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Abstract: This study addresses image denoising alongside the compression and reconstruction of
hyperspectral images (HSIs) using deep learning techniques, since the research community is striving
to produce effective results to utilize hyperspectral data. Here, the SqueezeNet architecture is trained
with a Gaussian noise model to predict and discriminate noisy pixels of HSI to obtain a clean image
as output. The denoised image is further processed by the tunable spectral filter (TSF), which is a
dual-level prediction filter to produce a compressed image. Subsequently, the compressed image
is analyzed through a dense attentional net (DAN) model for reconstruction by reverse dual-level
prediction operation. All the proposed mechanisms are employed in Python and evaluated using
a Ben-Gurion University-Interdisciplinary Computational Vision Laboratory (BGU-ICVL) dataset.
The results of SqueezeNet architecture applied to the dataset produced the denoised output with a
Peak Signal to Noise Ratio (PSNR) value of 45.43 dB. The TSF implemented to the denoised images
provided compression with a Mean Square Error (MSE) value of 8.334. Subsequently, the DAN model
executed and produced reconstructed images with a Structural Similarity Index Measure (SSIM)
value of 0.9964 dB. The study proved that each stage of the proposed approach resulted in a quality
output, and the developed model is more effective to further utilize the HSI. This model can be well
utilized using HSI data for mineral exploration.

Keywords: hyperspectral image compression; denoising; reconstruction; deep learning; tunable
spectral filter; SqueezeNet; dense attentional net; dense blocks; dual-level prediction

1. Introduction

Recently, the emergence of imaging information at high spatial and spectral resolutions
has been drastically increased in remote sensing techniques [1–3]. Hyperspectral cameras
and sensors collect information over the electromagnetic spectrum and produce hyper-
spectral images (HSIs) at a high spectral resolution of less than 10 nm [4]. For example,
the airborne hyperspectral sensors, namely the Airborne Visible InfraRed Imaging Spec-
trometer (AVIRIS), store 224 bands between 400 and 2500 nm, and the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) dataset collects 210 spectral bands in between
400 and 2500 nm at a 10 nm bandwidth [5,6]. In addition, the HYPERION spaceborne hy-
perspectral sensor aquires 220 bands from 400 to 2500 nm with 30 m spatial resolution. All
these data are highly correlatable and have huge volumes. These data can be recorded and
maintained only by using effective compression techniques [7]. The high spectral informa-
tion in HSI represent the deterministic details about the material and lighting [8,9]. Due to
this characteristic, HSI has been well utilized in several fields for environment monitoring,
anomaly detection [10], object recognition and classification, etc. [11–16]. However, studies
show that the HSIs are affected by noise due to the cause of dark current and thermal
electronics. The noises in HSI include impulse noise, Gaussian noise and sparse noise [17].
Huang et al. [18] introduced a Spatial–Spectral Weighted Nuclear Norm Minimization
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(SSWNNM) model for HSI denoising. In this model, non-local similar cubic patches were
identified and stacked into a low-rank (LR) matrix which is composed of spatial texture
information. They used the multiple channels Weighted Nuclear Norm Minimization
(WNNM) for recovering the spatial LR matrix. The experimentation was carried out on the
HYDICE datasets for Urban and Indian Pines. They stated that the proposed SSWNNM
achieved a better Mean Peak Signal to Noise Ratio (MPSNR) of 43.58, Mean Structural
Similarity Index Measure (MSSIM) of 0.973, and Mean Feature Similarity Index Measure
(MFSIM) of 0.989, respectively, on the Indian Pines dataset. Recently, Zeng et al. [19]
presented a model for Global Spatial Spectral Total Variation (GS-STV) for HSI denoising.
Here, GS-STV was applied into the LR tensor approach. LR was utilized for separating the
HSI from the sparse noise, and GS-STV was used simultaneously for removing Gaussian
noise and considered both spatial and spectral correlation. The quantitative measures of
Picture Quality Indices (PQIs) were evaluated on the HYDICE and Indian Pines datasets.
The performance was taken for varying the noise level, and the proposed GS-STV achieved
a better MPSNR of 38.78 and MSSIM of 0.956 on the Indian Pines dataset in case 2. This
model was not suitable for denoising heavy Gaussian noise, as it can only boost the local
details and overall structural information in HSIs.

Thus, as stated above, the noise affects the HSI visual quality and minimizes the
accuracy during image classification. It is essential to carry out HSI denoising as a pre-
processing process for improving the quality of images before the interpretation and
classification process [20]. The HSI data have a high amount of unessential information,
and it is challenging for the transmission and storage of images. It is important to design
an efficient model for HSI compression [21], which is the process of compressing the
HSI without any retardation in its quality. Moreover, the reconstruction or restoration
of HSI, the process of obtaining the original images from the distorted images, is also
essential [22]. The reconstruction of HSI aims to recover the 3D spatial–spectral image from
2D measurement. In the last two decades, due to the advancement of the deep learning
(DL) model, the convolutional neural network (CNN) has attained a lot of achievements
in the applications of pattern recognition and computer vision. Especially, the DL models
are highly used for the reconstruction of HSI [23]. However, the conventional DL models
suffer from large model sizes, which leads to high training time, less flexibility and requires
large memory [24]. Chong et al. [25] studied HSI compression and reconstruction using
Block-Sparse Dictionary (B-SD) Learning model. In this study, training was completed
using a set of signals. Then, the measurement matrix was used for compressing the HSI
cube for reducing the volume of data. The performance of B-SD was compared with the
University of Pavia and center datasets. The experimentation was carried out by varying
the compressive sampling ratio (CSR) values and achieved better PSNR values of 19.99
and 25.91 for the CSR values of 0.05 and 0.10, respectively. Li et al. [26] introduced HSI
compression by using a Correlation–Tucker decomposition (C-TD) model. C-TD was used
for constructing the factor matrix, and hence, the dimensionality of the core tensor was
determined. The proposed C-TD can be used in any TD model of order tensor. However,
this model takes more time for processing and achieved a better PSNR value of 52.12 for
the bit rate of 0.2.

