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ABSTRACT Multi-cloud storage systems are becoming more popular due to the ever-expanding amount
of consumer data. This growth is accompanied by increasing concerns regarding security, privacy, and
reliability of cloud storage solutions. Ensuring data consistency in such systems is especially challenging due
to their architecture and characteristics. Specifically, passive cloud storage cannot run coordination software,
and clients cannot communicate directly to reach consensus. Furthermore, the atomicity of operations is
not always guaranteed by the clouds’ public APIs. In this paper, we formally define data consistency in
multi-cloud storage systems, identify how they can be violated, and introduce a new method that provably
maintains the data consistency in these systems. The implementation and experiments show that the proposed
method canmaintain data consistencywith a certain delay in data uploading and that it is scalable with respect
to the number of used clouds as well as the number of users. Integrating this method into multi-cloud storage
systems will enhance their usability and reliability.

INDEX TERMS Cloud-of-clouds, cloud privacy, cloud reliability, data consistency, multi-cloud storage.

I. INTRODUCTION
With the ever-growing amounts of data, users are shifting
towards cloud storage services. These services provide con-
venience as they omit the need for maintaining local storage
means and provide accessibility from anywhere and across
different devices [1], [2]. However, outsourcing data to the
cloud comes with data confidentiality and integrity critical
requirements [3], [4]. Relying on a single cloud storage
provider fails to meet these requirements due to the inevitable
risks of privacy breaches, data leaks, and service outages [5].

To tackle this issue, various multi-cloud storage systems
(also known as a cloud of clouds) have been proposed
in the literature. Most of these systems partition the data
into multiple parts, encode these parts using erasure codes,
encrypt them, and finally, save each part on a different
cloud provider [6]. When such systems are server-less (i.e.,
partitioning, encoding, and encryption operations occur on
clients’ machines rather than on a centralized server), they
can offer privacy, security, and protection from data loss. Pri-
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vacy is guaranteed since individual cloud providers will have
no knowledge about the content of the data as they store only
an encrypted part. The data is also secured since its integrity
is preserved (since modifications will lead to detectable data
corruption). Finally, reliability is provided through erasure
codes since even if part of the data is unavailable (e.g.,
due to an inaccessible cloud), the original data can still be
reconstructed/decoded from other available parts. In general,
server-less multi-cloud storage systems can provide trust in
the cloud.

There are several important use-cases of multi-cloud-
storage systems for both end-users as well as businesses.
End users can store personal files that are hidden from the
cloud and not subject to potential denial of access. This is
becoming more important due to multiple recently reported
privacy-leak incidents, which caused many cloud-end users
to opt-out of using cloud services [7]. Similarly, multiple
businesses would also like to have guaranteed privacy and
availability of their sensitive data. This is especially important
for businesses since they are subject to different jurisdictions
and potential subpoena-forced data acquisition or service
denial, depending on the cloud data center location [8].
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Multi-cloud storage systems, similar to cloud storage ser-
vices, should allow users to access and modify their files
from anywhere. Furthermore, users can access their data from
multiple independent client devices. Therefore, data should
always be synchronized and consistent across all users’
devices. One of the fundamental synchronization features is
the ability to detect data conflicts and maintain data con-
sistency [9]. In general, data conflicts occur when multiple
clients attempt to modify the same file at the same time. Data
consistency assures that no information is lost in such a case.

Multi-cloud storage systems can detect conflicts and pre-
serve consistency through utilizing a centralized coordination
point (e.g., server) that receives and logs the modification
requests from the different clients (append-log). A special-
ized software can parse the logs and determines the existence
of a conflict. However, secure multi-cloud storage systems
are server-less. Hence, there is no central controller to coor-
dinate between clients and detect data conflicts. This is of
utmost importance since users should not need to trust any
third party to handle their raw data.

The more popular multi-cloud storage system design uses
a distributed system. In such a case, the well-established
consensus algorithms, such as Paxos [10] and its variants,
are utilized. However, the characteristics of multi-cloud stor-
age systems represent a specific situation that violates many
assumptions of these consensus methods. Specifically, cloud
storage clients cannot effectively communicate and coordi-
nate with each other to execute the consensus protocol since
they connect to the service only when they need. In fact,
they do not know each other and, therefore, cannot estab-
lish peer-to-peer communication. Hence, the lack of com-
munication between clients is a significant challenge to the
consensus-based approach. Additionally, for basic cloud stor-
age services, there are no processing resources offered by
cloud storage providers. The cloud providers only support
write/read and related operations (passive servers). Thus,
programs and protocols cannot be executed on these servers.

