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Abstract The main objective of the present research is to combine the effect of scale thickness on

the flow pattern and characteristics of two-phase flow that is used in oil industry. In this regard, an

intelligent nondestructive technique based on combination of gamma radiation attenuation and

artificial intelligence is proposed to determine the type of flow pattern and gas volume percentage

in two phase flow independent of petroleum pipeline’s scale layer thickness. The proposed system

includes a dual energy gamma source, composed of Barium-133 and Cesium-137 radioisotopes,

and two sodium iodide detectors for recording the transmitted and scattered photons. Support Vec-

tor Machine was implemented for regime identification and Multi-Layer Perceptron with Levenberg

Marquardt algorithm was utilized for void fraction prediction. Total count in the scattering detec-

tor and counts under photo peaks of Barium-133 and Cesium-137 were assigned as the inputs of

networks. The results show the ability of presented system to identify the annular regime and mea-

sure the void fraction independent of petroleum pipeline’s scale layer thickness.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

In petroleum industry, quantitative measuring of the gas and
oil components are essential. With sufficient information on

the gas and oil phase’s volume fractions, the separating process
could be optimized. Also, it is necessary to recognize the type
of flow pattern in the transportation process and also deter-

mine the volume fractions of the gas and oil phases, because
these two flow characteristics are directly related to the pro-
cess’s economics. Type of flow regime can affect the separating
process’s efficiency, whilst each component’s volume fraction

provides indication as to whether the drilling process must
be continued or stopped. Lots of technique such as hydro-
static, ultrasonic, hydrometric, and gamma radiation tech-

niques have been applied for determining flow regime and
volume fraction of two-phase flow. Among the mentioned
techniques, gamma radiation based technique has attracted

more attention because of its advantages such as being nonde-
structive, non-intrusive, applicable in harsh conditions, and
etc.

In recent decades, numerous studies have been done on
determining flow regime and volume fractions of multiphase
flows using gamma radiation based technique. In 1999, Abro
and his colleagues presented a multi-beam radiation technique

to recognize flow patterns of a two phase flow inside a small
diameter pipe [1]. They used EGS4 software package to simu-
late a detection system included one americium-241 radioiso-

tope source and three detectors with orientations of 140�,
154� and 180� in respect to the radioisotope source. They sim-
ulated three flow regimes of homogeneous, stratified and annu-

lar with void fraction percentages from 0 up to 100%. Using
artificial neural network (ANN), they could identify all the
flow patterns and forecast the void fraction percentage with

an error of 3%. In 2015, Faghihi and his colleagues carried
out an experimental investigation to identify flow pattern’s
type of a modelled two-phase flow [2]. They implemented some
polyethylene phantoms to model various flow regimes and

void fraction percentages in static conditions. Their experi-
mental arrangement consisted of two sodium iodide (NaI)
crystal detectors and one Cesium-137 radioisotope. Using a

correlation method, they succeeded to identify type of flow
regimes. In 2017, G.H. Roshani et al. presented a new method
to identify flow pattern and forecast the void fraction in two

phase flows without any dependency to changes of liquid phase
density [3]. The methodology included a dual modality gamma
radiation technique, consisted of one Cesium-137 source and
three sodium iodide detectors, combined with multi-layer per-

ceptron (MLP) neural network. They utilized two detectors for
recording the scattered and transmitted photons. Applying
four ANNs, they succeeded to identify all the three flow pat-

terns and determine void fraction without any dependency to
liquid phase density changes. In 2020, Sattari et al. tried to
improve measurement precision of a simple two-phase flowme-

ter consisted of a Cesium-137 source and one sodium iodide
detector [4]. At first they applied Savitzky-Golay filter on the
extracted photon energy spectrum from detector to eliminate

high-frequency noises related to uncertainty of obtained calcu-
lations in the MCNPX code. Then, they extracted seven fea-
tures of average value, variance, skewness, kurtosis,
waveform length, absolute value of the summation of the root