Zikiou et al. [27] introduced HSI compression using 3D-discrete wavelet transform
(3D-DWT) and support vector machine (SVM). In this work, both air and spaceborne
sensors were considered, and performances were compared on the basis of spectral fidelity
and rate distortion. This model achieved a better PSNR of 46.6 dB. The classification
accuracy of 75.8 percent was found for all decoded HSI images. Wang et al. [28] introduced
the CNN model for reconstructing 3D-compressed HSI images using a back-strapping
process. The experimentation proved that the back-strapping network compressed the
HSI correctly and quickly. This model also achieved a better MPSNR of 31.43 and MSSIM
of 0.935 for scene 1 on the BGU iCVL dataset. This study proposes an enhanced deep
learning-based model for effective denoising, compressing and reconstructing of HSI.

The major contributions of the work are as follows:
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(1) To build an effective framework that can denoise, compress and reconstruct an HSI in
order to attain quality outputs compared with the other reconstruction mechanisms.

(2) To introduce a dual-level prediction-based tunable spectral filter (TSF) for compressing
the HSI input. The model predicts the pixel values and adopts the thresholding
strategy to compare the pixel with a reference value.

(3) To present a new and effective dense attentional net (DAN) model to reconstruct the
compressed image. The model learns the reverse operation of dual-level prediction to
obtain the reconstructed HSI.

(4) Extending evaluations of the model in terms of different metrics to prove the perfor-
mance improvement of the proposed model compared to the other existing state-of-
the-arts models.

2. Materials and Methods
2.1. Simulation Scenario and Hyperspectral Image Data Sets

For evaluations of the proposed approach, the Ben-Gurion University-Interdisciplinary
Computational Vision Laboratory (BGU-ICVL) hyperspectral image dataset [29] has been
utilized. This dataset is acquired by a Specim PS Kappa DX4 hyperspectral camera and
publicly available. It consists of 519 spectral bands ranging between 400 and 1000 nm in
the electromagnetic spectrum. The spectral interval between the images is about 1.25 nm.
The image has 12-bit radiometric resolution. The BGU-ICVL stored the data in .rgb and
.mat files formats with a header file information at the .hdr file format. In this study,
sample images that consist of different features including the building glass, grass with
buildings, constructed buildings, agriculture field and plantation were downloaded from
the BGU-ICVL (Figure 1) so that all the different features can be brought under the study
of compression and reconstruction and evaluated by the following proposed methods.
The files downloaded consisted of clean HSI, and additional Gaussian noise are added
manually to perform denoising and train the proposed model. The entire implementation
of the work is carried out using the Python simulation environment.

Figure 1. HSI images of BGU-ICVL dataset.
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2.2. Deep Learning Methods

In general, deep learning-based methodologies are found to be more effective in
dealing with various applications such as image detection [30], image classification and
especially image reconstruction processes. In this study, the denoising, compression and
reconstruction of HSI is carried out in the vision to build an effective model and to attain
higher quality outputs than the other existing models. The SqueezeNet model is introduced
initially to denoise the HSI to produce quality images. Then, the denoised images are passed
through the tunable spectral filter (TSF) to produce compressed images. The proposed
filtering technique is prediction based to obtain results in effective compression without the
reduction of its quality. Finally, the compressed image is provided as the input to the dense
attentional net (DAN) model to reconstruct the HSI. The proposed framework is named
SqueezeNet coupled DAN (SDANet), and the architecture of the proposed framework is
displayed in Figure 2. The detailed descriptions of the three main stages of the framework
are given in the following sections. The entire implementations of the work are carried out
using the Python simulation environment.

Figure 2. Architecture of the proposed SDANet framework.

2.2.1. HSI Denoising

The first step of the proposed work is HSI denoising, where the input images from
the dataset are denoised to remove the noise present in the image. This step enhances
the quality of the image and results in improved performance. To perform denoising,
the SqueezeNet [31] model is utilized in the proposed work. This model is an extension of
the traditional convolutional neural network (CNN) with enhanced extraction capability.
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The SqueezeNet architecture comprises fire blocks that enhance the extraction capability
of the network. Here, the first convolution layer receives the input and extracts the major
features, and then, the maxpooling operation is carried out. Then, the features are provided
to the fire blocks where the discrimination of the features takes place to identify the noisy
pixels. One of the main advantages of the SqueezeNet model compared to the traditional
CNN is that it uses fewer parameters and maintains competitive accuracy. This reduces the
training time of the network and improves the overall efficiency. The SqueezeNet-based
HSI denoising model [32] of this study is given in Figure 3a. The SqueezeNet architecture
comprises 2 convolutional layers with different numbers of convolutional kernels, 8 fire
blocks, 3 max pooling layers and 1 global average pooling layer at the end (Figure 3a).
The three main strategies followed in the SqueezeNet are used to reduce the number of
parameters and to maintain better accuracy. In this model, the 3 × 3 filters are replaced
by 1 × 1 filters, and the number of input channels are reduced to 3 × 3 filters. Here,
the activation maps of the convolutional layers are maintained large by performing late
downsampling. This step is developed to improve overall accuracy. The fire block in the
SqueezeNet model is considered as a fundamental unit and is composed of squeeze and
expand layers with convolutional filters. The model of fire block is shown in Figure 3b.
The SqueezeNet denoising model is compared with the U-Net+GSM+GCM model [32] to
prove the effectiveness of the proposed method. The U-Net+GSM+GCM model contains
two feature extraction layers, four encoding units, three decoding units and one reconstruct
layer. Although this model achieves excellent performance, the design of the network still
lacks interpretation. So, we have focussed on designing an interpretable network deduced
from the traditional HSI denoising method, and thus, each layer of the proposed network
has its own physical interpretation. The design and implementation is also more effective
in case of the proposed model.

Throughout the model, the rectified linear unit (ReLU) activation is carried out. While
reaching the first fire block, the squeeze layer applies the 1 × 1 filter over the input and
extracts the crucial features. Then, the expand layer applies the 1 × 1 and 3 × 3 filters,
resulting in expanded output with more depth. The squeeze operation performs compres-
sion, whereas the expand operation enhances the depth without any changes in the feature
size. Then, the outputs of the expand layer are concatenated and then passed onto the
successive blocks. The squeeze and expand operations are repeated for every fire block, and
the overall output is sent to the global average pooling layer to obtain the final denoised
image. The mathematics of squeeze operation carried out in the fire block is provided in
Equation (1).