An additional and essential challenge that facesmulti-cloud
storage systems is the heterogeneity of consistency mod-
els followed by different providers [11]. Having a strict
consistency assumption or atomicity of operations from a
cloud storage provider is an impractical assumption that
should be avoided. Current cloud storage providers are
mostly adopting the eventual consistency model. Under such
a model, any read/write sequence results cannot always be
guaranteed to return the same results [12]. Nonetheless,
a reliable multi-cloud storage system should provide an
application-level mechanism that ensures data consistency
despite the lack of atomic operations or consistency guaran-
tees at the individual cloud level.

To summarize, conflict detection in multi-cloud storage
systems is unique and challenging for the following reasons:

• Client-side only.
• Lack of communication between clients
• Lack of processing resources on passive storage servers

• Multiple independent destinations with different consis-
tency models, potentially leading to conflict detection in
some clouds but not others

• Lack of atomicity of some cloud storage API functions.

In this paper, we investigate multi-cloud storage systems
and propose an application-level client-centric consistency
method that provably detects data conflicts and resolves
them. Such a consistency feature will enhance the usability
of multi-cloud storage systems and hence contribute to the
establishment of private, secure, and reliable storage to end-
users. The contributions of this paper are summarized as
follows:

• Formally defining the data consistency problem in the
context of multi-cloud storage systems

• Proposing a novel method that guarantees eventual data
consistency in multi-cloud storage systems with passive
servers and non-communicating clients

• Implementing a multi-cloud storage system that utilizes
the proposed method to demonstrate its performance
empirically.

The paper is organized as follows: Section II dis-
cusses related solutions and addresses their shortcomings.
Section III presents the multi-cloud storage system model.
We formulate the data consistency problem in multi-cloud
storage systems in section IV. Then, we introduce the pro-
posed solution in section V and evaluate its performance in
section VI, before concluding in section VII.

II. RELATED WORK
Various multi-cloud systems have been proposed in the lit-
erature. Cloud-RAID [13], NCCloud [14], RAIN [15], [16],
RAIC [17], Hyprid CoC [18], and Uni4Cloud [19] systems
leverage multiple clouds to address the aforementioned cloud
trust issue. These systems do not support multiple clients and
end-devices and are not prone to concurrent access issues.
Thus, the data consistency issue is not considered. Other
works like Spystorage [20] and Trustydrive [21] support mul-
ticlient access. However, the data consistency issue is either
relayed to separate centralized service or is not addressed.

Hybris [22] is a multi-cloud storage protocol. It supports
multiple writers consistency. However, inter-client and cloud
communication is necessary. This required an extra layer to
perform such communication, which is Apache ZooKeeper
(ZK). Depending on the configuration, ZK might form a
single point of failure since all clients rely on this server
to communicate and coordinate updates among each other.
Besides, such architecture still requires clients to trust a third
party (Apache ZK) while using a multi-cloud storage system.

SLA [23] provides two tree and token-based distributed
mutual exclusion algorithms that can be used for multi-cloud
storage, but it also requires inter-client communication.
MetaSync [24], [25] provides a file synchronization service
on top of cloud storage providers. It employs a modified
version of the Paxos consensus algorithm called passive
Paxos (pPaxos). This modified version allows clients to
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communicate passively (through files) over the clouds in
order to reach consensus. This modification requires an
append-only atomic list to keep track of protocol messages
and eventually reach a consensus. Cloud-types [26] proposed
specialized data types that guarantee eventual consistency
to all clients. A program that utilizes these data types is
abstracted from synchronization complexities and can auto-
matically synchronize data through fork-join techniques. The
implementation requires communication between servers.
Thus, such implementation is not suitable for a multi-cloud
storage system where servers are completely passive.

