
Computer Speech and Language 77 (2023) 101445

Available online 24 August 2022
0885-2308/© 2022 Elsevier Ltd. All rights reserved.

Preserving the beamforming effect for spatial cue-based 
pseudo-binaural dereverberation of a single source 

Sania Gul a, Muhammad Salman Khan b,*, Syed Waqar Shah a 

a Department of Electrical Engineering, University of Engineering and Technology Peshawar, Pakistan 
b Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar   

A R T I C L E  I N F O   

Keywords: 
Beamforming 
Interaural cues 
Direct wave 
Reverberations 
Deep learning 

A B S T R A C T   

Reverberations are unavoidable in enclosures, resulting in reduced intelligibility for hearing 
impaired and non-native listeners and even for the normal hearing listeners in noisy circum-
stances. It also degrades the performance of machine listening applications. In this paper, we 
propose a novel approach of binaural dereverberation of a single speech source, using the dif-
ferences in the interaural cues of the direct path signal and the reverberations. Two beamformers, 
spaced at an interaural distance, are used to extract the reverberations from the reverberant 
speech. The interaural cues generated by these reverberations and those generated by the direct 
path signal act as a two-class dataset, used for the training of U-Net (a deep convolutional neural 
network). After its training, the beamformers are removed and the trained U-Net along with the 
maximum likelihood estimation (MLE) algorithm is used to discriminate between the direct path 
cues from the reverberation cues, when the system is exposed to the interaural spectrogram of the 
reverberant speech signal. Our proposed model has outperformed the classical signal processing 
dereverberation model ‘weighted prediction error’ in terms of cepstral distance (CEP), frequency 
weighted segmental signal to noise ratio (fwsegSNR) and signal-to-reverberation modulation 
energy ratio (SRMR) by 1.4 points, 8 dB and 0.6 dB. It has achieved better performance than the 
deep learning based dereverberation model by gaining 1.3 points improvement in CEP with 
comparable fwsegSNR, using training dataset which is almost 8 times smaller than required for 
that model. The proposed model also sustained its performance under relatively similar unseen 
acoustic conditions and at positions in the vicinity of its training position.   

1. Introduction 

The human auditory system has a spectacular capability to analyze, process and select a particular signal from a complex acoustic 
environments, significantly so from the signals contaminated by room reflections. This ability is attributed to a large extend to still 
highly enigmatic and complex auditory and cognitive mechanisms, which rely on the binaural signals, which enable the listeners to 
analyze the acoustic scene and suppress the undesired signal components (Blauert, 2013). 

When sound is emitted from a source, it reaches the listener by two means. The first is by the direct path between the source and the 
listener, the other is by the reflections from the surrounding objects and walls. These reflections are called reverberations. Re-
verberations are delayed and decayed replicas of the direct path sound. They are delayed, as their propagation path is longer than the 
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direct path. They are decayed, as they are absorbed by the objects from which they are reflected and by the medium through which 
they travel. 

Reflections that arrive shortly after the direct wave are called early reflections (within 10 to 50ms of direct wave) and those that 
arrive after this time are called late reflections. 

In an anechoic environment, where there is only the direct sound, a normal hearing listener can accurately localize arbitrary sound 
sources due to the presence of unambiguous spatial (interaural) cues (the interaural time difference (ITD) and the interaural level 
difference (ILD) cues), and the spectral cues that are provided by the interaction of pinnae, head and torso with the sound field 
(Blauert, 2013). 

In case of reverberant environment, the direct sound is accompanied by reverberation. As reverberations can be viewed as the same 
source signal coming from several different sources (virtual) placed at different locations in an enclosure (Naylor and Gaubitch, 2010), 
the spatial cues of reverberations are different from those of the direct waves (Ivan Tashev and Henrique Malvar, 2008), simulating the 
effect of many sources, as shown in Fig. 1 below. While the early reflections have a specular nature, the late reverberations generally do 
not show specular behavior and are somewhat diffuse in nature (Mandel Michael, 2010). 

