecting smart city 

sustainability is constructed based on the experts’ views and a focus group meeting, 

resulting in the ratings used in the pair-wise matrix. The used scale is suggested by( 
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Saaty, 1987). Table 4.49 represents the ratings of the five criteria used in the study. The 

normalized matrix and the criteria weights are presented in Table 4.50. The Consistency 

ratio is calculated using equation 3.16, and it shows a value of 0.0316, which is 

acceptable for a criteria matrix with n= 5 ( Saaty, 1987).   

Table 4.49: Pair-Wise Comparison Matrix.  

  

Service 

Continuity  

Service 

Efficiency  

Resource 

Productivity  

Reputation  

Revenue 

Generation  

Service 

Continuity  

1.00 1.00 3.00 7.00 9.00 

Service 

efficiency  

1.00 1.00 2.00 8.00 7.00 

Resource 

productivity  

0.33 0.50 1.00 2.00 5.00 

Reputation  0.14 0.13 0.50 1.00 3.00 

Revenue 

Generation  

0.11 0.14 0.20 0.33 1.00 
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Table 4.50: Normalized Pair-Wise Comparison Matrix.  

 

Service 

Continuity  

Service 

Efficiency  

Resource 

Productivity  

Reputation  

Revenue 

Generation  

Criteria 

Weight

s  

S
erv

ice 

C
o

n
tin

u
it

y
  

0.39 0.36 0.45 0.38 0.36 0.39 

S
erv

ice 

E
fficien

cy
  

0.39 0.36 0.30 0.44 0.28 0.35 

R
eso

u
rce 

p
ro

d
u
ctiv

i

ty
  

0.13 0.18 0.15 0.11 0.20 0.15 

R
ep

u
tatio

n
  

0.06 0.05 0.07 0.05 0.12 0.07 

R
ev

en
u
e 

G
en

eratio
n

  
0.04 0.05 0.03 0.02 0.04 0.04 

 

According to the results, the weight of service continuity is 0.39, which indicates the 

importance of having continuous services in a smart city project. The service efficiency 

is high at 0.35, which is crucial for sustainable smart city projects. Resource 

productivity is of moderate importance, but resource productivity will affect service 

continuity and efficiency. The lower values are given to reputation and revenue 

generation, which will be affected by service continuity and productivity.  
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To construct the decision matrix, a pair-wise matrix is constructed  for each smart city 

project phase risk with each criterion as follows:  

The service Continuity matrix is constructed in Table 4.51, and consistency is tested 

using equation 3.16. and it has a value of 0.05914, which is accepted since the matrix 

four criteria matrix.  

Table 4.51 Pair-wise Comparison Matrix for Service Continuity SC-Project Phase Risk  

 DES PLAN IMP OP 

Design Phase Risk (DES) 1.00 5.00 8.00 9.00 

Planning Phase Risk (PLAN) 0.20 1.00 2.00 6.00 

Implementation Phase Risk (IMP) 0.13 0.50 1.00 3.00 

Operation Phase Risk (OP)  0.11 0.17 0.33 1.00 

 

The normalized matrix and the weights are the results, as presented in Table 4.52. 

Table 4.52 Pair-Wise Normalized Comparison Matrix For Service Continuity And SC-

Project Phase Risk  

 DES PLAN IMP OP Criteria Weights  

Design Phase Risk (DES) 0.70 0.75 0.71 0.47 0.66 

Planning Phase Risk (PLAN) 0.14 0.15 0.18 0.32 0.20 

Implementation Phase Risk (IMP) 0.09 0.08 0.09 0.16 0.10 

Operation Phase Risk (OP)  0.08 0.03 0.03 0.05 0.05 

 

The service efficiency matrix is built as Table 4.53 presents, the consistency index is 

calculated, and it has a value of 0.021572. 

Table 4.53  Pair-Wise Comparison Matrix For Service Efficiency And  SC-Project 
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Phase Risk 

 DES PLAN IMP OP 

Design Phase Risk (DES) 1.00 0.11 0.13 0.25 

Planning Phase Risk (PLAN) 9.00 1.00 0.50 2.00 

Implementation Phase Risk (IMP) 8.00 2.00 1.00 3.00 

Operation Phase Risk (OP)  4.00 0.50 0.33 1.00 

 

The normalized matrix and the criteria weights are presented in Table 4.54. 

Table 4.54. Normalized Matrix for Service Efficiency And SC-Project Phase  

 DES PLAN IMP OP Criteria Weights 

Design Phase Risk (DES) 0.05 0.03 0.06 0.04 0.05 

Planning Phase Risk (PLAN) 0.41 0.28 0.26 0.32 0.32 

Implementation Phase Risk (IMP) 0.36 0.55 0.51 0.48 0.48 

Operation Phase Risk (OP)  0.18 0.14 0.17 0.16 0.16 

 

The resource productivity matrix is built as  Table 4.55 presents, the consistency index 

is calculated, and it has a value of 0.012664776. 

Table 4.55  Pair-Wise Comparison Matrix For Resource Productivity And  SC-Project 

Phase Risk 

 DES PLAN IMP OP 

Design Phase Risk (DES) 1.00 0.11 0.33 1.00 

Planning Phase Risk (PLAN) 9.00 1.00 2.00 5.00 

Implementation Phase Risk (IMP) 3.00 0.50 1.00 3.00 

Operation Phase Risk (OP)  1.00 0.20 0.33 1.00 
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The normalized matrix and the criteria weights are presented in Table 4.56. 

Table 4.56 The Normalized Matrix for Resource Productivity and SC Project Phase  

 DES PLAN IMP OP Criteria Weights  

Design Phase Risk (DES) 0.07 0.06 0.09 0.10 0.08 

Planning Phase Risk (PLAN) 0.64 0.55 0.55 0.50 0.56 

Implementation Phase Risk (IMP) 0.21 0.28 0.27 0.30 0.27 

Operation Phase Risk (OP)  0.07 0.11 0.09 0.10 0.09 

 

The reputation matrix is built as per Table 4.57, and the consistency index is calculated 

at 0.023289655. 