Saveme [27], [28] is a multi-cloud storage system that pro-
posed a mutual exclusion method for concurrent data access
without the need for a central server or any communication
between clouds or between clients. This method requires
atomic operations that cannot be interrupted. The authors
surveyed different APIs from several cloud providers to iden-
tify some atomic operations and mapped the unlock/lock
operations to other atomic operations offered by the cloud
providers. While the proposed system successfully addresses
the concurrent access issue, it might be unreliable since these
operations are not guaranteed to stay atomic by the cloud
providers. Also, the implementation is more complicated
since each provider offers different atomic operations. For
example, placing a lock might be mapped to moving a file
in cloud A, whereas in cloud B, it might be mapped to adding
a comment to a file. The deadlock recovery method is based
on a fixed amount of time that is experimentally determined
(deadline), which is not suitable for all network connections
and speeds. Lastly, the method selects a cloud out of the used
ones to be used for locking/unlocking operations. However,
the selected cloud might not be available to all users at the
same time. In such cases, the mutual exclusion will not be
sufficient.

TABLE 1. Features of different data consistency approaches in
multi-cloud storage systems.

Table 1 summarizes the main approaches to achieve the
data consistency feature in multi-cloud storage systems that
provide such a feature. The log-parsing approach assumes
a central entity that can receive and coordinate between all
clients to guarantee conflict detection and resolution. Such
an entity constitutes a single point of failure that jeopardizes
reliability. This also creates a performance hot spot as all
coordination tasks are performed on a single node. On the
other hand, in the distributed systems literature, the concept

of consensus has been developed and used extensively in
cases where distributed entities need to agree on a single
value (or plan) and is used in multi-cloud storage systems.
However, utilizing consensus protocols (e.g., Paxos and its
variants), mandates inter client or inter-server communica-
tion (active consensus) [10]. Nonetheless, there has been a
line of work that attempts to map the consensus protocol to
read/write operations (i.e., passive consensus). For example,
the Paxos proposal phase is replaced with file write. Then,
based on reading the written files, a proposal can be accepted
or rejected. Passive consensus eliminates the need for com-
munication but requires atomic operations to be provided by
the cloud API.

This paper builds on the realization that consensus,
although sufficient, is not necessary to guarantee data consis-
tency requirements in multi-cloud storage systems as defined
later in section V. Instead, it is possible to derive general
algorithmic protocols (i.e., not necessarily consensus proto-
cols) that ensure data consistency without strictly requiring
consensus between clients. This is especially appealing since
it allows some of the necessary assumptions for consensus
(active or passive) to be relaxed.

III. SYSTEM MODEL
Fig. 1 shows the architecture of a multi-cloud storage system.
Computing systems are networked with multiple cloud stor-
age providers. Cloud consumers store their data files on the
storage devices located at multiple cloud storage providers’
premises. A cloud consumer’s computers use these storage
services through cloud access interface functions provided by
each cloud provider. The cloud consumer typically has mul-
tiple computers sharing and concurrently accessing (reading
and writing) the data. A cloud consumer’s computers may
provide a file access interface within the computer, or to
other consumer computers connected to it. In other words,

FIGURE 1. Multi-cloud storage system model.
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FIGURE 2. Data flow in multi-cloud storage system, writing (left), and reading (right).

FIGURE 3. Configuration of data consistency management in cloud
consumer computers.

some consumers’ computers may act as file servers for other
computers.

When a file is to be written to the multi-cloud storage sys-
tem, it goes through multiple stages shown in Fig. 2. The data
file is partitioned into n parts. To enhance the availability of
data, an optional erasure coding technique can be employed
to add redundancy to the data by encoding the n parts into
m = n+ t parts, such that the original n parts can be retrieved
from any n out of the m parts are available. The m parts
are encrypted and distributed over m clouds. This is similar
to RAID storage systems. For example, RAID5 systems use
simple parity to achieve an n out of n+1 system that can toler-
ate the failure of any single storage node. In the general case,
an [n+ t, n] coding technique is used to achieve a system that
can tolerate the failure of up to t storage nodes. In this paper,
we design a consistency manager module integrated into
multi-cloud clients (see Fig. 3). Note that the file processor
module, which implements the data flow pipeline, recognizes
parts through their names, which are deterministically derived
from the name of the originating file with the addition of
a part number. In addition, the encryption key is stored as
secret shares saved with the file parts, and produced through
an [n+t, n] secret sharing scheme. Therefore, the key can also
be reconstructed from the surviving n parts after a potential
failure.