Sq(y) =
FM

∑
µ=1

C

∑
ι=1

wS
ι xµ

ι (1)

where FM indicates the feature maps, C indicates the channels, wS
ι is the weight associated

with the ιth channel, and xµ
ι is the input associated with the µth feature map. The outputs

of the squeeze operations are the weighted combinations of the feature maps. The ReLU ac-
tivation carried out in the model can be mathematically expressed as shown in Equation (2).

Rl(x) =
{

x; x ≥ 0
0; x < 0

(2)

where Rl(x) indicates the output of the ReLU activation function corresponding to the input
x. After extraction of the features from the input HSI, the SqueezeNet model evaluates and
removes the noisy pixels. Both the spatial and spectral information of the HSI images are
extracted and learned by the model to perform denoising. The concatenation operation in
the fire blocks is responsible for concatenating both the spatial and spectral features into
one to provide the multi-level feature representation. The denoised output received from
the SqueezeNet model is sent to the HSI compression stage.
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Figure 3. (a) The SqueezeNet-based HSI denoising model. (b) The model of fire block.

2.2.2. HSI Compression

For compressing [33,34] the input HSI, this model introduces the predicted-based TSF
method. In this method, an extension of the prediction-based recursive least square (RLS)
filter [35] is employed over the denoised image that are obtained from the SqueezeNet
model. The high computation time of RLS filter makes it less effective. However, to avoid
this, a dual-level traversal scheme is embedded within the method to obtain the prediction
value. The prediction is carried out two times (as dual-level traversal scheme), where the
RLS is initially applied, and then, a backward traversal takes place to provide the final
prediction value as described below.
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(i) Level 1 prediction: In level 1, the RLS filtering technique is applied to the first input
of HSI to obtain the corresponding prediction value. Here, the RLS filter predicts the intra-
band in the HSI by spatial decorrelation, which removes incoherent spatial information
from the single band of an HSI. In detail, the steps that are carried out in the removal of
spatial correlations follow: Step 1: Compute the arithmetic mean of the pixels of the image
in its local neighborhood based on Equation (3)

M(p, q, r) = [v(p, q− 1, r) + v(p− 1, q, r) + v(p− 1, q + 1, r) + v(p− 1, q− 1, r)]/4 (3)

where (p, q, r) indicates the pixel’s current value on the rth band at (p, q).
Step 2: Subtract the computed mean in Equation (3) from the original pixel value at

position (p, q, r) using Equation (4).

v′(p, q, r) = v(p, q, r)−M(p, q, r) (4)

Step 3: The process is repeated for all the bands in HSI leading to the formation of a
3D matrix of size (<× E× ℘) where < indicates the total number of rows, E indicates the
total columns in a band and ℘ indicates the total number of bands in the considered input
HSI. This matrix is then provided as the input to the next step.

(ii) Level 2 prediction: In level 2, the final prediction is obtained based on a traversal
scheme. This prediction is carried out by traversing the casual pixels in the current band
in the backward direction to obtain the best prediction value. Based on this activity,
the prediction values of all the bands in the HSI are obtained, thereby resulting in a more
accurate and effective compressed image output. Prediction based on the pixels in the
current band provides more information regarding the HSI, and the spectral correlations in
the image result in accurate compression. The pseudocode for level 2 prediction is provided
in Table 1.

A starting point Iρ is initially set, and the pixel values are traversed by keeping track of
the prediction reference Ψr f . The outer loop is dedicated to the Υ pixel lines considered in
the traversal. The inner loop Φ indicates the traversal within the pixel line. The traversed
pixel value that is close in range to the prediction reference is tracked. A threshold value Th
is set prior to the traversal of the pixel values to identify the prediction pixel value. Then,
an error value Ψerr between the two pixels is computed, and if the error value is close to the
pre-computed threshold value, then the particular pixel is chosen as the predicted value.
The setting up of threshold in the TSF helps to reduce the time taken for compression and
results in early termination. In addition, the nearest neighbor pixels of the current pixel can
be accurately obtained by the proposed technique, and hence, the prediction can produce
better outcomes. Another significant advancement of the proposed TSF-based compression
scheme is that the quality of the image even after compression remains the same due to the
prediction of local neighbor pixels in the image.

The compression technique can be further utilised in the application of mineral map-
ping, as this method of dual prediction effectively compresses the HSI data compared to
existing models, which is proved in the performance analysis conducted and explained in
the later sections.

2.2.3. HSI Reconstruction

The third and most significant stage of the proposed approach is HSI reconstruction,
where a new deep learning model called DAN is introduced and employed to achieve the
desired results. The input to the reconstruction phase is the compressed image obtained
from the last stage. The aim of the reconstruction model is to learn the reverse process
of compression where the traversal process is initially reversed to obtain the spectral
decorrelation. Here, the intra-band prediction process is reversed with the administration
of initialization and advancement modules, and the fine details of the image are focused to
maintain the spectral and spatial information present in it. Thus, the output of the reverse
process is the reconstructed HSI with enriched spectral and spatial information. In this
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study, the proposed DAN model is introduced for HSI reconstruction to obtain accurate
and effective output. The model is composed of four sub-networks to perform the reverse
process and to reconstruct the HSI. The four sub-networks are spatial initialization (SI),
spatial advancement (SA), spectra initialization (SrI) and spatial–spectral advancement
(SSrA). Each network is composed of dense blocks that are capable of learning the deep
features of the image. The architecture of DAN used in reconstructing the HSI is shown in
Figure 4.

Table 1. Pseudocode of level 2 prediction.

Initialize: index of the current band β, current pixel coordinates (p, q) , image width Iω ,
prediction reference Ψr f , count of lines within the traversal boundary Υ

Set the threshold value for traversal merr = 65536;
For l = p to max{(p− Υ), 0}

{ if (l == p)Iρ = q− 1;
else Iρ = Iω − 1 ;
For Φ = Iρ to 1

{Ψerr = abs
(

ImageBu f f er(β, l, Φ)−Ψr f

)
if (Ψerr < merr)

merr = Ψerr ;
ϕ = ImageBu f f er(β, l, Φ);

if (merr ≤ Th[β])
return (ϕ) ; } }

return (ϕ) ;

Figure 4. DAN architecture for HSI reconstruction.