(ASM), and absolute value of the summation of square root
(ASS) in time domain from the denoised spectrum and
assigned them as inputs of neural network. Using this method,
they succeeded to recognize the type of flow regimes and pre-

dict void fraction with a relative error of less than 1.11. More
related studies in the field of radiation multiphase flowmeters
as well as application of artificial intelligence in engineering

fields can be found in references [5–21].
Performance of radiation-based flow meters depends pow-

erfully on the different parameters. For example, changes in

fluid density, temperature or pressure can cause errors in deter-
mination of the volume fractions. A conventional solution in
order to solve this problem is recalibration. Usage of ANN
for solving this problem is an almost new method which is used

in many studies. In [22], a method was proposed in order to
determinate the void fraction in two-phase flow independent
of density changes using ANN. In [23], it was shown that a

combination of ANN and gamma-ray densitometer can be
used to measure the volume fractions independent of density
changes in multiphase flows.

Conventional gamma radiation based two-phase flowme-
ters can just work properly when the flow characteristics such
as flow regime and volume fractions of component change

inside the pipe. But sometimes, minerals are gradually depos-
ited inside the oil pipelines and leads to formation of a scale
layer which can consequently decrease precision and perfor-
mance of gamma radiation based two-phase flowmeters. A

sample of scale layer formed in an oil pipeline is shown in
Fig. 1. As described above, recent studies concentrated on
determining flow pattern and gas volume percentage of two

phase flows without considering scale layer inside the pipe.
On the other hand, some researchers just focused on measuring
the scale thickness in oil pipelines using radiation based tech-

niques regardless of flowing fluid inside them [24–29]. The
main objective of the present research is to combine the effect
of scale thickness on the flow pattern and characteristics of

two-phase flow that is used in oil industry. In this regard, a
Fig. 1 A sample of scale layer formed in an oil pipeline [25].
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dual energy gamma radiation based system is proposed to
determine the type of flow pattern and estimate void fraction
in two phase flow independent of petroleum pipeline’s scale

layer thickness.

2. Materials and methods

2.1. Detection system

Version X of Monte Carlo N Particle code (MCNPX) [30] was
used in this study to model the detection system. The proposed
detection system includes a dual energy gamma source, com-

posed of Barium-133 and Cesium-137 radioisotopes, and two
sodium iodide. A steel pipe that two phase flow and scale layer
are modeled inside, was also located between radioactive

source and detectors. Schematic view of simulated detection
system is shown in Fig. 2. In this figure, stratified flow regime
modelled inside the steel pipe has been shown as an example.
The proposed system can be divided into three main parts that

will be described in the following.

2.1.1. Radiation source

The radiation source includes Barium-133 and esium-137
radioisotopes which emit gamma radiation with energies of
Fig. 2 Simulated detection system:1-Shield, 2-Dual energy

source, 3-Steel pipe, 4-Scale layer, 5-Liquid phase, 6-Gas phase,

7-Scattering detector, 8-Transmission detector.
0.356 and 0.662 MeV, respectively. A disk source was defined
to model the radiation source. Source information (SI) and
source probability (SP) cards in source definition (SDEF) sec-

tion of MCNPX input file were used to define Barium-133 and
Cesium-137 radioisotopes. The gamma ray emission probabil-
ity from both radioisotopes was considered equal. The disk

source was put inside a lead shield in order to collimate the
radiation beam toward the transmission detector.

2.1.2. Detector

In this investigation, two 25.4 mm � 25.4 mm sodium iodide
detectors were utilized in order to record the transmitted and
scattered photons. The detector used for recording the trans-

mitted photons was diametrically located in front of radiation
source and the other detector was located at the angle of 45�
respect to the connecting line of pipe’s center to transmission

detector.
In order to register photon spectrum in both detectors,

pulse height tally (Tally F8) was used in the simulations. In
order to take the photon spectrum broadening into account

with the aim of making the simulated detector responses closer
to the experimental ones, Gaussian energy broadening (GEB)
option was also implemented. At the first step, FWHMs of the

full energy peak for some different energies were calculated via
experiments and then were inserted into the ‘‘FT8 GEB” card.
The mentioned card has 3 parameters, called ‘‘a”, ‘‘b” and ‘‘c”

that should be determined on the basis of equation (1) [30]:

FWHM ¼ aþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ cE2

p
ð1Þ

In a former research, an experimental setup that was con-
sisted of a 1 in. � 1 in. NaI detector and 3 radioactive gamma
emitter sources (241Am, 137Cs and 60Co), was developed to

measure the necessary constant parameters [31]. The obtained
FWHMs are shown in table 1.