IV. PROBLEM FORMULATION
Let D be a data file, and dn be the nth part of D. We use vdn
to denote the version number of the nth data part dn, and vD
denotes the version number of the original file D. Let cn be
the nth cloud provider that hosts dn.

A. CONSISTENCY REQUIREMENTS
Before introducing our method, we formally define data con-
sistency in multi-cloud storage systems:

A multi-cloud uploading algorithm should place data parts
d1,d2, . . . ,dn, on the clouds c1,c2,. . . ,cn, respectively, while
ensuring that the data parts always satisfy the requirements
of a consistent state as specified in the following definition.
Definition-1 (Consistent State): In a multi-cloud storage

system, the file D is said to be in a consistent state if and
only if:
1) All data parts, d1,d2, . . . ,dn, hosted respectively on the

different clouds c1,c2,. . . ,cn, were generated from the
same original data D.

2) The versions of all data parts vd1 , vd2 , . . . , vdn are writ-
ten by overwriting a previous versions v′d1 , v

′
d2

, . . . , v′dn
(where v′di < vdi , i = 1, 2, 3, . . . , n)

3) All data parts share the same version: vd1 = vd2 =
. . . = vdn = vD. We refer to parts that share the same
version as ‘‘homogeneous parts’’.

For systems that employ an [n + t, n] coding technique,
it is sufficient to satisfy the above conditions for n data parts
as other parts can always be reconstructed with the same
metadata.

To maintain the consistency requirements, it is essential
to first identify situations wherein they will be violated; we
refer to these situations as the inconsistency cases and identify
them in the following subsection.

B. INCONSISTENCY CASES
Definition-2 (Inconsistency Cases): In the multi-cloud stor-
age system, we use the term Inconsistency case to describe
situations when:

1) Two or more clients attempt to simultaneously modify
the same file (competing to write the same version).
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This will violate the first consistency requirement. For
example, assuming a file has a certain version vD, a data
conflict occurs when two clients modify this file, each
creating version vD+1 on his/her local machine. Then,
they both attempt to write this same version (vD + 1)
on the cloud. Such cases might lead to data parts being
heterogeneous (e.g., d1,d2 might be coming from client
U1 while d3 is coming from client U2).

2) A client attempts to upload a file of version vD while
currently, the file is at another version v′D where v′D ≥
vD (overwriting a newer version). This will violate
the second consistency requirement. For example, con-
sider the case when a client opens version vD = 2 of
a file for read-only, and in the meantime, the file has
been modified to version v′D = 5 (three modifications).
Then, if that client modifies its already loaded version,
a data conflict occurs since he/she will try to overwrite
a more recent version with an older one.

3) A client gets interrupted (i.e., stops) at any stage dur-
ing the upload process. For example, a client might
successfully update d1, but stops before uploading d2
and d3. This leads to different versions of the parts,
violating the third consistency requirement.

C. DESIGN OBJECTIVES
To prevent the occurrence of all inconsistency cases, a data
uploading algorithm has to guarantee the following:

• O1: Every file being uploaded has a unique uploader (to
prevent the first case).

• O2: An updating upload should be overwriting an older
version (to prevent the second case)

• O3: An updating upload should be interruption-safe.
Specifically, if interruption happens while updating a
file, a homogeneous set of parts should still be available
(to prevent the last case).

To facilitate the discussion, we refer to inconsistency cases
1 and 2 as ‘‘Data conflict cases’’ as they arise by concur-
rent writes or overwriting a newer version, which is already
uploaded by another client. We refer to the inconsistency case
3 as an ‘‘Interruption case’’ as it is caused by a stopping the
upload process by an uploading client unexpectedly.

In the next section, we describe an uploading algorithm that
meets these design objectives.

V. PROPOSED DATA CONSISTENCY METHOD
In this section, we propose a method that is able to main-
tain data consistency requirements without the need for a
central server module or/and inter client/cloud communica-
tion. The proposed method has two main sections, a cloud-
specific section, and a general section that utilizes multiple
cloud-specific sections (one for each cloud) to perform the
upload process.