Table 4.57: The Pair-Wise Comparison Matrix for Reputation and SC Project Phase   

 DES PLAN IMP OP 

Design Phase Risk (DES) 1.00 0.50 0.25 0.11 

Planning Phase Risk (PLAN) 2.00 1.00 0.33 0.13 

Implementation Phase Risk (IMP) 4.00 3.00 1.00 0.25 

Operation Phase Risk (OP)  9.00 8.00 4.00 1.00 

 

The normalized matrix and the criteria weights are presented in Table 4.58 
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Table 4.58: The Normalized Matrix for Reputation  and SC Project Phase 

 DES PLAN IMP OP Criteria Weights  

Design Phase Risk (DES) 0.06 0.04 0.04 0.07 0.06 

Planning Phase Risk (PLAN) 0.13 0.08 0.06 0.08 0.09 

Implementation Phase Risk (IMP) 0.25 0.24 0.18 0.17 0.21 

Operation Phase Risk (OP)  0.56 0.64 0.72 0.67 0.65 

 

The revenue generation matrix is built as per Table 4.59, where the consistency index 

is calculated and has a value of 0.022626867. 

Table 4.59: The Pair-Wise Comparison Matrix for Revenue Generation and SC Project 

Phase Risk. 

 DES PLAN IMP OP 

Design Phase Risk (DES) 1.00 2.00 2.00 0.25 

Planning Phase Risk (PLAN) 0.50 1.00 0.50 0.13 

Implementation Phase Risk (IMP) 0.50 2.00 1.00 0.25 

Operation Phase Risk (OP)  4.00 8.00 4.00 1.00 

 

The normalized matrix and the criteria weights are presented in Table 4.60 
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Table 4.60: The Normalized Comparison Matrix For Revenue Generation And SC-

Project Phase Risk. 

 
DES PLAN IMP OP Criteria Weights  

Design Phase Risk (DES) 0.17 0.15 0.27 0.15 0.19 

Planning Phase Risk (PLAN) 0.08 0.08 0.07 0.08 0.08 

Implementation Phase Risk (IMP) 0.08 0.15 0.13 0.15 0.13 

Operation Phase Risk (OP)  0.67 0.62 0.53 0.62 0.61 

 

The resulting evaluation criteria matrix based on the previous calculations is shown in 

Table 4.61 below. The evaluation criteria provide each smart city phase risk level's 

impact on service continuity, efficiency, resource productivity, reputation, and revenue 

generation. For example, the impact of design phase risk (DES) concerning service 

continuity is 0.65647, and the impact of planning phase risk (PLAN) concerning service 

efficiency is 0.31533. In addition, the importance of the pillars concerning smart city 

sustainability is calculated, so the importance of service continuity concerning smart 

city sustainability is 0.38747. Smart city decision-makers may use the resulting criteria 

during any project’s phase to assess risks and scenarios and take the proper 

countermeasures to ensure smart city sustainability. The matrix allows for the 

prioritization of risks based on the specified criteria. The evaluation criteria are the 

outcome of Phase 3 of the suggested Framework in Figure 3.1  
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Table 4.61: Risk Evaluation Criteria. 

  

  

Service 

Continuity 

(0.38747) 

Service 

efficiency.  

(0.35253) 

Resource 

productivit

y  

(0.15356) 

Reputatio

n  

(0.06991) 

Revenue 

Generation  

(0.03652) 

Design Phase 

Risk (DES) 

0.65647 0.04501 0.08092 0.05551 0.18526 

Planning Phase 

Risk (PLAN) 

0.19538 0.31533 0.56011 0.08720 0.07596 

Implementation 

Phase Risk 

(IMP) 

0.10204 0.47703 0.26577 0.20933 0.13109 

Operation Phase 

Risk (OP)  

0.04610 0.16262 0.09319 0.64795 0.60769 

 

According to the resulting evaluation criteria, the scenarios of risks are evaluated using 

the weighted sum equation (3.17). The design risk total impact on the smart city project 

is 0.29330. Accordingly, if scenario 3 occurred, for instance, the value of design risk 

will be calculated as the probability of this scenario to occur multiplied by the impact 

of design risk, which will equal to 0.02532. 

The planning risk total impact is 0.28175. Therefore, the value of the planning risk if 

scenario 3 occurred, for example, equals  0.03064. The total impact of the 

implementation risk is calculated as 0.26794. Then, the value of implementation risk, 

for instance, will be 0.03288 if scenario 2 occurs. The operation risk total impact is 

computed as 0.15699. Thus, the value of operation risk equals 0.0784 if scenario 2 

occurred, for instance. 
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Management can use these values to make informative and precise decisions when 

analyzing risks. 

4.5 Framework Evaluation    

The framework is evaluated using a focus group with fifteen smart city experts. 

During the focus group meeting, the outcome of each phase is discussed and explained, 

and then the system usability score SUS (Brooke, 2020) is discussed and sent to the 

participants after the meeting. The results of the framework evaluation process are 

discussed as follows.  

4.5.1 Focus Group Evaluation 

 The focus group comprises fifteen experts who worked on smart city projects 

during different phases. Four members are from the management level, two are experts 

in designing and planning, and nine worked in the implementation and operation 

phases. The outputs of each phase of the risk assessment framework are discussed. For 

the resulting grounded theory, management-level experts acknowledged the five pillars, 

service continuity, service efficiency, resource productivity, reputation, and revenue 

generation, that will affect smart city sustainability; the risk assessment framework will 

consider risks’ impact on these pillars and the average SUS score of .78.6%, which 

acceptable evaluation since it is above 50% as mentioned by (Calciolari et al., 2022)  

when evaluating a similar conceptual framework.  