Reverberations create spaciousness to sound (Naylor and Gaubitch, 2010). The sense of ‘space’ created by reverberations adds 
greatly to the realism and often makes the recorded music more enjoyable and attractive. Early reverberations add to the intelligibility 
of speech. If reverberations are present everywhere and are sometimes helpful, then why we do want to remove reverberations? The 
answer is dependent on the application. Reverberations result in distortion of the auditory cues and, typically, lead to the reduced 
performance, for instance, in localization (Blauert, 2013). 

In the case of speech, late reverberations are detrimental to the intelligibility. Although displeasing for normal hearing people, its 
effect on speech intelligibility is especially noticeable for non-native listeners and for hearing impaired persons using assistive listening 
devices (e.g. cochlear implants (CI) and hearing aids) (Habets 2010). Other perceptual effects of reverberations are the ‘box effect’ and 
the ‘distant talker effect’ (Naylor and Gaubitch, 2010). 

Beamforming has long been used to combat reverberations and unwanted noise generated by other sources. Localization of sound 
sources in a number of audio conferencing applications is achieved by beamforming (Ivan Tashev and Henrique Malvar, 2008). In 
beamformer, the signals obtained from the array of microphones are combined in such a way that the speech coming from the desired 
direction is enhanced, and noise or interference coming from other directions is attenuated (Jitendra and Vemireddy, 2013) and (Syed 
Mohsin Naqvi et al., 2011). The spread of the beam is controlled by the operating frequency, geometry, inter-microphone distance and 
the number of microphones in the beamformer array. However, the beamformers can only partially suppress reverberation because 
reflections coming from the look direction are not attenuated (MayTobias, 2017). 

Recent years have witnessed an increase in hands-free communication. The increase in the use of portable devices accompanied by 
the expansion of broadband internet access paved the way for many new applications e.g. teleconferencing, automatic speech to text 
conversion, voice controlled device operation, speaker identification, source separation, car interior communication system and so-
phisticated assistive listening devices, all of which demand high quality speech without being contaminated by reverberations and 
noise (Naylor and Gaubitch, 2010), as machine listening is not as resilient as human listening. 

As human and animals have two ears, so speech enhancement and source separation in applications such as assistive listening 
devices and binaural robot audition requires direction-of-arrival (DOA) estimation of a sound source by utilizing the binaural cues. The 
ever increasing use of headphones or earpieces e.g. in binaural telephony, teleconferencing, hands-free devices and interfaces, 
immersive-audio rendering, and so on demands binaural dereverberation as an essential preprocessing step in order to ensure 
reception comparable or better to that of normal listening. However, binaural dereverberation is not a trivial task. Apart from the 

Fig. 1. Reverberations and the creation of virtual sources by them.  
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challenging task of reducing reverberation without introducing audible artifacts, binaural dereverberation should preserve the 
interaural cues, because it has been shown that bilateral signal processing can otherwise adversely affect source localization (Blauert, 
2013). 

Although the classical single channel dereverberation algorithms using signal processing (e.g. spectral subtraction, prediction error 
and inverse filtering) can be extended for the binaural use (Blauert, 2013), special binaural dereverberation techniques are also 
proposed, where the reverberant speech signal is decomposed in time frequency (TF) domain in order to suppresses components that 
are estimated to be mainly reverberant (Westermann et al., 2013). The binaural dereverberation models of (Westermann et al., 2013) 
and (Allen et al., 1977) use the interaural coherence (IC) between the binaural channels at every TF unit to estimate the post filter gain. 
In binaural source localization model of (Beit-On and Boaz Rafaely, 2019), the dereverberation step is achieved by carrying out the 
direct-path dominance (DPD) test on each TF bin in order to ensure that only the TF units dominated by the direct path are used for 
direction of arrival (DOA) estimation of source. In (Lebart et al., 2001), spectral subtraction is proposed to suppress late-reverberation 
for the binaural signals (Blauert, 2013), later adopted by (Löllmann and Vary, 2009) and (Jeub et al., 2010). Filtering is also employed 
for binaural dereverberation (Lee et al., 2008). 