The cloud-specific section is detailed in Algorithm 1.
It executes for every cloud and deals with the data part hosted
on that cloud. This section consists of three main phases. The

Algorithm 1 Cloud Check
Input: part name, part version
Output: conflict_indicator (True or False)
1: temp= part name + client_ID + ‘‘.temp’’
2: Attempt to upload temp
3: If Failed Return False
4: Verify that no other temp files for part_file_name exist
5: If Failed
6: Remove temp
7: Return False
8: Verify that the part version currently on the cloud is older

than part version
9: If Failed
10: Remove temp
11: Return False
12: Return True

Algorithm 2 Upload
Input: parts, file version
Output: True if the original file is updated. False if a con-

flicted copy is uploaded
1: For each cloud ci, i = 1, . . . , n:
2: c_cloud_indicator = Cloud Check (parts[i], file ver-

sion)
3: If c_cloud_indicator is False
4: parts[i]← conflicted copy(parts[i])
5: file version← v0
6: conflict_flag← True
7: break
8: For each cloud ci, i = 1, . . . , n:
9: Upload parts[i] to parts[i].temp
10: Upload file version to parts[i].temp metadata
11: For each cloud ci, i = 1, . . . , n:
12: Rename parts[i].temp to parts[i]
13: Return conflict_flag

first phase is placing a temporary file (line 2), which is an
indicator that a specific client is uploading a part. The sec-
ond phase performs two verifications (line 4 for temp file
uniqueness, and line 8 for versions). The third phase is temp
renaming (which might occur on line 6 or line 10). The output
of this algorithm is an indicator of whether a data conflict
situation exists on the specific cloud.

The general section is illustrated in Algorithm 2. It gen-
erally utilizes the cloud-specific section to either permit to
write (upload) or not. It is worth mentioning that line 2 can
actually be performed by a different thread for each cloud
so that all the cloud-specific sections can run simultaneously.
Hence, the method represents a multi-threaded network sub-
routine. Assuming the response time for different clouds is
similar, then using more clouds, and therefore more threads,
does not affect the execution time as long as the bandwidth
can accommodate the parallel requests. This significantly
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improves the scalability to more clouds, as will be shown in
the performance evaluation section.

If no conflict is detected, the original parts will be
uploaded. Otherwise, the client replicates the parts locally,
creating another conflicting copy whose parts are to be
uploaded. In both cases, each part is uploaded to the cor-
responding temporary file created earlier by Algorithm 1,
referred to as ‘‘.temp’’ (lines 8-10). Then, when all temporary
parts are uploaded, the original parts are overwritten by the
newer temporary ones (through the renaming in lines 11,12).
The returned value is an indicator to the client whether the
uploaded copy has successfully overwritten the original file
or created a conflicted copy.

A. PROOF OF DATA CONSISTENCY
To prove that the proposedmethodmeets the design objective.
We first show that any data conflict situation can be detected.
Second, we show that when such detection occurs, then every
conflicting client will be the sole uploader of a copy of the
conflicted file. Finally, we show that every upload process is
interruption safe.

To prove data conflict detection between any number of
clients, it is sufficient to prove that the data conflict between
any two clients, A and B, can be detected. Furthermore,
when any two clients have data conflict, it implies they have
a conflict in at least one cloud. Since the general section
(Algorithm 2) declares a conflict when any thread of the
cloud-specific section (Algorithm 1) returns False, it is suf-
ficient to prove that the cloud-specific section can detect the
conflict between any two clients.

As per the design of the cloud-specific section of the
method, each client will go through three phases before decid-
ing on conflict existence; (1) the temporary file placing phase,
(2) the verification phase, and (3) the temporary file renaming
phase. Let Ai and Bi refer to the ith phases performed by
clients A and B, respectively.
Lemma-1: If any of the following cases, representing all

possible sequence of events, occur, then a conflict can be
detected by client A (in the first two cases), or by client B
(in the last two cases):

• A2 after B1 but before B3
• A2 after B1 with B3 in-between
• B2 after A1 but before A3
• B2 after A1 with A3 in-between

Proof: For the first case, the temporary file uniqueness
verification of A2 will detect the temporary file placed by B1.
Thus, this conflict is detected. For the second case, there is
no temporary file left from B1 because it has already been
removed by B3. However, A2 will still detect the conflict
through the file version verification since B3 would not have
been done unless a new version is uploaded. The third and
fourth cases are similar to the first two cases except that the
clients are interchanged. �
Theorem-1: The proposed algorithm for the cloud-specific

section is sufficient to enable at least one of any conflicting

two clients to detect a conflict. Proof: All the cases
that might occur between the phases of clients A and
B are represented by the permutation of the six phases
A1,A2,A3,B1,B2,B3 with the condition Cond .1 : that
phases of a client always occur in ascending order (per design
of the algorithm).