The graphical presentation of risk scenarios and the causal relations between risks are 

illustrated. The designing and planning experts accepted the proposed scenarios as the 

major scenarios that may occur, including resulting relationships between risks. The 

implementation and operation experts admitted the resulting scenarios with the SUS 

score value of 80.4%  and suggested having detailed guidelines to apply the framework 
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in the industry. The evaluation criteria are presented and discussed during the focus 

group, and the responses agree with the achieved percentages and weights of the criteria 

with an SUS score of 78.7%. 

4.5.2 System Usability Scale Evaluation  

The SUS questionnaire developed and discussed by (Brooke, 2020) is distributed 

to the fifteen experts who worked on smart city projects regionally and internationally 

to test the framework's usability. The System Usability Scale SUS evaluation is 

performed on each framework’s phase output. Table 4.62 evaluates Phase 1 outcomes 

and the resulting grounded theory from initial data analysis. The evaluation contains 

questions about the consistency of the theory, its usage, and its level of complexity. 

(The SUS evaluation questionnaire is available in APPENDIX B.) The average score 

is  78.68, which is acceptable per the defined average  SUS score of 68 (Lewis & Sauro, 

2018). When analyzing individual scores, all experts provided scores above 50. 

Table 4.62.SUS score for Phase 1: Initial Data Analysis output 

Expert Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score 

1 5 2 3 3 4 2 4 2 4 2 72.5 

2 4 1 4 2 5 1 4 2 5 1 87.5 

3 2 2 4 1 5 1 5 2 5 1 85 

4 5 1 5 1 5 1 5 1 5 1 100 

5 4 2 4 1 3 1 5 1 4 2 82.5 

6 3 2 3 4 3 1 5 3 2 5 52.5 

7 4 1 4 3 4 1 4 1 4 2 80 

8 5 1 5 1 5 1 5 1 5 1 100 

9 5 1 4 2 5 1 5 1 5 1 95 

10 3 3 3 4 5 2 3 3 3 2 57.5 
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Expert Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score 

11 4 1 3 1 4 1 3 1 4 2 80 

12 4 1 4 5 4 1 5 1 4 2 77.5 

13 4 1 4 5 4 1 4 1 4 1 77.5 

14 4 3 4 2 3 3 4 3 4 3 62.5 

15 4 2 3 2 3 1 4 2 3 2 70.0 

 

The interrelations between risks, presented in section 4.4.4 and the graphical 

presentation of these relations, are evaluated, where each smart city project phase risk 

scenarios are evaluated in terms of consistency of the relationship between risks and 

the usability of these scenarios to smart city management. The following tables present 

the SUS evaluation scores for design and planning phase risk scenarios, Table 4.63; 

implementation phase risk scenarios, Table 4.64; and operation phase risk scenarios, 

table 4.65. The scores have an average of 80.33.,79.5,81.33, respectively, which are 

accepted. The individual scores given by each expert are between 60 and 100. Thus, 

the evaluation is accepted per the rates mentioned (Lewis & Sauro, 2018). 
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Table 4.63 SUS score for Phase 2: Design and Planning Phases Risk Scenarios 

Expert  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score  

1 4 1 3 3 4 2 4 2 4 3 70 

2 5 2 4 2 5 2 4 1 4 2 82.5 

3 5 2 5 1 5 1 5 1 5 1 97.5 

4 5 1 5 1 5 1 5 1 5 1 100 

5 5 1 4 2 3 1 5 1 4 2 85 

6 5 1 4 4 4 1 4 1 5 3 80 

7 4 1 4 3 4 1 3 1 4 1 80 

8 5 1 5 1 5 1 5 1 5 1 100 

9 5 1 5 1 5 1 5 1 5 1 100 

10 4 2 2 3 4 2 4 3 3 2 62.5 

11 4 1 4 1 3 2 3 1 4 2 77.5 

12 4 2 3 5 4 1 3 2 3 3 60 

13 5 1 4 5 5 1 5 1 5 1 87.5 

14 4 2 3 2 3 3 3 2 4 2 65.0 

15 4 1 3 2 3 1 4 2 3 2 72.5 

 

Table 4.64  SUS score for Phase 2: Implementation Phase Risk Scenarios 

Expert  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score  

1 4 2 3 3 4 2 4 1 3 2 70 

2 5 2 4 2 4 1 4 1 4 2 82.5 

3 5 1 5 1 5 1 5 1 5 1 100 

4 5 1 5 1 5 1 5 1 5 1 100 

5 5 1 4 2 3 1 5 1 4 1 87.5 

6 5 2 3 4 2 4 2 2 3 3 50 
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Expert  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score  

7 4 1 4 3 4 1 3 1 4 2 77.5 

8 5 1 5 1 5 1 5 1 5 1 100 

9 5 1 5 1 5 1 5 1 5 1 100 

10 4 2 2 3 4 2 4 3 3 2 62.5 

11 3 2 3 1 4 2 3 1 3 3 67.5 

12 4 1 3 5 4 1 4 2 4 2 70 

13 5 1 4 5 5 1 5 1 5 1 87.5 

14 4 2 4 2 3 3 3 2 4 2 67.5 

15 5 2 3 2 3 1 4 2 3 3 70.0 

 

Table 4.65 SUS score for Phase 2: Operation Phase Risk Scenarios 

 Expert  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score  

1 4 2 3 3 4 2 4 1 3 2 70 

2 5 2 4 1 5 1 5 1 5 2 92.5 

3 4 2 5 1 5 1 5 1 5 1 95 

4 5 1 5 1 5 1 5 1 5 1 100 

5 5 1 4 2 3 1 5 1 4 2 85 

6 5 3 4 5 4 1 4 2 2 4 60 

7 4 1 4 3 4 1 3 1 3 2 75 

8 5 1 5 1 5 1 5 1 5 1 100 

9 5 1 5 1 5 1 5 1 5 1 100 

10 4 2 2 3 4 2 4 3 3 2 62.5 

11 3 2 4 1 3 2 4 1 4 3 72.5 

12 4 2 3 5 4 1 4 2 4 3 65 

13 5 1 4 4 5 1 5 1 5 1 90.0 
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 Expert  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score  

14 3 2 3 2 3 2 3 2 3 2 62.5 

15 4 1 4 2 3 1 4 2 3 2 75.0 

 

In the evaluation of Phase 3, which contains the evaluation criteria, resulted in an 

average score of 78.67, and the usability criteria for smart city management and 

consistency were evaluated. The individual scores are presented in Table 4.66. 