At the final step, the obtained FWHMs shown in table 1

were plotted against energy and then a curve on the basis of
equation (1) was fitted to the data. Utilizing the explained
approach, ‘‘a”, ‘‘b” and ‘‘c” parameters were determined

1.09 � 10-2 (MeV), 6.96 � 10-2 (MeV0.5) and 2.26 � 10-2

(MeV�1), respectively. The calculated parameters were
inserted in input file to take the energy broadening of photon
spectrum into account in the modelled sodium iodide crystal

detector.
In Fig. 3, some recorded spectra in both detectors for three

flow regimes with scale thickness of 0.5 cm and void fraction of

40% are shown as an example. In transmission detector,
counts under photo peaks of Barium-133 and Cesium-137 were
extracted from the recorded photon energy spectrum. In the

scattering detector, count under the entire of spectrum (total
count) was extracted. The mentioned three extracted counts
from the recorded photon energy spectra in both detectors
were applied for training and testing of the neural network.

It is worth mentioning that the STOP card with a value of
0.01 was used in the input file of MCNP code to reduce the
effect of Monte Carlo statistical errors on the calculations.

2.1.3. Scale layer and two phase flow modelling

A pipe made of steel with external and internal diameters of
21 cm and 20 cm respectively was considered as the main pipe

in the simulations. In the interior wall of the pipe, a symmetric
annular layer made of Barium Sulfate (BaSO4) with different



Table 1 The obtained photo peak’s FWHM for various energies.

Energy (eV) 5.95 � 104 6.62 � 105 1.17 � 106 1.33 � 106

FWHM (eV) 6.1 � 103 4.55 � 104 6.71 � 104 6.94 � 104

Fig. 3 Recorded spectra for three flow regimes with scale thickness of 0.5 cm and void fraction of 40% in: a) transmission detector b)

scattering detector.

1958 M. Roshani et al.
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thicknesses was considered as the scale. A gas–liquid two phase
flow with various flow regimes and gas volume fractions was
also modelled inside the pipe. Specifications of modelled scale

layer and two-phase flow inside the main pipe are indicated in
table 2 and Fig. 4.

2.2. Regime identification using SVM

For regime identifying, Support Vector Machine (SVM) as a
very effective tool for classification was used [32]. SVM is a

binary classification tool which takes labeled data from two
classes as inputs [33–34]. This machine after training can clas-
sify new unlabeled data into two specified classes. Like other

machine learning techniques, there are two essential steps in
the usage of SVM namely training and testing. The testing step
is used to validate the learned machine.

The SVM has many benefits in solving problems with small

sample size. Also, it has many advantages in solving problems
Table 2 Specifications of modelled scale layer and two-phase

flow inside the main pipe.

Specification Value/Name

Type of material used for

scale layer

BaSO4

Thickness range of scale

layer

0–4 cm

Step of scale layer’s

thickness

0.5 cm

Number of phases 2

Type of material used for

liquid phase

Gasoil

Type of material used for

gas phase

Air

Density of material used

for liquid phase

826 kg/m3

Density of material used

for gas phase

1.25 kg/m3

Number of flow regimes 3

Type of flow regimes Stratified, Annular, Homogenous

Range of void fraction

percentages

10–85%

Step of void fraction

percentage

15%

Total number of

performed simulations

9 scale thicknesses � 3 flow

regimes � 6 void fractions = 162

Fig. 4 Modelled scale layer and two-phase flow regimes inside the m

regime.
of high dimensional and nonlinear pattern recognition. Fur-
thermore, this strong classifier has a high reliability. SVM clas-
sifies data on the basis that it may or may not be linearly

separable in its domain of origin. If the data in its original
domain is linearly separable, the simple linear SVM is utilized
and, if the data can not be distinguished, it should be projected

into a higher-dimensional space using appropriate kernel func-
tion. The data would be linearly distinguishable in a higher-
dimensional space. The performance of SVM classifier is

strongly dependent on the selection of the kernel functions.
In this study, Linear, Polynomial, Quadratic, Multi-Layer Per-
ceptron and Radial Basis Function were tested as kernel func-
tions and the best one was selected.