During this HSI reconstruction, the SI network receives the compressed image as the
input, and the dense blocks within the network extracts and learns the features of the
compressed image. The reverse process of compression starts from the SI sub-network,
and the features learned by this network are then provided to the SA network. The spatial
correlations along both the horizontal and vertical directions are considered with the
application of the same filter for every pixel in the same row. In addition, every filter
convolves with the pixels present in the same column of each layer. The features are
transmitted to successive sub-networks, and then, the final set of features from the SSrA is
provided to the attention layer to retard the least relevant features. The output from the
attention layer is the final reconstructed HSI image. The brief descriptions about the spatial
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initialization (SI), spatial advancement (SA), spectra initialization (SrI) and spatial–spectral
advancement (SSrA) are given below.

(a) Spatial initialization (SI) network: This network comprises convolutional layers
with dense blocks for deep feature learning. The main aim of this network is to reverse
the level 2 prediction process and to obtain the 3D matrix. This is attained by applying to
the network the compressive patch νi, and νi

b indicates the pixel values in the bth row of νi.
Thus, the output of the bth row can be expressed as Equation (5).

o1

(
νi

b

)
= max

(
w1, b × νi + ϑ1, b, 0

)
(5)

where w1, b indicates the weight value and ϑ1, b indicates the biases for the bth row. It is
noteworthy that the number of feature maps generated is consistent with that of the spectral
band. The ReLU activation is applied after every layer in the network model to carry out
the nonlinear operation. For every row of the compressed image patch, the learning process
is carried out, which results in the desired 3D matrix.

(b) Spatial advancement (SA) network: This network obtains the predicted 3D matrix
as input and tries to predict the traversal between the pixels to attain the prediction
value. Moreover, the spatial information present in the image is used as a reference by the
network model, and this information is extracted and learned by the dense blocks within
this network. The reverse operation of traversal is carried out in this network model to
attain the desired reconstruction results. Each denseblock takes the output of the previous
denseblock as input and adds the learned mapping to the input of the current block as
output. The desired mapping is performed by a few stacked underlying layers in CNN
with the help of a mapping function. If the output is similar to the input, then the mapping
is identical. The stacked layers are expected to approximate the difference between the
input and output. As a result, the convolutional layers initialized with zero means can be
trained to estimate the difference value.

(c) Spectra initialization (SrI) network: In this network, the feature maps attained from
the SA network are learned, and the level 1 prediction process is reversed. The value of
v′(p, q, r) is obtained as the output of this network model based on the training with the
feature maps with different spectral bands. The output of the sth band obtained from the
first layer of this network can be mathematically expressed as shown in Equation (6).

f1

(
ci

1

)
= max

(
g1, 1 ∗ concat

(
ci

1, ci
2

)
+ β1, 1, 0

)
f1

(
ci

s

)
= max

(
g1, s ∗ concat

(
ci

s−1, ci
s, ci

s+1

)
+ β1, s, 0

)
f1

(
ci

S

)
= max

(
g1, S ∗ concat

(
ci

S−1, ci
S

)
+ β1, S, 0

) (6)

where ci
s indicates the output of the SA network, g1, S indicates the filters of the layers and

concat() is the concatenation operation. The convolution, pooling and reversal operations
are performed on the given input to predict the v′(p, q, r) value.

(d) Spatial–spectral advancement (SSrA) network: This layer finally predicts the
mean value and results in the reconstructed HSI image. This is completed with the help
of convolution operation along with global average pooling at the end. An additional
attention layer is attached at the end of this network model to obtain high-quality outputs.
The overall output obtained from this layer can be expressed as shown in Equation (7).

F∗ = ReLU(w ∗ f1) (7)

where ReLU indicates the ReLU activation, w indicates the weight value for training and
f1 indicates the output of the SrI network. The hyperparameter settings of the proposed
approach are presented briefly in the following Table 2.
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Table 2. Hyperparameter settings for the proposed approach.

Hyperparameters Values

SqueezeNet

No. of convolution layers 2
No. of fire blocks 4

No. of hidden units 10
No. of hidden neurons 450,000

Initial learning rate 0.001
Dropout rate 0.1–0.25

Mini batch size 16
Max epochs 5000

DenseNet

No. of dense blocks 16
No. of convolution layers 3

No. of hidden units 16
No. of hidden neurons 450,000

Initial learning rate 0.001
Dropout rate 0.1–0.25

Mini batch size 16
Max epochs 5000

2.3. Performance Analysis

The performance analysis of the proposed approach in terms of different performance
metrics are detailed under this section. The analysis of the proposed approach has been
given for the denoising, compression and reconstruction stages. The comparison of the pro-
posed approach is carried out with the existing mechanisms such as HSI deep CNN (HSID-
CNN), CNN-based HSI denoising (HSID-DeNet), U-Net with global spatial module and
global channel module (U-Net+GSM+GCM), two-step iterative shrinkage/thresholding
(TwIST), gradient projection for sparse reconstruction (GPSR), generalized alternating pro-
jection based total variation (GAP-TV) and backtracking reconstruction network (BTR-Net).
The result values for comparison are taken from U-Net+GSM+GCM [32] and BTR-Net [28].

2.4. Evaluation of TSF Model

The images after compression using TSF are then evaluated using metrics such as
the Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Normalized Cross-
Correlation (NCC), Structural Content (SC), Maximum Difference (MD), Normalized Abso-
lute Error (NAE) and Compression Ratio (CR). Mean Square Error measures the error with
respect to the center of the image values. It is calculated as the average of the cumulative
squared value of the error difference between the original and the compressed image as
shown in Equation (8).

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(I(i, j)− C(i, j))2. (8)

where I(i, j) and C(i, j) are two images of size M× N, I represents the original image and
C represents the compressed image. A lower MSE value shows less error in the compressed
image. A higher PSNR value implies a better image after compression. Normalized Cross-
Correlation (NCC) gives the structural content (SC) of the image as shown in Equation (9).

NCC =
M

∑
i=1

N

∑
j=1

I(i, j)C(i, j)/
M

∑
i=1

N

∑
j=1

I(i, j)2. (9)
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SC is used to measure the image similarity. Consider the image represented as the M× N
matrix; then, the structural content variation factor can be evaluated using Equation (10).