Table 4.66: SUS Score for Phase 3: Smart City Risks Evaluation Criteria 

Expert  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score  

1 4 2 3 3 4 2 4 2 4 2 70 

2 4 2 4 2 5 1 5 1 5 2 87.5 

3 4 4 4 4 3 1 4 4 2 3 52.5 

4 5 1 5 1 5 1 5 1 5 1 100 

5 5 1 4 2 4 1 5 1 4 1 90 

6 4 1 4 3 4 1 5 2 4 3 77.5 

7 4 1 4 3 3 1 4 1 4 1 80 

8 5 1 5 1 5 1 5 1 5 1 100 

9 5 1 5 1 5 1 5 1 5 1 100 

10 3 3 3 3 4 2 3 2 3 2 60 

11 3 2 4 3 4 2 3 2 4 2 67.5 

12 4 2 3 5 4 1 4 2 4 3 65 

13 5 1 4 5 5 1 5 1 5 1 87.5 

14 4 1 4 1 3 3 3 2 4     2 72.5 

15 4 2 3 2 3 1 4 2 3 2 70.0 
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4.6 Results Discussion   

This section discusses the thesis findings and the research questions. The 

discussion aims to declare the achievement of the research objectives in the following 

paragraphs.  

4.6.1 Analysis of RQ1 

The first research question concerns the risk types applicable to smart city 

projects. Smart cities are generally considered an expression in many countries to 

indicate the use of technology for some of their governance processes. As mentioned 

in this thesis, multiple dimensions must be considered to obtain ‘smart’ outcomes for a 

city. Smart outcomes, however, need the right use of technology, governance processes, 

and participation from different sectors of society. However, technology, integration 

systems, and governance can invite technical and non-technical risks. Such risks may 

not be understood well by the planners, and it can lead to misperceptions of smart city 

applications and advantages.  

The capability to design the smart city ecosystem and integrate it with a better risk 

management process can support the objective of a smart city. The study highlights the 

opportunities and risk-based challenges related to smart cities. The study presents 

technical and non-technical risks in smart city design, planning, implementation, and 

operation.  

The literature focuses on technical risks because smart cities are usually understood in 

terms of using smart technologies and systems. Although very few researchers focus 

on non-technical risks, it is emphasized that addressing non-technical risks such as 

social, economic, governance, legal, and strategic risks can improve the outcomes of 
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smart city design, planning, implementation, and operation. 

Therefore, and as the results of this study present, the aspirants of smart city design and 

planning have to analyze non-technical threats, like management changes, hierarchy, 

planning, and organizational vision, to avoid strategic risk. Considering people’s 

mindsets of resisting change and using smart systems and the lack of communication 

between different stakeholders will support the identification of stakeholder 

engagement risks.  

The awareness and application of policies, regulations, and standards are mandatory to 

avoid the risk of laws, regulations, and standards, especially during the early design 

phase. Smart city sustainability can be assured when considering a clear business 

continuity model and continuous data analysis, which will minimize business 

continuity risk.  

Smart city designers and planners should pay attention to budget details and 

investments in smart city projects to avoid financial risk. The limited knowledge of 

human resources and experts in smart city design, planning implementation, and 

operation is a main challenge that causes resource and resource management risk. Early 

awareness of this risk from the design phase will enable decision-makers to take 

countermeasures to mitigate this risk. 

Moreover, non-technical risks must be considered in addition to technical risks during 

implementation and operation. The main non-technical risks that should be considered 

are stakeholder engagement risk, laws, regulations, standards risk, financial risk, and 

resource and resource management risk.  In addition, technical threats such as lack of 

maintenance model for systems, lack of Integration and interoperability between 

systems, improper security awareness and updates, IoT devices vulnerability, and 

cyber-attacks should be examined to prevent cybersecurity risk.  
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Smart city implementers and operators must consider the wrong operation and the 

mentioned technical threats to prevent technical data and applications risks, data 

security and privacy risks, and network infrastructure risks. The integration risk is a 

main risk to be anticipated by considering the limited knowledgeable human resources 

and experts, the limited integration and operability between systems and the usage of 

closed code programs.  

In the previous paragraphs, the study illustrates that technical and non-technical risks 

are applicable in a smart city project.  

4.6.2 Analysis of RQ2 

The second research question concentrates on the interrelations between 

different types of risks. The interrelations between different types of risks are presented 

in the results, based on the interviews with experts and the correlation tests performed 

on the data.  

Technical risks may occur due to a shared incident. For instance, cybersecurity, 

technical data, and application risks may occur due to a lack of Integration and 

interoperability between systems or security awareness. These incidents are correlated; 

cybersecurity and technical data and application risks are interrelated. Furthermore, 

cybersecurity risk, data security, and privacy risk have common incidents that are 

related with high correlation coefficients. These incidents are cyber-attacks and a lack 

of security awareness. The resulting interrelations are supported by other studies 

(Ismagilova et al., 2022).  

Network infrastructure risk has common incidents with cybersecurity risk, including 

lack of Integration and interoperability between systems, lack of maintenance model 

for systems, and lack of security awareness. In addition, the risk shares wrong operation 
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incidents with technical data and application risk. The common incidents are correlated; 

therefore, the risks are associated.   