The performance of a SVM classifier which is binary classi-
fier is obtained using the sensitivity, specificity and accuracy
indexes [35]:

Sensitivity = TP / (TP + FN) (2)
Specificity = TN / (TN + FP) (3)
Accuracy = (TP + TN) / (TP + TN + FP + FN) (4)

where TP, FN, TN and FP are the number of true positive,
false negative, true negative and false positive classified cases,
respectively. The SVM classification in TP and TN is correct

but in FP, SVM labels a case as positive if it is negative and
in FN, SVM labels a case as negative if it is positive.

In our proposed method, in the first step it was attempted
to classify the annular regime from the other both regimes.

SVM is binary classifier and this is the reason of this method.
Therefore the annular regime was considered 1 and other
regimes (homogenous and stratified) were considered �1. In

the last step it was attempted to separate the homogenous
regime from stratified regime. Therefore the homogenous
regime was considered 1 and stratified regime was considered

�1. In this regard, two different procedures were performed:
‘‘2 inputs” and ‘‘3 inputs”. In the first procedure, 2 inputs were
considered for the SVM: total count in the scattering detector

and counts under photo peak of Cesium-137 and in the second
one, 3 inputs were considered: total count in the scattering
detector and counts under photo peaks of Cesium-137 and
Barium-133. The results of this method in order to identify

the regime are given in the results and discussion section.

2.3. Void fraction measuring using MLP

For void fraction measuring, Multi-Layer Perceptron (MLP)
as a very powerful tool for regression and prediction was used.
Also, for the MLP training process, Levenberg Marquardt

(LM) algorithm was used. The LM algorithm which is the
ain pipe: a) Stratified regime, b) Homogenous regime, c) Annular
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most widely used optimization algorithm has been obtained by
combination of Gauss-Newton and gradient descent and
method.

MLP can be used to linear or non-linear mapping between
an N-dimensional input vectors to an M�dimensional output
vectors. Back-propagation which is a supervised learning tech-

nique is used for MLP training. MLP has three layers: input
layer, hidden layer and output layer. Each layer consists of sev-
Fig. 5 Architecture of proposed network

Table 3 Classification results for separating annular regime from o

Binary

classes

Number of

data for

testing the

performance

Number of inputs Kern

Annular =

+1

Other

Regimes = -

1

48 2 (total count in the scattering

detector and counts under photo

peak of Cesium-137)

Linea

Polyn

(orde

Quad

Mult

Perce

Radia

Func

(sigm

3 (total count in the scattering

detector and counts under photo

peaks of Cesium-137 and

Barium-133)

Linea

Polyn

(orde

Quad

Mult

Perce

Radia

Func

(sigm
eral neurons that use linear or non-linear activation functions.
The neurons in every layer have direct connections to the neu-
rons of next layer. These connections make weights and biases

matrix. Its non-linear activation functions and multiple layers
distinguish MLP from a linear perceptron. MLP can distin-
guish data that is not linearly separable. There are several opti-

mization algorithms for training the MLP and obtaining the
weights and biases. LM algorithm which is a well-known opti-
in order to measure the void fraction.

ther regimes.

el Used TP TN FP FN Sensitivity Specificity Accuracy

r 5 27 5 11 0.312 0.843 0.666

omial

r = 3)

13 22 10 3 0.812 0.687 0.729

ratic 9 27 5 7 0.562 0.843 0.750

i-Layer

ptron

4 24 8 12 0.250 0.750 0.583

l Basis

tion

a = 0.2)

14 26 6 2 0.875 0.812 0.833

r 5 27 5 11 0.312 0.843 0.666

omial

r = 4)

15 27 5 1 0.937 0.843 0.875

ratic 10 25 7 6 0.625 0.781 0.729

i-Layer

ptron

4 26 6 12 0.250 0.812 0.625

l Basis

tion

a = 0.2)

12 27 5 4 0.750 0.843 0.812



Fig. 6 Classification of SVM using 2 inputs a) linear kernel b) Radial Basis Function with sigma = 0.2 as kernel function.

Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil 1961
mization algorithm for obtaining weights and biases matrix is
obtained by combination of gradient descent and Gauss-

Newton. This optimization algorithm outperforms gradient
descent and other methods of conjugating gradient in a wide
range of problems [36].
In the usage of MLP like other models, there are two essen-
tial steps namely training and testing. The testing step is used

to check the learned machine.
In this study, a MLP-LM network with three inputs and

one output was considered. Total count in the scattering detec-



Table 4 Classification results for separating homogenous regime from stratified regime.

Binary classes Number of

data for

testing the

performance

Number of inputs Kernel Used TP TN FP FN Sensitivity Specificity Accuracy

Homogenous

= +1

Stratified = -

1

32 2 (total count in the scattering

detector and counts under photo

peak of Cesium-137)

Linear 9 11 4 8 0.529 0.733 0.625

Polynomial

(order = 3)

9 6 9 8 0.529 0.400 0.468

Quadratic 9 6 9 8 0.529 0.400 0.468

Multi-Layer

Perceptron

4 11 4 13 0.235 0.733 0.468

Radial Basis

Function

(sigma = 0.2)

8 5 10 9 0.470 0.333 0.406

3 (total count in the scattering

detector and counts under photo

peaks of Cesium-137 and

Barium-133)

Linear 11 8 7 6 0.647 0.533 0.593

Polynomial

(order = 4)

7 7 8 10 0.411 0.466 0.437

Quadratic 9 5 10 8 0.529 0.333 0.437

Multi-Layer

Perceptron

4 13 2 13 0.235 0.866 0.531

Radial Basis

Function

(sigma = 0.2)

5 4 11 12 0.294 0.266 0.281

1962 M. Roshani et al.
tor and counts under photo peaks of Barium-133 and Cesium-
137 were assigned as the inputs of MLP-LM and the void frac-

tion was considered as output. The architecture of proposed
network to measure void fraction is illustrated in Fig. 5.

The performance of a MLP model is obtained using the

Mean Absolute Error (MAE), Mean Relative Error percentage
(MRE %) and Root Mean Square Error (RMSE) :

MAE ¼ 1

N

XZ
i¼1

XiðActualÞ � XiðMeasuredÞj j ð5Þ

MRE% ¼ 100� 1

N

XN
i¼1

XiðActualÞ � XiðMeasuredÞ
XiðActualÞ

����
���� ð6Þ

RMSE ¼
PN
i¼1

ðXiðActualÞ � XiðMeasuredÞÞ2

N

2
664

3
775

0:5

ð7Þ

As can be mentioned previously, in the MCNP simulations,

162 different cases in different conditions were simulated. 70%
of data (114 cases) were used for training the model and 30%
(48 cases) were used for testing the efficiency of presented
MLP-LM model. For finding the optimized network architec-

ture, different structures were tested in different nested loops
based on below algorithm:

1) The initial values were set.
2) Some nested loops were formed.
3) The errors were defined.

4) Various epochs and different number of hidden layers and
neurons in each layer were tested.

5) The efficiency of each structure was obtained using the

defined errors.
6) The best artificial neural network with lowest errors was

saved.
The best structure had one hidden layer with 9 neurons and
number of epochs was 680. The activation functions of input,

hidden and output layers were ‘‘purelin”, ‘‘tansig” and ‘‘pure-
lin”, respectively. The results of this method in order to mea-
sure the void fraction are given in the results and discussion

section.

3. Results and discussion

The results of regime identification (classification problem)
and identifying the annular regime from other both regimes
were tabulated in Table 3 and a typical classification in ‘‘2
inputs” procedure was shown in Fig. 6.

As can be concluded from the Fig. 6 and Table 3, the
learned machine can identify the annular regime with the accu-
racy of 87% which is not very high precision. As can be men-

tioned previously, identifying the annular regime is the first
step. In the next step it was attempted to classify the homoge-
nous regime from stratified regime. Therefore the homogenous

regime was considered 1 and stratified regime was considered
�1. The results were tabulated in Table 4 and a typical classi-
fication in ‘‘2 inputs” procedure is shown in Fig. 7.