SC =
M

∑
i=1

N

∑
j=1

I(i, j)/
M

∑
i=1

N

∑
j=1

C(i, j). (10)

where SC is the structural content factor which is the ratio between the sum of the pixel
values of the original image I(i, j) before compression and the sum of the pixel values of the
compressed image C(i, j). Maximum Difference (MD) is a measure to find the difference in
content between the original and compressed image. The higher the difference, the lesser
the image quality will be, as shown in Equation (11).

MD = (|I(i, j)− C(i, j)|). (11)

Normalized Absolute Error (NAE) is also used to find the difference between the
original and reconstructed image. The lower the error, the higher the quality will be, as
shown in Equation (12).

NAE =
M

∑
i=1

N

∑
j=1
|I(i, j)− C(i, j)|/

M

∑
i=1

N

∑
j=1
|C(i, j)|. (12)

Compression Ratio (CR) [36] is defined as the ratio of the memory size of the original
image to the memory size of the compressed image, as given in Equation (13).

CR =
Size of Original Image

Size of Compressed Image
. (13)

2.5. Evaluation of SDANet Model

The performance of the proposed approach is evaluated in terms of Peak Signal to
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Relative Absolute Error
(RAE), Spectral Angle Mapper (SAM), PSNR Human Visual System (PSNR-HVS) and
Multi-Scale SSIM (MSSIM), which helps in the comprehensive evaluation of denoising,
compression and reconstruction results. The mathematical formulas of the performance
measures are given as shown in Equations (14)–(17).

PSNR =
1
γ

γ

∑
I=1

10× log10

(
max2

i
MSEi

)
. (14)

SSIM =
1
γ

γ

∑
i=1

(
2µpi µqi + a1

)(
2σpiqi + a2

)(
µ2

pi
+ µ2

qi
+ a1

)(
σ2

pi
+ σ2

qi
+ a2

) (15)

SAM = arccos
(
〈Ω, Ω′〉
‖Ω‖2‖Ω′‖2

)
(16)

RAE =
1

ηsηpηq

ηs

∑
i=1

ηp

∑
j=1

ηq

∑
k=1

|F ∗ (i, j, k)− f1(i, j, k)|
f1(i, j, k) (17)

where γ indicates the number of spectral bands, max2
i indicates the maximum pixel value

of the ith band, MSEi indicates the Mean Square Error (MSE) between the processed and
original image of the ith band, µpi and µqi are the mean values of the images p and q , σpi

and σqi are the variances of p and q, a1 and a2 are the constants set to 0.0001 and 0.0009,
〈Ω, Ω′〉 indicates the dot product between the original and denoised spectrums Ω and Ω′ ,
‖•‖2 indicates the binary norm, ηs indicates the count of spectral bands, ηp and ηq indicate
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the spatial resolution of HSI, and F ∗ (i, j, k) and f1(i, j, k) are the points at the ith spectral
band with coordinates (j, k).

PSNR-HVS [37,38] is the modified form of PSNR after taking contrast sensitivity
function into account. The contrast sensitivity function has the potential of adding more
information about the functioning of the visual system by assessing sensitivity over a wide
range of spatial frequencies. It is calculated in the DCT domain in 8 × 8 blocks.

The multi-scale SSIM (MSSIM) [38,39] metric is calculated by taking the reference and
distorted image signals as the input. A low-pass filter is applied and downsamples the
filtered image by a factor of 2. The original image is indexed as scale 1, and the highest
scale is given as M, which is obtained after M− 1 iterations. At each scale, the contrast
comparison and the structure comparison are calculated. The luminance comparison is com-
puted only at the highest scale. The MSSIM is obtained by combining the measurements at
different scales.

3. Results

This section presents the results of the different stages of the proposed approach.
The performance evaluation has been completed using the metrics explained in
Sections 2.4 and 2.5, and the results are shown below. The results of the proposed approach
have also been compared with the discussed existing methodologies and demonstrated
under this section as shown below.

3.1. Denoising of HSI

The denoising of HSI is carried out as described in the Methodology section (Section 2.2.1).
The performance of the SDANet has been evaluated in terms of Peak Signal to Noise Ratio
(PSNR) at noise levels (NLs) = 30, 50 and 70 to the spectral bands 1 to 30. The obtained
results are compared with the results of existing denoising approaches. Table 3 shows
the values of all approaches extracted to the spectral bands 5, 10, 15, 20, 25 and 30, and
the performances can be interpreted from Figure 5. The interpretation results obtained
to the noise level = 30 show a relatively high performance of SDANet when compared
with the other models (Table 3). The PSNR value attained by the proposed model for
band number 30 is 43.43 dB, whereas the PSNR values attained by the existing models
such as HSID-DeNet, HSID-CNN and U-Net+GSM+GCM are 40.02 dB, 36.78 dB and 36.84
dB, respectively. The PSNR values of SDANet are higher in the bands and more optimal,
and the results may be due to the effectiveness of the deep learning model that is utilized
in this study. The method of denoising showed an excellent extraction capability in the
removal of noise from the spectral bands. The denoising can also be depicted from the
graphical representation (Figure 5a). In addition, the values obtained for noise level = 50
show that the performance of the SDANet is more optimal than those of the other models.
The overall PSNR value for band number 30 at NL = 50 is 43.23 dB, whereas the compared
models such as HSID-DeNet, HSID-CNN and U-Net+GSM+GCM are 36.0 dB, 36.0 dB and
38.69 dB, respectively (Table 3). The graphical representation of the PSNR for NL = 50
PSNR of the SDANet is low at the beginning and increases gradually with the increase of
band numbers (Figure 5b). In addition, the interpretation of PSNR values of noise level = 70
for SDANet with other models shows an optimal PSNR. The overall PSNR value attained
by the SDANet for the band number 30 is 43.34 dB, whereas the other models show 36.6 dB,
35.6 dB and 37.6 dB for HSID-DeNet, HSID-CNN, and U-Net+GSM+GCM, respectively
(Table 3). The plot drawn for the PSNR of noise level = 70 further confirms the existing
optimal performance (Figure 5c). Overall, the study of denoising in the spectral bands 1 to
30 of HSI using different noise levels (levels = 30, 50 and 70) provided high values of PSNR
and showed a high performance of SDANet when compared with the other models.
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Table 3. Results of comparative analysis of PSNR of different noise levels for the spectral bands 5, 10,
15, 20, 25 and 30.