The integration risk has a common incident with cybersecurity, technical data and 

application, and network infrastructure risks. This incident is due to a lack of integration 

and interoperability between systems. Accordingly, these risks have interrelations. 

The interview with smart city experts showed that technical risks are related to non-

technical risks. This finding is supported by Shayan et al.,(2020), but the detailed 

relations are not identified in the study.  

The results from phase 2 of the smart city risk assessment framework proposed in this 

study show that laws, regulations, and standards risk are related to integration risk, 

standards are crucial for integration between systems and hardware and software, and 

lack of awareness of regulations and standards will initiate integration risk. Also, 

resource and resource management risks that may be caused by limited knowledgeable 

human resources and experts will lead to integration risks. 

The smart city experts highlighted the interrelations between non-technical risks. The 

financial risk is interrelated with resource and resource management risk, where a lack 

of budget will affect hiring knowledgeable resources and experts. 

The change in management hierarchy and planning will cause strategic risk, leading to 

a lack of communication among different stakeholders and thus causing stakeholder 

engagement risk. 

Also, the results illustrate that the lack of awareness and application of laws, 

regulations, policies, and standards will cause risks to laws, regulations, and standards, 

affecting business continuity planning and causing business continuity risk. The unclear 

continuity plans will lead stakeholders to fear investment in smart city projects, and 

thus, financial risk may be caused. 
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 The literature highlighted that there are interrelations between risks, yet the authors 

recommended comprehensive studies to have a complete risk assessment method for 

smart cities (Techatassanasoontorn & Suo, 2010) 

4.6.3 Analysis of RQ3 

The third research question focuses on what should be integrated to develop a 

generic assessment framework for smart cities. A smart city project is complex and 

involves multiple disciplines, including urban planning, technology, social, and 

management sciences. Developing a generic risk assessment framework requires a 

comprehensive understanding of technical and non-technical risks for smart city 

projects. Understanding the incidents causing each risk is mandatory for comprehensive 

assessment, as the results of the first phase of the suggested framework illustrate.   

The interrelations and interactions between risks must be identified, and the main risk 

scenarios for each smart city project phase, design, planning, implementation, and 

operation must be specified. Risk incident probabilities must be considered while 

calculating the joint probabilities of risk scenarios. The suggested framework’s second 

phase output provides interrelations and joint probabilities calculations. 

The impacts of the risks on smart city projects and city sustainability should be 

recognized. The impacts on smart city service continuity, efficiency, resource 

productivity, reputation, and revenue generation should be recognized. Then, 

evaluating risks compared to impacts is crucial for decision-makers to take the proper 

measures to mitigate risks. The evaluation is illustrated in the third phase of the 

suggested framework.   

4.6.4 Analysis of RQ4 

The fourth research question focuses on applying the suggested risk assessment 
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framework to assess risk in a smart city design, planning, implementation, and 

operation.  

Risk assessment, by definition, includes identifying, analyzing, and prioritizing 

potential risks a project may encounter. The suggested framework proposes a 

comprehensive method to identify, analyze, and prioritize risks a smart city project may 

face during different phases of the project.  

Potential risks are identified through comprehensive interviews with smart city experts 

who have worked regionally and internationally. The experts are diverse, which 

allowed the identification of incidents causing risks and the main risks applied in smart 

city projects. The results are illustrated in Table (4.4). Smart city project teams could 

use the resulting list to identify the applicable incidents and risks within the project.  

Analysis of incidents causing risks is performed using the Dempster-Shafer theory, 

where a combination of incidents and probabilities are identified to get the combined 

basic probability assignments. The values of the combined basic probabilities 

assignments provide indications of the critical incidents that the smart city project team 

needs to consider during the design, planning, implementation, and operation phases. 

Identified scenarios will provide an idea of the interrelations between risks. 

Accordingly, proper mitigation plans can be prepared.  

The findings show that at the design phase, decision-makers must focus on strategic 

risk, stakeholder engagement risk, laws and regulations risk, business continuity risk, 

and financial risk. Attention to different technical risks is recommended. The results 

also indicate that the most probable scenario to occur causing design phase risk is the 

scenario that starts from strategic risk, leading to stakeholders’ engagement risk and 

then the design risk, with a probability of 8%  

Proper management of these risks will secure service continuity, increase resource 
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productivity, and enhance future revenue generation.  

Similarly, decision-makers must concentrate on strategic, stakeholder engagement, and 

financial risks in the planning phase since the most probable scenario to occur is starting 

with strategic risk, leading to stakeholders’ engagement risk, and then planning risk 

with a probability of 10 %. Yet, resource and resource management risks must be paid 

proper attention to ensure productivity and efficiency. Thus, smart city decision-makers 

must have a clear vision for the smart city with a proper business model that will secure 

the sustainability and continuity of the city. Also, a stakeholder management plan needs 

to be in place to have stakeholders’ acknowledgment and support for the smart city 

project. Financial planning is a major element to be considered to avoid over-budget 

and unnecessary costs that may occur. 

Technology-related risks play a significant role in the implementation phase; smart city 

implementers must pay attention to cybersecurity, network infrastructure, and 

integration risks. The results denote that the highest probability of implementation 

phase risk results from cybersecurity risk, which leads to integration risk with a value 

of 12%. 

In addition, stakeholder engagement and resource and resource management risks must 

be studied to confirm services’ efficiency and enhance resource productivity.  

Therefore, during the implementation phase, implementation experts must continuously 

refer to strategic plans and ensure robust communication between different stakeholders 

to expedite the implementation, especially with the complexity of a smart city project. 

Regarding technology alignment with laws, regulations, and standards, the 

implementation team must have rigorous knowledge of the country’s legislation to 

avoid delays, additional costs, and reputation impacts.  