As can be concluded from the Fig. 7 and Table 4, the

learned machine can’t identify the flow regime when the regime
is homogenous or stratified. These regimes have similar behav-
ior and there are a lot of overlaps for different cases with dif-

ferent void fractions. As mentioned in Table 4, there are two
different inputs for best SVM classifier: total count in the scat-
tering detector and counts under photo peak of Cesium-137.

The values of these inputs are similar in the cases of homoge-
neous and stratified regimes. In fact, the classifier system
should distinguish different regimes with similar input fea-

tures. Obviously, this system cannot distinguish the mentioned
regimes.

In future studies, it could be investigated how to improve
the accuracy of this system. For example, using different detec-



Fig. 7 Classification of SVM using 2 inputs a) linear kernel b) Radial Basis Function with sigma = 0.4 as kernel function .
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tion geometries or using different types of radiation sources

(X-ray instead of single energy radioisotopes) may resolve this
problem. Perhaps the problem could be solved by different
time-domain, frequency-domain or time–frequency feature

extraction from the inputs spectra.
In the void fraction measuring problem, differences

between real data and predicted data by proposed MLP-LM
model was obtained and shown in Fig. 8. The appropriate

agreement between actual and measured data is clearly found
from these regression diagrams. In Table. 5, the inputs, real
outputs and measured outputs were tabulated for test data set.

The obtained errors for suggested ANN structure were tab-
ulated in Table 6. The low error for measuring the void frac-
tion shows the good performance of presented method.



Fig. 8 Regression diagrams of real and measured results for a)

train data b) test data.

Table 5 The test data with measured values.

Data

Number

Flow Regime Total count in the

scattering detector

Counts under photo

peak of Cesium-137

1 Annular 3.96E-02 1.44E-02

2 Annular 1.14E-02 5.81E-03

3 Annular 2.37E-02 1.04E-02

4 Annular 1.41E-02 7.55E-03

5 Annular 5.87E-03 4.07E-03

6 Annular 9.83E-03 6.16E-03

7 Annular 4.38E-03 3.50E-03

8 Annular 5.13E-03 3.96E-03

9 Annular 2.26E-03 2.23E-03

10 Annular 3.54E-03 3.19E-03

11 Annular 1.41E-03 1.66E-03

12 Annular 2.37E-03 2.50E-03

13 Annular 1.03E-03 1.38E-03

14 Annular 1.17E-03 1.53E-03

15 Annular 5.65E-04 8.98E-04

16 Annular 8.01E-04 1.20E-03

17 Homogenous 1.62E-02 7.11E-03

18 Homogenous 3.68E-02 1.36E-02
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In this paper, the application of the proposed system was
proved. However, it could be improved by usage of different
detection geometries, different types of radiation sources (X-

ray instead of single energy radioisotopes) or different soft
computing methods. Also, the present study could be contin-
ued with usage of experimental data from appropriate test

loop in order to be employed in different industries.

4. Conclusions

In this paper, a novel radiation based system in order to meter
two-phase flow was presented which can identify the annular
regime and measure the void fraction independent of petro-

leum pipeline’s scale layer thickness. The problem of this study
was divided into two sections: classification and regression.
For the first problem, it was attempted to classify the annular

regime from other regimes. SVM as a very powerful binary
classifier with different kernel functions was used. Linear,
Polynomial, Quadratic, Multi-Layer Perceptron and Radial
Basis Function were used as kernel functions. The learned

machine can identify the annular regime with the accuracy of
87%. Then, it was attempted to separate the homogenous
regime from stratified regime. The trained system can’t identify

the flow regime when the regime is homogenous or stratified
because of similar behavior and several overlaps for different
cases with different void fractions. For the second problem,

it was attempted to determine the gas volume percentage inde-
pendent of scale thickness. MLP-LM as a powerful tool was
used. The proposed architecture for MLP-LM had one hidden
layer with 9 neurons and number of epochs was 680. The acti-

vation functions of input, hidden and output layers were pure-
lin, tansig and purelin, respectively. Good performance of
presented method for measuring the gas volume fraction was