Noise
Levels

Spectral
Bands

PSNR (dB)

SDANet HSID-DeNet HSID-CNN U-Net+GSM+GCM

30

5 44.42 43.42 41.22 42.98

10 41.34 38.26 37.71 39.52

15 45.41 38.43 37.39 39.19

20 43.4 38.7 39.36 40.13

25 42.41 38.26 38.21 40.78

30 43.43 40.02 36.78 36.84

50

5 41.52 44.1 47.74 45.08

10 44.92 40.4 40.61 41.07

15 43.22 36.4 36.11 38.29

20 43.16 39.7 39.66 40.44

25 41.59 40.9 40.15 39.81

30 43.23 36 36 38.69

70

5 45.43 41.5 41.7 42.3

10 45.39 37.9 37.4 41.1

15 44.45 40 39 42

20 42.42 39.2 38 41.2

25 41.45 39.1 39.7 41.5

30 43.34 36.6 35.6 37.6

Figure 5. Plots of PSNR for different noise levels viz. (a) 30, (b) 50 and (c) 70 for all models (SDANet
(proposed), U-Net+GSM+GCM, HSID-CNN and HSID-DeNet) in the spectral bands 1 to 30.
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The performance of the SDANet has been evaluated in terms of SSIM and Peak Signal
to Noise Ratio-HVS (PSNR) at noise levels (NLs) = 30, 50 and 70 to the spectral bands
1 to 30. Table 4 shows the values extracted to the spectral bands 5, 10, 15, 20, 25 and
30, and the performances can be interpreted from Figures 6 and 7. The interpretation
results obtained to the noise level = 30 show a relatively high performance of SDANet.
The SSIM value attained by the proposed model for band number 30 is 0.9852 at 30 dB,
0.9842 at 50 dB and 0.9815 at 70 dB, respectively. The PSNR-HVS values of SDANet are
also optimal. The overall PSNR-HVS values for band number 30 at NL = 30 is 0.9941 dB,
at NL = 50 is 0.9855 and at NL = 70 is 0.9833, respectively. Figure 6a–c show the variation
of SSIM with band numbers for different noise levels of 30, 50 and 70, respectively. The
PSNR-HVS variation with respect to the band numbers is plotted in Figure 7a, Figure 7b
and Figure 7c, respectively.

Table 4. Results of analysis of SSIM and PSNR-HVS of different noise levels for the spectral bands 5,
10, 15, 20, 25 and 30.

Noise Levels Spectral Bands SSIM (dB) PSNR-HVS (dB)

30

5 0.9881 0.9963

10 0.9839 0.9968

15 0.9817 0.9866

20 0.9830 0.9965

25 0.9870 0.9916

30 0.9852 0.9941

50

5 0.9815 0.9889

10 0.9816 0.9878

15 0.9834 0.9854

20 0.9832 0.9873

25 0.9817 0.9862

30 0.9842 0.9855

70

5 0.9802 0.9829

10 0.9817 0.9824

15 0.9805 0.9814

20 0.9801 0.9842

25 0.9811 0.9841

30 0.9815 0.9833

Figure 6. Cont.
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Figure 6. Plots of SSIM for different noise levels viz. (a) 30, (b) 50 and (c) 70 for the proposed model
in the spectral bands 1 to 30.

Figure 7. Plots of PSNR-HVS for different noise levels viz. (a) 30, (b) 50 and (c) 70 for the proposed
model in the spectral bands 1 to 30.

3.2. Compression of HSI

The compression of each image is carried out after the denoising stage using TSF, and
the metrics explained in Section 2.4 have been evaluated for analyzing the performance of
compression. Five different images (as shown in Figure 8) are randomly selected from the
dataset and analysed using the metrics such as Mean Square Error (MSE), Peak Signal to
Noise Ratio (PSNR), Normalized Cross-Correlation (NCC), Structural Content (SC), Maxi-
mum Difference (MD), Normalized Absolute Error (NAE). Table 4 shows the quantitative
analysis values.
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Figure 8. Randomly selected images from the dataset for evaluating the performance of compression.

Table 5 shows that the compression model used here gives better quality images and
also preserved the minute structural details of the image.

Table 5. Results of performance evaluation of compression.

Metrics Image 1 Image 2 Image 3 Image 4 Image 5

PSNR 40.811 40.254 40.216 40.240 39.507
MSE 8.334 8.722 8.845 8.998 8.602
NCC 0.990 0.994 0.991 0.991 0.991
SC 1 1 1 1 1

MD 27.657 26.906 26.452 26.281 26.586
NAE 0.010 0.016 0.018 0.012 0.019

Table 6 shows the details of PSNR calculated at different values of Compression Ratio
(CR). The CR values of 1, 1.5, 2, 2.5, 3, 3.5 and 4 are considered here, and the plot between
these is shown in Figure 9. Although the PSNR value decreases with the increase in CR, the
proposed model manages to maintain a better PSNR value even at a Compression Ratio
of 4.

Table 6. Results of performance evaluation of PSNR with Compression Ratio.

Compression Ratio PSNR (dB)

1 58.31

1.5 55.86

2 51.11

2.5 45.94

3 45.75

3.5 41.79

4 39.14

Figure 9. PSNR versus Compression Ratio.
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3.3. Reconstruction of HSI

The reconstruction of HSI is carried out, and the results of SDANet are provided with
the results of Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM)
and Relative Absolute Error (RAE). Table 7 shows the overall Peak Signal to Noise Ratio
(PSNR) attained by the SDANet model, which is about 35.98 dB for 700 nm at a Compression
Ratio of 6. The other existing models such as TwIST, GPSR, GAP-TV and BTR-Net provided
the PSNR values of 25.89 dB, 27.57 dB, 26.81 dB and 31.55 dB, respectively. The graph in
Figure 10a compares the values of PSNR with the results of existing models. It is obvious
that the SDANet model performed well in the reconstruction when compared with the
other models. In this study, a significant improvement is observed in the performance
of the proposed SDANet model in terms of PSNR, which is due to the proposed DAN
model as well as the utilization of an additional attention layer to concentrate more on the
selected features.

Table 7. Results of comparative analysis of PSNR, SSIM and RAE by the TwIST, GPSR, GAP-TV,
BTR-Net and SDANet (proposed in this study) models.