From a technology perspective, integration between smart city applications and 
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hardware devices must be considered in terms of integration experts, used technology, 

and scope of work, in addition to the full awareness of security measures, cyberattacks, 

network designs, and systems interoperability. Accordingly, the financial impacts of 

service interruption impact will be minimized.  

Results give insights to smart city management and decision-makers during the 

operation phase. Smart city operators need to have proper information about the vision 

and mission of the smart city project, which will support the operation within the 

project's scope. Operation experts must regularly communicate with stakeholders, 

including higher management, to highlight any threats or incidents that may cause 

technical and non-technical risks. Stakeholder management has low consideration by 

the operation team; planning and implementation teams must communicate their view 

of risks to operational teams to ensure adequate risk identification and mitigation 

planning during operation. Mitigating these risks will ensure service continuity, 

productivity, and efficiency during operation, guarantee expenses within budget, and 

build a respectful reputation. 

Proper resources must be acquired for each phase of the project to avoid risks from 

resource scarcity. Furthermore, preventative measures must be taken regarding 

technical risks, such as identifying the technology to be used and ensuring that the used 

technology and equipment align with the country’s laws and standards. Besides, 

cybersecurity measures, data security and privacy procedures, and proper network 

designs are crucial; the results present that the highest probability of operation phase 

risk results from cybersecurity risk, which leads to data security and privacy risk, with 

a value of 40%. 

For smart city users, who are mostly information technology managers, it is necessary 

to raise awareness of the holistic view of risks. Special risk scenarios may occur due to 
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wrong operation, lack of security awareness, or lack of maintenance to avoid the 

impacts of service disturbance in the smart city.  

Prioritizing risks is performed using the resulting evaluation criteria based on the 

grounded theory from this study to identify the impacts of risks on a smart city project 

regarding service continuity, efficiency, resource productivity, revenue generation, and 

reputation. The evaluation criteria provide weights for each, in addition to weights of 

risks during smart city project phases. The research offers suggestions for theory and 

practice. It is a main study that aims to fill the research gap of the limited number of 

comprehensive risk assessment frameworks for smart cities. Second, the proposed 

framework identified major incidents causing risk, with quantification of probabilities’ 

values and their impacts. Finally, unlike methods that consider incidents or risks in an 

isolated manner, the framework suggested combinations of incidents causing risks and 

interrelated risks through scenarios that will provide decision-makers with a holistic 

view. 

The proposed framework can be implemented with the applicable incidents for each 

type of risk. The decision-makers can use MS Excel tools to analyze the data. The 

method can be used by smart city designers, planners, implementers, operators, and 

decision-makers. The framework includes analytical methods which are evidenced as 

applicable in various project phases. Therefore, these methods can be automated to 

provide decision support for smart city decision-makers.  

The limitation that could be counted is the number of experts and decision-makers who 

could evaluate the framework's output since the sample contains experts from the region 

and from international projects. Although the number is consistent with the literature, 

more experts could be used in the evaluation.  
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4.7 Chapter Summary    

This chapter provided the results for each phase of the suggested framework. 

Figure 3.1. Phase 1 results provided the incidents causing risks and their ranks, and then 

risks were defined using the Gioia method. The outcome of this phase provided the 

answer to research question 1, which concerns the risk types applicable to a smart city 

project. The results identified eleven main risks: five are technology-related, and six 

are related to organizational, social, and financial factors.  

Then, the ranks of incidents resulting from Phase 1 of the framework in Figure 3.1  are 

used to calculate the combined basic probability assignment. In real life, incidents 

causing risks are combined to get probability values since incidents causing risks do 

not occur in solos. Interrelations are identified, providing an answer to the second 

research question.  

A graphical presentation of the relations is reached based on interviews with experts 

and common incidents between different risks. That led to the outcome of Phase 2 of 

the suggested framework in Figure 3.1, the graphical presentation of the risk scenarios.  

Calculating the probability of risk scenarios requires using Bayes' theory to calculate 

the probability of risk occurring due to combined incidents. This step represents the 

hybrid usage of Dempster -Shafer theory and Bayes Theory in estimating risk 

probability and creating risk assessment tool used in the framework. 

Then, Bayesian joint probability is used to calculate the risk scenario probability. That 

will be evaluated using the AHP multicriteria decision-making technique. Achieving 

the outcome of Phase 3 of the framework Figure 3.1.  

These results address the research questions of what to consider when designing a smart 

city risk assessment framework and how it can be implemented.  
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CHAPTER 5: CONCLUSIONS, CONTRIBUTIONS, AND FUTURE RESEARCH  

The thesis proposed a holistic framework that can be used to assess risks in 

smart city projects. The framework is considered holistic since it studies technical and 

non-technical risks a smart city project faces during the design, planning, 

implementation, and operation phases.  The understanding of the probabilities of these 

risks to occur and the interrelations between them, through the resulting risk scenarios, 

are used to support the decision-makers in having a better overview of the joint 

probabilities of risks to occur. The impacts on smart city sustainability are defined. 

Evaluation criteria are provided so management can build their decision based on 

calculations and mathematical values. 

Therefore, the contribution of the thesis is on the development of a framework and the 

evidence that the tools are used for calculating the combined basic probability 

assignment (Dempster-Shafer theory), joint probability –(Bayesian Theory), and 

Analytical Hierarchy process as multicriteria decision-making technique, to be applied 

and used for risk assessment of smart city project.  

Applicable risk types to smart city projects are technical and non-technical risks 

accompanying technology adoption, integration, and governance and must be 

considered to enhance smart city outcomes. Technical risks, including cybersecurity, 

technical data and application risk, network infrastructure risks, data security, and 

privacy and integration risks, are often emphasized to coexist with non-technical risks 

such as social, economic, governance, legal, and strategic risks. Addressing non-

technical risks such as strategic risks, stakeholder engagement risks, financial risks, 

resource and resource management risks, and legal risks can significantly enhance 

smart city outcomes during design, planning, implementation, and operation. A holistic 

smart city risk assessment framework that balances technical and non-technical aspects 
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is essential for successful smart city endeavors.  