With the development of Neural Networks (NNs), there has been tremendous improvement in a variety of speech recognition and 
acoustic signal processing tasks (Li et al., 2020). The binaural dereverberation models in (May Tobias, 2017, Li et al., 2020 and 
Arifianto and Farid, 2018) uses artificial neural network (ANN) for binaural dereverberation preprocessing, the model in (Tan et al., 
2021) uses the recurrent neural network (RNN) and interaural cues for speech enhancement in reverberant noisy conditions, while the 
models in (Nakazawa and Kondo, 2019) and (Chung et al., 2020) use the U-Net (a deep convolutional neural network (CNN)) for 
dereverberation, but these are monaural models. 

In this paper, we use the human approach of dereverberation based on binaural cues’ differentiation to separate the direct path 
signal from the reverberations. For this purpose, beamforming at the front-end, supported by the deep learning at the back-end is 
utilized. Beamforming is used for separating the echoes and the direct path signal from the reverberant speech. The direct path signal’s 
spatial spectrograms and the extracted echoes’ spatial spectrograms from beamforming are then used for the training of U-Net; a deep 
convolutional neural network. Due to the enormous learning capabilities of deep neural networks (DNNs), once trained, U-Net 
accompanied by machine learning, can separate the direct path speech from the reverberations, when presented with the binaural 
reverberant speech of a single source. In order to make sure that the trained system can work with binaural spatial cues in the field, the 
sensors are arranged in such a way that the system is trained on the binaural cues of both classes. To the best of our knowledge this is 
the first time U-Net is being used for the task of binaural dereverberation. 

The rest of the paper is organized as follows. In the next section, we give an overview of the work implementing binaural der-
everberation. We give our proposed system’s overview in Section 3. In Section 4, we describe the experimental setup, the evaluation 
criteria and the comparison methods. We present experimental results and comparison statistics of different models in Section 5. We 
conclude the paper in Section 6. 

2. Related Work 

Although U-Net is a deep neural network (DNN), mostly used for image segmentation, we investigated U-Net for source separation 
in (Gul et al., 2021) and (Gul et al., 2021) and found the efficacy of this network for separating the sources on the basis of the dif-
ferences in their interaural cues. The binaural audio mixture was converted from one dimensional (1D) time domain audio signal to 
two-dimensional (2D) interaural spectrogram in the TF domain. This 2D representation can be treated as an ordinary gray scale image 
by U-Net. 

However, in this paper instead of separating different real sources from an audio mixture, we will separate the TF units of the real 
source and the virtual sources from a reverberant speech. The separation of direct path from reverberation is carried out on the basis of 
the differences in their interaural cues (as depicted in Fig. 1). As mentioned in (Gul et al., 2021), unlike the ordinary gray image pixel 
intensity, the interaural parameters are not limited to the fixed range of 0 to 255. Also, there is no correlation between the neighboring 
TF units of mixture’s interaural spectrogram that is known to exist among the neighboring pixels of an image. 

In (Gul et al., 2021), U-Net was trained on interaural cues of two sources, which act as two separate classes, each having its own 
ground truth (GT). The GT in (Gul et al., 2021) is an image of all white or black pixels (one for either class), with dimension equal to the 
input interaural spectrogram. However, in this paper instead of the two speech sources, the interaural spectrograms of direct path (DP) 
and reverberations (REV) will act as two separate classes with the GT’s design similar to the one used in (Gul et al., 2021). 