The following lists all Perm({A1,A2,A3,B1,B2,B3}, 6)
such that Cond .1 holds:

{(A1,A2,B1,A3,B2,B3), (A1,A2,B1,B2,A3,B3),

(A1,A2,B1,B2,B3,A3), (A1,A2,A3,B1,B2,B3),

(A1,B1,B2,B3,A2,A3), (A1,B1,B2,A2,B3,A3),

(A1,B1,B2,A2,A3,B3), (A1,B1,A2,A3,B2,B3),

(A1,B1,A2,B2,A3,B3), (A1,B1,A2,B2,B3,A3),

(B1,A1,A2,B2,B3,A3), (B1,A1,A2,B2,A3,B3),

(B1,A1,A2,A3,B2,B3), (B1,A1,B2,A2,A3,B3),

(B1,A1,B2,A2,B3,A3), (B1,A1,B2,B3,A2,A3),

(B1,B2,B3,A1,A2,A3), (B1,B2,A1,B3,A2,A3),

(B1,B2,A1,A2,B3,A3), (B1,B2,A1,A2,A3,B3)} (1)

In all of these 20 cases, at least one of the sequences men-
tioned in lemma-1 is true. Thus, by lemma-1, a conflict can
always be detected by at least one client (A or B) or both. �
Theorem-2: If one of two conflicting clients detects a data

conflict, then design objectives O1 and O2 are achieved.
Proof: if A detects a conflict with B on a file f , A will

create and upload a unique copy fA_ID. Then, we have two
cases for B:
1) If B detects its conflict with A, it will upload fB_ID.

Thus, both fA_ID and fB_ID have different uploaders
(O1). Furthermore, O2 is preserved by default as these
clients will upload new files (not updating the original
one).

2) If B does not detect its conflict with A (i.e., the data
conflict flag is False) and hence proceeds to update the
original file f , then still each file will have a unique
uploader (design objective O1). Also, O2 is preserved
for fA_ID as it is new.O2 is preserved for f since the data
conflict flag is False, confirming that the parts’ versions
in the cloud are older than those being uploaded.

�
Note that from a distributed systems perspective, the sec-

ond case, when only one client detects the conflict, does not
represent consensus as the two clients do not agree on the
same value (conflict existence or lack thereof). Nevertheless,
O1 and O2 still hold.
Theorem-3: If the execution of Algorithm 2 is interrupted,

design objective O3 is still achieved.
Proof: We distinguish two cases:

1) An interruption during the execution of lines 1-10 will
not affect the original parts (they will stay homoge-
neous).

2) An interruption during the execution of lines
11-12 leads some parts to be of a higher version than

164982 VOLUME 8, 2020



N. Mhaisen, Q. M. Malluhi: Data Consistency in Multi-Cloud Storage Systems

others. In this case, a reading client can detect the
different versions and continue the overwriting (renam-
ing) process on the clouds where the renaming did not
start/finish, ensuring the availability of a homogeneous
set of parts.

�
Note that in the first case, the interrupted client is respon-

sible for cleaning or completing the upload of its temporary
files. This process can be initiated at startup. Until the inter-
rupted client cleans the temporary files, other clients will
perceive a conflict, and all edits to that file can still be made.
However, they will be saved as another conflicted copy.

By Theorem-1, and Theorem-2, design objectives O1 and
O2 are always met. By Theorem-3, design objective O3 is
always met. Hence, the proposed uploading algorithm satis-
fies the defined data consistency requirements in multi-cloud
storage systems.

B. ON OPERATIONS ATOMICITY AND CLOUDS’
CONSISTENCY MODELS
The operation of placing and removing the temporary file on
a cloud storage does not need to be atomic. The verification
phase of a client B can occur simultaneously with the tempo-
rary file placing phase or with the temporary file renaming
phase of another client A. This is respectively shown in
cases (a) and (b) in Fig.4

FIGURE 4. Example of concurrent phases of two clients.