There are interrelations among different types of risks. These interrelations emerge 

from expert interviews and correlation tests on the data. Technical risks often stem from 

shared incidents. For example, cybersecurity, technical data, and application risks may 

arise due to a lack of integration and interoperability between systems or security 

awareness. Cybersecurity and technical data and application risks exhibit correlations, 

and common incidents include cyber-attacks and security awareness. Smart City 

Experts believe that technical risks intertwine with non-technical risks. 

For instance, laws, regulations, and standards risk relate to integration risk. A lack of 

awareness about regulations and standards can trigger integration risks. Thus, 

understanding these interrelations is essential for effective risk management and 

informed decision-making in complex systems. 

When performing smart city risk assessment, risks interrelations. Main risk scenarios 

for different project phases of design, planning, implementation, and operation should 

be specified. Risk incident probabilities must be considered when calculating joint 

probabilities of risk scenarios to provide a comprehensive understanding. Also, 

recognizing the impacts of risks on smart city projects and overall city sustainability is 

essential, including the impacts on service continuity, efficiency, resource productivity, 

reputation, and revenue generation. Evaluation of risks and impacts will support 

decision-makers to take appropriate mitigation measures. 

The suggested framework aims to identify, analyze, and prioritize risks across different 

phases of a smart city project. During the design phase, attention should be paid to 

strategic, stakeholder engagement, laws and regulations, business continuity, and 

financial risks. In the planning phase, decision-makers find financial risk in addition to 

the design phase risks. Resource and resource management risks also require attention. 
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During the implementation phase, it is mandatory to protect smart city systems from 

cyber threats; implementers must address vulnerabilities, secure networks, and 

safeguard data. Reliable and robust network infrastructure ensures seamless 

communication between devices and services. 

Furthermore, integrating various components (applications, hardware, sensors) requires 

careful planning to avoid compatibility issues. During the operation phase, in addition 

to the attention to technology-related risks,  regular communication among stakeholders 

expedites implementation and operation. Reference to strategic plans and ensure 

alignment with project goals. In addition, understanding local legislation is a must to 

avoid delays, additional costs, and reputational impacts.  

During the operation phase, the team must be aware of risks communicated by planning 

and implementation teams. This is required to build effective risk management and 

ensure service continuity and productivity. With the application of the holistic 

framework, smart city projects can navigate challenges, enhance efficiency, and 

achieve their intended impact.  

Accordingly, the objective of the thesis to propose a generic risk analysis framework 

and evaluate its applicability in smart city design and operation is achieved. 

The literature is reviewed to identify the current research and available smart city risk 

assessment framework to build a comprehensive smart city risk assessment framework. 

The available frameworks are evaluated against their inclusive point of view of 

different types of risks related to various smart city dimensions.  
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5.1Contributions  

The thesis contributes by proposing a comprehensive risk assessment framework 

and analytical models to assess the impact of technical risk and non-technical risks 

associated with different dimensions in any phase of a smart city project. The 

framework is developed by using management research (grounded theory) and 

quantitative research (Dempster-Shafer theory and Bayesian Network theory). 

 

5.2 Limitations  

1. Probabilities to be used in the Dempster-Shafer theory are defined based on the 

outcomes obtained from the interviews. Such probabilities might be changed 

when the decision-making environment changes. Therefore, although the 

framework and tools used in the thesis are robust, the implication of belief and 

recommendation is valid for the situation governed during the study conducted 

for this thesis.  

2. The thesis uses Dempster-Shafer's theory as a risk assessment method as it can 

replicate the belief of a particular expert based on her/his in-depth experience 

in one or many phases of the smart city project. The theory was used as it was 

cited as an applicable method to obtain experts' beliefs on risk occurrence (Sentz 

& Ferson, 2002). The methods like Mote Carlo simulation could also have been 

used to develop the relation between the risks. However, the focus here was to 

have directional aspects related to risks. Therefore, the Bayesian method is 

considered more useful.  

3. The calculation of risk probability to occur depends on the probabilities of 

incidents causing risk. Some risks occurring in a phase can impact other phases 
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of the project. Also, some risks in the later phase may be noticed due to the 

issues in the previous phases. However, this kind of cascaded risk in different 

phases is not considered in this thesis.  

 

5.3 Future Research  

1. This research considered technical and non-technical risks affecting the smart 

city project life cycle based on the inputs from the interviewers and the 

literature. External factors like the impact of climate change, political processes, 

or supply chain factors can also impact smart city projects. Fernández & Peek 

(2020) also mention that smart cities need to adapt to climate change situations. 

Miller (2020) mentions the impact of the political situation on smart cities. 

Therefore, future research can be conducted to extend the framework and assess 

the combined impact of external factors on the smart city project lifecycle.   

2. Smart city systems produce big data, which can provide valuable insight into 

risk triggers. Global organizations use big data analytics to assess risks within 

their organizations (El Khatib et al., 2023). Therefore, although the analysis 

requires multidisciplinary expertise, utilizing big data can help understand the 

association among the risks, cause and impact relations, and potential risk 

triggers or patterns. Therefore, integrating the proposed framework with big 

data analytics for risk assessment and developing cause-and-effect relations can 

be considered for future research. Developing algorithms and small changes in 

the framework could be the main focus of such research.  

3. Smart city projects become complex as they require the collaboration of 

different departments to manage risks (Thamhain, 2008).Therefore, the 

proposed framework can be extended to examine the risks that can be carried 
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forward from one phase to another and develop analytical models to do so.  This 

may require analysis to be carried out in stages and relating the impact in the 

later stages to the risks or issues that may have happened in the earlier stages. 