As the U-Net failed to cluster the interaural phase difference (IPD) cues successfully in (Gul et al., 2021), and was replaced by the 
expectation maximization (EM) algorithm (a machine learning algorithm) in (Gul et al., 2021), so here we will train only one U-Net on 
the ILD spectrograms and use the maximum likelihood estimation (MLE) algorithm; a machine learning algorithm, using initialization 
parameters of each class (DP and REV) as proposed in (Mandel et al., 2010) for clustering the IPD cues. We have trained the U-Net from 
scratch and did not utilize any of the pretrained models e.g. ResNet or VGG, as none of them supports the input image size, we require 
for our proposed model. Resampling of the audio signal or its spectrogram, and varying the STFT window size could potentially be 
explored to adjust the input image size required for the pretrained networks, this will be investigated in future and is out of scope of the 
current study. 

The interaural based source separation model of (Mandel et al., 2010) utilizes the expectation maximization (EM) algorithm to 
cluster the ILD and IPD cues of each source. The EM algorithm is a maximum likelihood estimation (MLE) iterative algorithm, sensitive 
to initialization. It uses PHAT algorithm (Parham Aarabi 2002) for IPD initialization. An interesting feature of this model is the creation 
of an imaginary source called the ‘garbage source (GS)’ for dealing the reverberations. While the direct-path signal has interaural cues 
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consistent with the specific direction of the source, reverberations have a diffuse character that may not fit a Gaussian source model 
particularly well (Mandel et al., 2010). The GS is assumed to have a uniform distribution, while the distribution of the real sources is 
assumed to be Gaussian. The interaural cues which are not nearer to the mean value of the real sources (those generated mostly by the 
reverberations) are assigned to the GS, resulting in performance improvement of the real sources, which would be otherwise 
contaminated, if these outliers are forcefully included in them. We will also use this concept in our proposed methodology 

After having briefly introduced the existing binaural dereverberation models and the techniques from the existing source sepa-
ration models, utilized in our proposed dereverberation model, we will discuss our methodology in the next section. 

3. Proposed Methodology 

We have named our proposed model ‘Beamforming-Echo-Net (BENET)’ as it tackles the echoes using the beamforming at front-end 
and U-Net at back- end. The block diagram of our proposed model is shown in Fig. 2. 

The working of the model is explained as follows. Assume a single source S is placed in an enclosure at a distance d from the center 
of the two beamformers as shown in Fig. 2 (a). The two beamformers are separated from each other by the distance equal to the 
distance between the two human ears. Except for this source, no other active source is present in the room. Assuming P number of 
microphones in each beamformer array, the time domain signal yk at the input of each beamformer from all of its microphones is given 
as 

yk(n) =
{

yk1(n), yk2(n),…, ykq(n)………ykP(n)
}

(1)  

Where k = {l, r} shows the left and right beamformers, n is the discrete time index, and yk1, yk2, ….ykP are the reverberant noisy speech 
signals collected respectively at the first, second….. and the Pth microphone of the kth beamformer array. The signal ykq(n) is given as 

ykq(n) = hkqs(n) ∗ S(n) (2)  

where hkqs is the room impulse response (RIR) between the source S and the qthmicrophone of the kth beamformer array, and * rep-
resents the convolution operation. The reverberant signal yk consists of direct path signal and the reverberations. The reverberations 
are separated from the direct path signal by taking the difference between the short time Fourier transforms (STFTs) of the rever-

Fig. 2. Block diagram of BENET. (a) and (b) shows the training phase, (c) shows the prediction phase. The dotted head in (a) shows that the first 
microphones of the left and right beamformers are separated by an interaural distance. The bold lined heads in (b) and (c) shows the binaural 
microphone setup. 
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berated speech yk1(n) collected at the first microphone and the output bfk of the kth beamformer, as shown in Eq. (3) 

Xk(t, f ) = Yk1(t, f ) − BFk (3)  

where Yk1 is the STFT of yk1(n), BFk is the STFT of bfk(n) and Xk is the STFT of the non-target (reverberations) output xk(n) of kth 

beamformer and t and f are the time and frequency indices in the STFT domain. The STFT conversion for Eq. (3) is performed by 
parameters listed in Section 4(h). The greater the number of microphones in the beamformer array, the more perfect would be the 
separation of the target (DP) and non-target (REV) sources. These time frequency (TF) domain reverberation signals from the left and 
the right beamformers are converted back to time domain signal and stored as separate left and right side reverberation audio files. 
These audio files will be used to create interaural spectrograms of reverberations (REV), which will behave as samples of the first class 
of the dataset used for the training of level U-Net (used for clustering the ILD cues). 