proved with MAE of less than 2.82.
Counts under photo

peak of Barium-133

Scale Layer

Thickness

Actual

Void

Fraction

Measured

Void

Fraction

1.35E-03 0 55 55.37

9.04E-04 0.5 10 6.38

9.79E-04 0.5 55 51.81

7.73E-04 1 55 56.59

5.36E-04 1.5 25 20.11

6.43E-04 1.5 70 68.12

4.49E-04 2 40 40.84

4.76E-04 2 55 53.76

3.21E-04 2.5 25 15.54

3.96E-04 2.5 70 71.93

2.55E-04 3 25 24.97

3.29E-04 3 85 86.43

2.09E-04 3.5 40 40.16

2.25E-04 3.5 55 57.57

1.54E-04 4 25 26.30

1.83E-04 4 70 70.66

1.51E-03 0 25 22.78

1.45E-03 0 70 64.77



Table 6 Obtained errors for suggested ANN structure.

Output MRE RMSE MAE

Train Test Train Test Train Test

Void fraction 0.46 1.01 3.67 3.66 2.79 2.81

Table 5 (continued)

Data

Number

Flow Regime Total count in the

scattering detector

Counts under photo

peak of Cesium-137

Counts under photo

peak of Barium-133

Scale Layer

Thickness

Actual

Void

Fraction

Measured

Void

Fraction

19 Homogenous 7.82E-03 4.38E-03 9.90E-04 0.5 10 8.83

20 Homogenous 1.69E-02 8.10E-03 1.14E-03 0.5 55 64.94

21 Homogenous 6.37E-03 4.03E-03 7.77E-04 1 25 22.52

22 Homogenous 1.70E-02 8.77E-03 8.61E-04 1 85 90.51

23 Homogenous 5.07E-03 3.64E-03 6.27E-04 1.5 40 36.37

24 Homogenous 1.01E-02 6.30E-03 6.90E-04 1.5 85 84.47

25 Homogenous 2.55E-03 2.29E-03 4.51E-04 2 25 24.65

26 Homogenous 4.87E-03 3.83E-03 5.22E-04 2 70 70.40

27 Homogenous 1.63E-03 1.72E-03 3.48E-04 2.5 25 22.26

28 Homogenous 3.63E-03 3.26E-03 4.10E-04 2.5 85 80.93

29 Homogenous 1.25E-03 1.49E-03 2.83E-04 3 40 33.85

30 Homogenous 5.63E-04 8.32E-04 1.97E-04 3.5 10 7.18

31 Homogenous 9.43E-04 1.28E-03 2.33E-04 3.5 55 55.69

32 Homogenous 4.33E-04 7.22E-04 1.62E-04 4 25 21.15

33 Homogenous 5.07E-04 8.20E-04 1.73E-04 4 40 36.02

34 Stratified 1.37E-02 6.17E-03 1.59E-03 0 10 9.60

35 Stratified 3.46E-02 1.28E-02 1.62E-03 0 70 68.24

36 Stratified 1.37E-02 6.72E-03 1.16E-03 0.5 40 38.92

37 Stratified 2.68E-02 1.14E-02 1.12E-03 0.5 85 76.23

38 Stratified 5.48E-03 3.57E-03 7.70E-04 1 10 13.54

39 Stratified 1.03E-02 5.82E-03 8.83E-04 1 55 51.21

40 Stratified 5.21E-03 3.73E-03 6.57E-04 1.5 40 42.27

41 Stratified 6.25E-03 4.30E-03 6.89E-04 1.5 55 55.59

42 Stratified 2.71E-03 2.39E-03 4.77E-04 2 25 27.67

43 Stratified 4.54E-03 3.63E-03 5.51E-04 2 70 71.22

44 Stratified 2.02E-03 2.04E-03 3.89E-04 2.5 40 43.30

45 Stratified 3.33E-03 3.05E-03 4.30E-04 2.5 85 84.23

46 Stratified 1.48E-03 1.71E-03 3.21E-04 3 55 58.80

47 Stratified 9.27E-04 1.26E-03 2.44E-04 3.5 55 59.54

48 Stratified 6.62E-04 1.02E-03 1.93E-04 4 70 64.28
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