This type of analysis will make the analytical model NP-hard. Therefore, the 

utilization or development of heuristics will be required to assist in decision-

making. 
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APPENDIX A 

Interview Guide  

- What are the main systems in smart city? 

- What are the organizational factors that can be defined as sources of risks? 

- What is the nature and type of uncertainties that affects smart city implementation 

and operation?  

What are the main technical risks in Smart City ?  

- What are the main non-technical risks in Smart City ? 

- What are the main incidents causing these risks ?  

- What is the likelihood of these incidents to happen (The Belief of expert).  

- What are the consequences on availability of smart city systems?  

- What are the consequences on accountability of Data at the smart city?  

- What are the causal relations between different risks?  

- What are business impacts for the identified risks? 
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APPENDIX B 

SUS Evaluation  

The Gioia Method Relations Outcome  

 

Strongly 

Disagree 

   

Strongly 

Agree 

1. I think that I would like to  

use this theory frequently.  

 

1 2 3 4 5 

2. I found the theory unnecessarily  

complex. 

 

1 2 3 4 5 

3. I thought the theory was easy  

to use. 

1 2 3 4 5 

4. I think that I would need the  

support of the researcher to  

be able to use this theory. 

1 2 3 4 5 

5. I found the various relations in  

this theory was well integrated. 

1 2 3 4 5 

6. I thought there was too much  

inconsistency in this theory. 

1 2 3 4 5 

7. I would imagine that this theory 

 will be useful for management. 

1 2 3 4 5 

8. I found the theory is very  

cumbersome to use. 

1 2 3 4 5 

9. I felt confident using the  

theory. 

1 2 3 4 5 

10. I needed to learn a lot of  

things before I could get going.  

with this theory.   

1 2 3 4 5 
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Design and Planning  Phases Scenarios   

 

Strongly 

Disagree 

   

Strongly 

Agree 

1. I think that I would consider these scenarios 

during design and planning  . 

1 2 3 4 5 

2. I found the scenarios are unnecessarily  

complex. 

 

1 2 3 4 5 

3. I thought the scenarios were easy  

to use. 
1 2 3 4 5 

4. I think that I would need the  

support of the researcher to  

be able to use the scenarios. 

1 2 3 4 5 

5. I found the various relations in  

These scenarios were well integrated. 
1 2 3 4 5 

6. I thought there was too much  

inconsistency in these scenarios. 
1 2 3 4 5 

7. I would imagine that these scenarios   

 will be useful for the SC design and planning  

Team. 

1 2 3 4 5 

8. I found the scenarios are   very  

cumbersome to use. 
1 2 3 4 5 

9. I felt confident using the  

scenarios. 
1 2 3 4 5 

10. I needed to learn a lot of  

things before I could get going.  

with these scenarios.   

1 2 3 4 5 
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Implementation Phase Scenarios   

 

Strongly 

Disagree 

   

Strongly 

Agree 

1. I think that I would consider these scenarios 

during implementation   . 

1 2 3 4 5 

2. I found the scenarios are unnecessarily  

complex. 

 

1 2 3 4 5 

3. I thought the scenarios were easy  

to use. 
1 2 3 4 5 

4. I think that I would need the  

support of the researcher to  

be able to use the scenarios. 

1 2 3 4 5 

5. I found the various relations in  

These scenarios were well integrated. 
1 2 3 4 5 

6. I thought there was too much  

inconsistency in these scenarios. 
1 2 3 4 5 

7. I would imagine that these scenarios   

 will be useful for the SC design and 

implementation   Team. 

1 2 3 4 5 

8. I found the scenarios are   very  

cumbersome to use. 
1 2 3 4 5 

9. I felt confident using the  

scenarios. 
1 2 3 4 5 

10. I needed to learn a lot of  

things before I could get going.  

with these scenarios.   

1 2 3 4 5 
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Operation Phase Scenarios   

 

Strongly 

Disagree 

   

Strongly 

Agree 

1. I think that I would consider these scenarios 

during operation . 

1 2 3 4 5 

2. I found the scenarios are unnecessarily  

complex. 

 

1 2 3 4 5 

3. I thought the scenarios were easy  

to use. 
1 2 3 4 5 

4. I think that I would need the  

support of the researcher to  

be able to use the scenarios. 

1 2 3 4 5 

5. I found the various relations in  

These scenarios were well integrated. 
1 2 3 4 5 

6. I thought there was too much  

inconsistency in these scenarios. 
1 2 3 4 5 

7. I would imagine that these scenarios   

 will be useful for the SC Operations Team. 
1 2 3 4 5 

8. I found the scenarios are   very  

cumbersome to use. 
1 2 3 4 5 

9. I felt confident using the  

scenarios. 
1 2 3 4 5 

10. I needed to learn a lot of  

things before I could get going.  

with these scenarios.   

1 2 3 4 5 
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Evaluaition Criteria  

 

 

Strongly 

Disagree 

   

Strongly 

Agree 

1. I think that I would consider the evaluation 

criteria in SC Risk Management. 

1 2 3 4 5 

2. I found the criteria is unnecessarily  

complex. 

 

1 2 3 4 5 

3. I thought the criteria  is  easy  

to use. 
1 2 3 4 5 

4. I think that I would need the  

support of the researcher to  

be able to use the scenarios. 

1 2 3 4 5 

5. I found the criteria is well designed 1 2 3 4 5 

6. I thought there was too much  

inconsistency in these scenarios . 
1 2 3 4 5 

7. I would imagine that the criteria   

 will be useful for SC Management team 
1 2 3 4 5 

8. I found the criteria is   very  

cumbersome to use. 
1 2 3 4 5 

9. I felt confident using the  

criteria. 
1 2 3 4 5 

10. I needed to learn a lot of  

things before I could get going.  

with the criteria.   

1 2 3 4 5 

 

 