The second class of the dataset used for the training of level U-Net consists of the ILD spectrograms of the direct path signal (DP). 
They are obtained by assuming the source S placed in anechoic conditions as shown in Fig. 2(b). The source S is considered to be at the 
same position as in Fig. 2(a) but now in front of a binaural microphone setup. The direct path signal zk at the input of each microphone 
is given by 

zk(n) = hkS(n) ∗ S(n) (4)  

where hks is the room impulse response (RIR) between the source S and the kthmicrophone of the binaural setup, and * represents the 
convolution operation. 

The time domain direct path signal zk is converted to time frequency (TF) domain signal Zk(t, f) using the STFT parameters of 
Section 4(g). 

Zk(t, f ) = F(w(n)zk(n)) (5)  

where F is the STFT operator and w(n) is the hamming window function given as w(n) = 0.54 − 0.46cos(2πn /N),0 ≤ n ≤ N,whereN =
L − 1, and L is the window length. 

Then the interaural spectrograms are created by using Eq. (6) and (7). 

Zl(t, f )
Zr(t, f )

= α(t, f )eiφ(t,f ) (6)  

where Zl(t, f) and Zr(t, f) are the STFT of signals at the left and right microphones respectively, α(t, f) is the ILD and φ(f , t) is the IPD at a 
time frequency (TF) point of the interaural spectrogram, having discrete frequency index f and time frame index t. 

Eq. (7) is used to convert the ILD α(t, f) to decibels (dB) at each TF point. 

ILD(dB) = 20log10α(t, f ) (7) 

Using the same procedure of direct wave conversion, the audio files of left and right side reverberation (non-target signals) obtained 
from Eq. (3) are also converted to the interaural spectrogram using the STFT parameters of Section 4(g). 

The ILD spectrograms of the DP and REV are used to train the level U-Net. Each class is accompanied by its respective GT mask. We 
have used MLE algorithm for clustering the IPD cues of the two classes. However, as MLE is a machine learning algorithm, it does not 
require any training before operation. 

After training the level U-Net, the beamformers are removed. During the prediction phase, the network is exposed to the spec-
trogram of reverberant noisy speech rk(n), collected at each microphone of the binaural setup (Fig. 2(c)). 

The signal rk(n) is a composite signal, consisting of direct path signal zk(n), reverberations xk(n) and the random noise rn, each 
having its own distribution. The signal rk(n) is represented as in Eq. (8) 

rk(n) = zk(n) + xk(n) + rn (8) 

The left and right channels are converted from time domain to TF domain by taking their STFTs and then the ILD and IPD spec-
trograms are obtained by applying equations (5), (6) and (7) on rk(n) using the STFT parameters of Section 4(h). The ILD spectrogram is 
given as an input to the trained level U-Net, which gives the probabilistic masks for each class at its softmax layer. 

The IPD spectrogram is given as an input to the MLE block. The MLE algorithm requires three main parameters before it can start 
working. These are a) number of sources present in the speech, b) distribution of each source and c) the initial mean value of each 
source. 