Models PSNR (dB) SSIM (dB) RAE

TwIST 25.89 0.752 0.153
GPSR 27.57 0.842 0.116

GAP-TV 26.81 0.884 0.160
BTR-Net 31.55 0.929 0.058
SDANet 35.98 0.9964 0.043

Figure 10. Graphs comparing the results of PSNR, SSIM and RAE with the TwIST, GPSR, GAP-TV,
BTR-Net and SDANet (proposed in this study) models. (a) PSNR versus Wavelength/nm . (b) SSIM
versus Wavelength/nm. (c) RAE versus Wavelength/nm.
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The interpretation of the overall Structural Similarity Index Measure (SSIM) values
shows that the SDANet model achieved a high value of 0.9964 dB when compared to the
other existing models such as TwIST, GPSR, GAP-TV and BTR-Net, which provided the
values of 0.752 dB, 0.842 dB, 0.884 dB and 0.929 dB, respectively (Table 7). The comparison
of SSIM values of the SDANet model with the other models is graphically shown in
Figure 10b. From the figure, it is clear that the SDANet model assured an optimal SSIM
value compared to the other models. However, the BTR-Net model showed optimal SSIM
values compared to the other models, and the least value is attained by the TwIST model.
Furthermore, the interpretation of the overall RAE values of the SDANet model showed a
minimum value of 0.043 when compared with the RAE values of the other models such
as TwIST, GPSR, GAP-TV and BTR-Net, which provided 0.153, 0.116, 0.160, and 0.058,
respectively (Table 7). The comparison of the percentage of the SDANet model with the
percentages of other models is provided in Figure 10c. From the figure, it is clear that the
performance of the SDANet model is more optimal than those of the compared models.
The RAE attained by the SDANet model is very low compared to the other models, proving
that the system is highly accurate in reconstruction. Among the compared models, BTR-Net
resulted in a maximum optimal value and the least performance is obtained by the GAP-TV
model. Overall, the interpretation of values from the table shows that the SDANet model
(proposed in this study) is more optimal in reconstructing the HSI from the compressed
image when compared with the results of other models.

3.4. Performance of SDANet Model
3.4.1. Dense Block Analysis

Moreover, the PSNR, SSIM, MSSIM, RAE and SAM values of the SDANet model are
further studied with the values of varying numbers of dense blocks that are carried out
to understand more about the capability of the model. The results analysis is given in
Table 8. The interpretation of the values against the increase of the number of dense blocks
shows the occurrence of high values and a significant gradual increase of values among the
PSNR, SSIM, MSSIM, RAE and SAM. From the values, it is clear that the performance of the
SDANet model is high and increases with the increase of the dense blocks, since these blocks
are responsible for extracting the deep features present in the image. The variation plots
drawn for PSNR, SSIM, MSSIM, RAE and SAM values against the number of dense blocks
to understand the capability of the SDANet model are given in Figure 11. From the figures,
it is evident that the presence of dense blocks in the proposed model makes more sense.
Figure 11a–c,e confirmed further the increased performance of the model by increasing
the PSNR, SSIM, SAM and MSSIM values when the number of dense blocks is increased.
The PSNR value of the proposed approach shows an increasing trend when the dense
blocks are increased. The same case is encountered in the SSIM plot, and a decreasing
trend is seen in the performance of the proposed approach in terms of error in Figure 11d.
The study of performance variations of the SDANet model in terms of different metrics by
varying the dense blocks between 2 and 10 indicates the effectiveness of using dense blocks
for learning.

Table 8. Results of the performance analyses of the SDANet model with respect to number of
dense blocks.

No. of Dense Blocks PSNR (dB) SSIM (dB) MSSIM (dB) SAM (dB) RAE

2 68.31 0.9909 0.99104 0.9738 0.0479

4 69.56 0.9911 0.9912 0.9740 0.0479

6 70.58 0.9912 0.9913 0.9742 0.0478

8 72.42 0.9914 0.992 0.9744 0.0475

10 73.73 0.9916 0.9943 0.9746 0.0467
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Figure 11. Plots of different performance metrics (PSNR, SSIM, MSSIM, RAE and SAM) by varying
the dense blocks. (a) PSNR versus No of Dense Blocks. (b) SSIM versus No of Dense Blocks. (c) SAM
versus No of Dense Blocks. (d) RAE versus No of Dense Blocks. (e) MSSIM versus No of Dense Blocks.

3.4.2. Kernel Size Analysis

Furthermore, the performance results (shown in Table 9) are analyzed by using varying
kernel sizes of the convolutional layers within dense blocks. In this study, there are three
convolutional layers within the dense blocks, and each of the layers includes kernels consid-
ered for striding over the input image. Here, each convolutional layer consists of different
numbers of kernels with varying kernel sizes, and these are taken to identify the percentage
of influence and to attain the overall results. The kernel sizes of the three convolutional
layers are varied accordingly: (1) 11-1-7 where the first layer includes 11 kernels, the second
layer includes 1 kernel and the final layer includes 7 kernels; (2) 9-1-5 where there are
9 kernels in the first layer, 1 kernel in the second layer and 5 kernels in the final layer;
and (3) 7-1-3 where there are 7 kernels in the first layer, 1 kernel in the second layer and
3 kernels in the final layer. The results obtained by the study are given in Table 7. The in-
terpretation of results of the SDANet model against the different kernel size 11-1-7 shows
a maximum PSNR value about 65.77 when compared to the results of other kernel sizes.
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The SSIM values and MSSIM values are identified to be constant on different kernel sizes,
whereas the results of SAM and RAE showed minor differences. Overall, the study of the
SDANet model against the different kernel sizes showed no significant major variations by
analyzing the different kernel sizes.

Table 9. Results of performance analysis of SDANet model with different kernel sizes.

Kernel Sizes PSNR SSIM MSSIM SAM RAE

11-1-7 65.77 0.996 0.9967 0.019 0.045

9-1-5 64.10 0.996 0.9972 0.019 0.045

7-1-3 65.07 0.996 0.9974 0.020 0.048

3.5. Visual Interpretation and Validation

A visualized analysis of the results of the different stages of the SDANet model is
carried out to understand more about the outcome of the model. Figure 12 presents
the images of different noise levels (levels of 30, 50 and 70) and the respective denoised
images. The visual interpretations of images show that the images are stable and have
no variation, even when the noise level is varied, the denoised output for all the cases
looks the same. This proves the stability of the SDANet model for different noisy inputs.
The resulted images prove the efficacy of the SDANet model in denoising the HSI. In
addition, the interpretation of input, denoised, compressed and reconstructed images
further confirms that the SDANet model generated quality output images (Figure 13).