The situation in the first case will be interpreted
either as (B1,A1,B2,A2,B3,A3) or (B1,B2,A1,A2,A3,B3).
While the second case will be interpreted as either
(A1,B1,A2,A3,B2,B3), or (A1,B1,A2,B2,A3,B3). As shown
earlier, in all of these four cases the data conflict will be
detected and data consistency will still be maintained with-
out the need for clouds to provide the guarantee of atomic
operations.

Furthermore, the consistency model followed by each
cloud provider does not affect conflict detection. For exam-
ple, the eventual consistency model is popular among cloud
storage providers. Under this model, any specific sequence
of phases cannot be guaranteed to be observed by the
client due to different execution (i.e., processing) time on
each cloud. Despite this, the conflict is guaranteed to be
detected per Theorem-1 as the cases in (1) span all possible
situations. In general, the presented method represents an

application-level algorithm that is agnostic to the consistency
model and operations’ atomicity of the clouds.

VI. PERFORMANCE EVALUATION AND DISCUSSION
In order to evaluate the performance of the proposed method,
a multi-cloud storage system is built. The system is developed
using the FUSE library for Linux machines and available
as open source. It provides all standard file system opera-
tions (read, write, directory listing . . . etc.). Also, the sys-
tem includes encryption and encoding functionalities. The
data (files) in the system are distributed over three public
cloud storage providers (Dropbox, GoogleDrive, and Box).

The proposed method for data consistency was inte-
grated into this multi-cloud storage system in order to
test its performance. The system’s overall workflow for
writing a file is as follows: (1) The user issues an
application-level write command. (2) The FUSE-defined
write command implementation is activated, which passes the
data through the encryption-partitioning-decoding pipeline
illustrated in Fig. 1. The output of this pipeline is the parts and
their metadata (including the version of their originating file).
(3) The resulting parts, and their corresponding metadata
file, are fed into the consistency algorithm (algorithm 2),
whose output indicates whether the file was updated, or a new
conflicted copy is created, preserving the data consistency
requirements.

The performance evaluation was done using twomachines:
a main Linuxmachine with Intel Core i7-3770S CPU, 8 Giga-
byte of RAM, 500 Gigabyte 7200 RPM hard drive, 1 Gigabit
Ethernet Network running Ubuntu 16.04, and another virtual
machine running with three cores of Intel core CPU 7700HQ,
4GB RAM, 64 SSD Storage, and 300 Megabits 802.11n
Wireless connection. Such a setup is representative of a typ-
ical end-user device and is similar to configurations used in
the literature for evaluating cloud storage systems [28].

A. CLOUDS’ API REQUESTS
The number of Application Programming Interface (API)
requests required in the proposed method is four. These calls
are:

• Uploading a client-specific temporary file file
• Listing temporary file files
• Downloading metadata (to check the version of the file)
• Removing the client-specific temporary file.

The first call corresponds to the first phase (temporary file
placing phase) of the cloud-specific section. The second
and third calls correspond to the second phase (temporary
file uniqueness and version verifications). Whereas the last
call corresponds to the third phase (temporary file-renaming
phase). The temporary file renaming might be done in the
cloud-specific section shown in algorithm 1 (if a conflict
occurs), or in the general section shown in algorithm two if
there is no conflict. In all cases, this API request will be fired
for each cloud. Since these calls are for the cloud-specific
section, the total number of API requests needed for all used
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FIGURE 5. TTR in different scenarios: (a) multiple clouds, (b) multiple conflicting clients.

clouds is ‘‘number of used clouds’’ ×4 = 3 × 4 = 12.
As mentioned earlier, all cloud-specific sections run on par-
allel through threading.

B. TIME TO RESPONSE
In this section, we quantify the delay metric to measure the
overhead added by the consistency module. We define Time
to Response (TTR) metric as the time between a client’s
request to write/modify a file and the time of determining the
status of this request based on the responses of the clouds’
servers. The status of the request is the data conflict indicator.
If a client receives a no conflict indicator, the client will
start uploading the new file’s parts to their respective clouds,
overwriting the older parts. On the other hand, if a client
detects a conflict, it will create a new file (conflicted copy)
and upload its parts to the respective clouds, without affecting
the parts of the original file. Thus, the client will be able to
start writing (uploading) file parts to the clouds after the end
of the second phase of the cloud-specific sections, or in other
words (after TTR).