Under noiseless conditions, we have two main sources in speech; i.e. the direct wave and the reverberations. The distribution of IPD 
cues of the direct wave zk is assumed to be Gaussian as suggested in (Mandel et al., 2010) and as reverberations xk, are not clustered 
around any mean value, they are modeled as GS (again inspired by (Mandel et al., 2010)) with uniform distribution. BENET also uses 
PHAT (Parham Aarabi 2002) algorithm for the initialization of mean value of the Gaussian distribution of the direct wave and a 
standard deviation of ±1 sample around that mean value. The uniform distribution for the reverberations is initialized to have zero 
mean value across frequency and a standard deviation of ±9 samples as in (Mandel et al., 2010). 

The observed IPD values from the reverberant speech i.e. ∠ Rl(t,f)
Rr(t,f) at each TF point (obtained from Eq. (6)) do not always map to the 

correct interaural time difference (ITD) due to spatial aliasing. So a top down approach inspired by (Mandel et al., 2010) is used for the 
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calculation of IPD, where IPD is estimated by plugging in different values of ITD (τ) in the range from -15 to 15 samples in 0.5 sample 
increments. At the sampling frequency of 16 kHz, this range corresponds to around ± 1 milliseconds in 31.25 micro-seconds in-
crements. The τ which produces the closest match to the observed IPD is selected. However, it is required that the delay (τ) and the 
length of RIR must be smaller than the STFT frame length. Any portion of RIR above the STFT frame length would be treated as noise. 

The phase residual error φ̂ is defined as the difference between the observed IPD and the estimated IPD and given in Eq. (9) as: 

φ̂ = ∠
Rl(t, f )e− j2πf τ

Rr(t, f )
(9)  

φ̂ lies in the interval {-π, π}. The IPD residual for the direct wave is modeled as normal distribution. Let ξ(ω) and σ2(ω) be the mean and 
variance of the IPD residual (φ̂). Then the IPD model for the direct wave at each TF point is given in (10) as: 

p(φ̂(t, f ; τ)|θ̂) = N
(

φ̂(t, f ; τ)
⃒
⃒
⃒ξz,τ(f ), σ2

z,τ(f )
)

(10)  

N represents Gaussian distribution. The subscripts with mean and variance symbols in Eq. (10) show that the IPD parameters of direct 
wave are dependent on both frequency f and delay τ. And 

θ̂ =
{

ξz,τ(f ), σ2
z,τ(f ),ψz,τ

}
(11)  

represents all model parameters for the direct wave. ψz,τ is the mixing weight; i.e. the proportion of the total TF points of mixture 
belonging to direct wave at delay τ. Using estimates of τ for source S from PHAT-histogram (Parham Aarabi 2002), ψz,τ is initialized 
with the mean at each cross-correlation peak and standard deviation of ±1 samples (Mandel et al., 2010). The log likelihood L, given 
the observation θ̂, over all TF points is given in (12) as: 

L(θ̂) =
∑

t,f
logp(φ(t, f )|θ̂) (12) 

For reverberation (REV) class, the IPD model at each TF point is given as 

p(φ̂(t, f ; τ)|⊙̂) = U
(

φ̂(t, f ; τ)
⃒
⃒
⃒ξx,τ(f ), σ2

x,τ(f )
)

(13)  

where U represents uniform distribution and 

⊙̂ =
{

ξx,τ(f ), σ2
x,τ(f ), χx,τ

}
(14)  

represents all model parameters for REV. χx,τ is initialized as 

χx,τ = 1 − ψz,τ (15) 

Marginalizing over all sources and all delays, the log likelihood function for DP is given as in (16). 

L(θ̂) =
∑

t,f
log

∑

x+z,τ

[
N
(

φ̂(t, f ; τ)
⃒
⃒
⃒ξz,τ(f ), σ2

z,τ(f )
)
.ψz,τ

]
(16) 

The maximum likelihood solution is given as in (17). 

L(θ̂) = maxθ

∑

t,f
logp(φ(t, f )|θ̂) (17) 

The likelihood v of each TF point belonging to direct path z and delay τ is given as in (18) 

vz,τ(f )∝ψz,τ.N
(

φ̂(t, f ; τ)
⃒
⃒
⃒ξz,τ(f ), σ2

z,τ(f )
)

(18) 

While for the REV, the probability of each TF point belonging to source x is given as in Eq. (19). 