Figure 12. Results of noisy and denoised images of different noise levels.
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Figure 13. The input, denoised, compressed and reconstructed images of SDANet model.
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3.6. Ablation Experiments

Ablation experiments are carried out for the SDANet model to provide a deeper
analysis in terms of performance. The results of the performance comparison of the SDANet
model with and without an attention layer are presented in Table 10. The interpretation
of results shows that the SDANet model requires an attention at the end of the model to
generate better results due to better feature extraction. However, the values are optimal
when the model uses an attention layer at the end compared to the model without an
attention layer. The bar chart drawn for the performance of the SDANet model with and
without an attention layer is given in Figure 14. From the plots, it is clear that the attention
layer at the end is crucial to see performance improvement in the proposed model in terms
of reconstructing the HSI. The PSNR plot shows an increase in its overall value with the use
of an attention layer compared to that without an attention layer (Figure 14a). The same
is observed in the performance comparison in terms of SSIM and SAM (Figure 14b,c).
Figure 14d shows that the RAE value is reduced, proving that the system is resistant to loss
while using an attention layer at the end.

Table 10. Performance comparison with and without an attention layer in SDANet.

Metrics With Attention Without Attention

PSNR (dB) 63.49 58.47

SSIM (dB) 0.99 0.97

SAM 0.024 0.027

RAE 0.0421 0.0.45

Figure 14. Performance of the proposed approach with and without an attention layer. (a) PSNR
versus Wavelength/nm. (b) SSIM versus Wavelength/nm. (c) SAM versus Wavelength/nm. (d) RAE
versus Wavelength/nm.
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3.7. K-Fold Cross Validation

The k-fold cross-validation is carried out to prove the effectiveness of the model over
different amounts of training sets. The main goal of k-fold cross-validation is to reduce the
dependence of the proposed model over a single partition of the dataset. In our experiments,
a total of five folds are considered to evaluate the proposed model. The downloaded HSI
are divided into five folds in a random manner, and for each run, one of the folds is
kept for testing, and the remaining are considered for training the model. The validation
experiments are repeated five times to produce the results. The experimental results of
k-fold cross-validation are presented in Table 11. The interpretation of results shows that
fold 1 achieved 64.86 dB of PSNR, 0.9966 dB of SSIM, 0.997 dB of MSSIM, 0.020 of SAM
and 0.047 of RAE. Fold 2 resulted in 60.99 dB of PSNR, 0.9965 dB of SSIM, 0.9969 dB of
MSSIM, 0.020 of SAM and 0.047 of RAE. For fold 3, the model produced 61.53 dB of PSNR,
0.9964 dB of SSIM, 0.9971 dB of MSSIM, 0.019 of SAM and 0.045 of RAE. Fold 4 produced
63.47 dB of PSNR, 0.9964 dB of SSIM, 0.9970 dB of MSSIM, 0.020 of SAM and 0.047 of RAE.
Finally, fold 5 produced 63.87 dB of PSNR, 0.9963 dB of SSIM, 0.9969 dB of MSSIM, 0.019 of
SAM and 0.048 of RAE. From the values obtained, it is clear that the proposed approach
performed well in every fold of the dataset. It is obvious from the experiments that the
proposed model is more effective on different HSIs and produced better results on different
testing folds. Moreover, the conducted validation ensured that each sample of the dataset
is exactly used once for the validation. The model proves to be independent of a single fold
of the dataset and provides better results on different samples of the dataset. The overall
results suggest that the proposed model is more accurate and produces reliable results on
different folds of the dataset.

Table 11. K-fold cross-validation of the proposed approach.

Folds PSNR (dB) SSIM (dB) MSSIM (dB) SAM RAE

1 64.86 0.9966 0.997 0.020 0.047

2 60.99 0.9965 0.9969 0.020 0.047

3 61.53 0.9964 0.9971 0.019 0.045

4 63.47 0.9964 0.9970 0.020 0.047

5 63.87 0.9963 0.9969 0.019 0.048

Average 62.94 0.9964 0.9969 0.019 0.046

4. Discussion

The simulations proved that the proposed model is more optimal than the other exist-
ing mechanisms in comparison. The proposed model is capable of generating more accurate
reconstruction results than the other compared models. Moreover, the model enhanced
the performance even in the denoising stage. The SqueezeNet model is introduced for
denoising, and the fire blocks of the model learned the deep features and discriminated the
noisy pixels from the original ones. This strategy helped to increase the performance of
the proposed model. Various analyses under different noise levels proved that the model
is more stable over different inputs with different noise levels. Moreover, the visualized
analysis of the denoising stage proved that the model is stable under different noise levels.
The visualized analysis provided for different stages of the proposed model also proved
that the model is stable and effective in the compression and reconstruction of HSI.

5. Conclusions

In this work, a new and effective model for the denoising, compression and reconstruc-
tion of HSI has been introduced. The model is based on deep learning and is capable of
providing more high-quality outputs than the other reconstruction models demonstrated
in the literature. In this study, the SqueezeNet model is trained with the noisy images for
denoising. The fire blocks in the model discriminated the noisy pixels from the original
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pixels and resulted in effective denoising. The denoised image is then fed to the TSF model
for compression. The dual-level prediction strategy is applied to attain higher performance
in compression, and the result of this model is a compressed HSI. This output is then fed to
the DAN model for reconstruction. The advantage of this model is that it uses four sub-
networks where each network is responsible for reverse operation. The reconstruction
is carried out by reversing the process of dual-level prediction. The final output of the
proposed SDANet is a reconstructed HSI, and the analysis is carried out by comparing
the obtained output with that of the original HSI. The proposed model is implemented in
Python, and the evaluations are carried out using the BGU-ICVL dataset. The simulation
analysis proved that the model is more accurate and reliable compared to the other models.
In the future, we would like to extend the present work with additional features such as an
inclusion of efficient optimization strategies to tune the hyperparameters so that the overall
training time can be reduced. The accuracy in the performance of the proposed model
shows that this technique can be utilized for mineral mapping and analysis and can be
established as an effective model for mineral exploration with the reduced processing time.
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