As shown in Fig. 5a, the average TTR is approximately
4.7 seconds. Since the cloud-specific sections of the algo-
rithm can run in parallel, the TTR is roughly the same when
tested on one, two, and three public cloud providers. Thus,
the proposed algorithm can be scaled to multi-cloud stor-
age systems that utilize many cloud providers due to the
thread-friendly design of the cloud-specific section.

Additionally, TTR is roughly the same, whether there is
a data conflict between any number of clients or there is
not any, which means that the proposed method can also be
scaled with respect to the number of users. Fig. 5b shows the
TTR when the main testing machine is not conflicting with
any other machine, and when it is conflicting with one, two,
three, and four other secondary machines. The similar delay
is because the existence of a conflict does not change the
complexity of the proposed method; the effect of a conflict
existence is merely writing a different copy. Hence, provided
that cloud providers API’s can process the requests from addi-
tional clients, a higher number of conflicting clients should
not affect the method’s latency.

C. COMPARISON WITH BASE CASES
In this section, we present end-to-end delay (i.e., including
TTR and data upload time) comparison between the case
when the data consistency module is not activated versus the
case when it is activated. Fig. 6 shows actual times for upload-
ing files in the designed multi-cloud storage system with and
without the proposed data consistency method. These times
include the partitioning, encoding, and encryption of the data
parts. As shown in the figure, the overhead added by the
data consistency algorithm is roughly 5 seconds, including
the TTR and the time required for temporary file renaming
(third phase). The additional 1 second that exists in the case
of conflict is mainly due to the conflict handling mechanism
(copying data to the new conflicted copy) of our system, and
not due to the algorithm itself since, as shown earlier, the TTR
is the same whether there is a conflict or not.

FIGURE 6. Overhead in uploading data to multi-cloud storage system.

D. COMPARISON WITH OTHER TECHNIQUES
Table 2 compares the performance in terms of the upload
latency with the two previous techniques reported in Meta-
Sync [25] and SaveMe [28]. These two techniques are
selected as representatives of similar previouswork since they
are the most recent multi-cloud data consistency solutions
available in the literature that support passive servers, use
non-communicating clients, and execute all operations on the
client-side (i.e., no third-party service to handle consistency).
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TABLE 2. Latency overhead comparison (reported averages in seconds).

Although the proposed method has better performance on
average, the results illustrate an approximately similar perfor-
mance. The main differentiator between these approaches is
the necessary assumptions, which are minimized for our pro-
posed method, making it more practical. These assumptions
are discussed in the related work section and are summarized
in Table 1.

E. CLOUD STORAGE SERVICE OUTAGE AND DATA
CONSISTENCY
The proposed algorithm detects data conflicts even if the
available clouds are not the same for different users, provided
that they overlap in at least one cloud. If n > t , this is always
guaranteed. For example, for a client A, if only the two clouds
C1 and C2 are available from the used three C1, C2, and C3,
and for another client B, the available clouds are C2 and C3.
The data consistency is still guaranteed since they overlap in
C2 where the cloud-specific section related to C2 would still
be able to perform all the verifications.

VII. CONCLUSION
In this paper, we discussed multi-cloud storage systems and
their significant advantages in establishing trust in the cloud.
The paper focuses on addressing the concurrent data access
issue and reasons why it is especially challenging in such
systems compared to conventional storage systems. Various
previous solutions to this issue were discussed. The paper
offered a useful formal definition of data consistency and
data conflicts in a multi-cloud storage system and proposed
a novel method to detect data conflicts and maintain data
consistency. The method:
• Does not require inter-client or inter-server communica-
tion,

• Avoids the reliability and security issues associated with
a single point of failure as it does not require the help of
any server (a server-less system that runs fully on the
client’s machine),

• Utilizes passive cloud storage services,
• Is scalable with respect to the number of clouds,
• Is scalable with respect to the number of users, and
• Works as long as users of a multi-cloud storage system
overlap in using at least one cloud.

Experimental results on real cloud systems show an API
calls-delay of approximately 4.5 seconds before uploading
data to the multiple clouds. The proposed algorithm is best
suited for a multi-cloud storage system that requires data
consistency while also being scalable and tolerant to different

cloud failures. Future work might consider utilizing local
caching or API call optimization to minimize the delay.
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