μx,τ = 1 − vz,τ(f ) (19) 

At the end, the probabilistic IPD mask for the direct wave is given as in Eq. (20) 

Mz(t, f ) =
∑

τ
vz,τ (20)  

And the probabilistic IPD mask for the reverberation is given as in (21) 

Mx(t, f ) =
∑

τ
μx,τ (21) 

As we do not want reverberations to be included in direct path signal at any cost, so as a precautionary measure, the initial standard 
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deviation of DP signal is kept much smaller than that of REV (±1 vs. ±9). 
The ILD soft mask from level U-Net and the IPD soft mask from MLE algorithm for the DP are combined to form product mask as 

given by Eq. (22). 

Product mask = [Product of ILD and IPD masks of direct path (0 to 8 kHz)] (22) 

This product mask is applied separately on the left and right mixture’s spectrograms Rl and Rr, and the results are added together 
and converted back to time domain signal by taking the inverse short-time Fourier transform (ISTFT) in order to retrieve the target, 
which is then evaluated against the direct path signal collected at the first microphone of the left beamformer. 

Algorithm summary   

1) Task: Single source dereverberation  
2) Input: Reverberated speech source  
3) Output: Dereverberated speech source  
4) Convert the reverberated speech rkinto interaural spectrogram using equations (5), (6) and (7).  

5) Load pre-trained level U-Net.  
6) Input the ILD spectrogram to level U-Net.  
7) Save the outputs of softmax layer of the level U-Net.  
8) Input the IPD spectrogram to MLE block (equations (8) to (21)).  
9) Prepare the product mask (Eq. (22)).  

10) Apply the product mask to the STFT of the reverberated speech to retrieve the dereverberated speech. 

4. Experimental Evaluation Parameters 

The experimental setup, including the room layout, dataset, room impulse responses (RIRs), evaluation metrics, model parameters, 
and the overview of different dereverberation algorithms used for the comparison of our model is given below. 

4.1. Room Layout 

We will perform all our experiments inside simulated rooms with the source and the microphone setup during the training and the 
prediction phases, as shown in Figs. 3 (a) and 3 (b) respectively. 

Each beamformer consists of 8 microphones arranged in a linear geometry with inter microphone spacing of 5 cm. In order to make 
sure that the trained system can work with binaural spatial cues in the field, the left and right beamformers in Fig. 3(a) and the left and 
right sensors in Fig. 3(b) are spaced by a distance equal to the interaural distance. This distance is equal to the average human 
interaural distance i.e. 0.17m. The size of room and the positions of the source and the microphones vary for different acoustic 
conditions (different RT60 values) as shown in Fig. 4. 

4.2. Room impulse responses (RIRs) 

As the required RIRs for real rooms are not available in the online repository of RIRs, nor do we have the arrangements to record 
them ourselves, we have utilized the synthetic room impulse response of (Lehmann, 2020) for the training and prediction phase of 
BENET. Although this RIR generation toolkit is meant for moving sources, we have used it for a stationary source by setting the same 
starting and ending points for the source trajectory. 

The RIR for binaural dereverberation should ideally include the head related impulse response (HRIR) added to hks. HRIR is a 
response that characterizes how an ear receives a sound from a point in space. As sound strikes the listener, the size and shape of the 
head, ears, ear canal, size and shape of nasal and oral cavities, density of the head, all transform the sound, boosting some of its 

Fig. 3. Room layout. (a). During training phase, (b). During prediction phase.  
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frequencies and attenuating others and affecting the way it is perceived by the listener. However, as HRIR is required to be recorded in 
an anechoic room on the bare ear of a mannequin, but as neither the anechoic chamber nor the mannequin was available to us, so 
HRIRs are not included in the RIRs generated by simulation for the experiments of this paper. The RIRs used here are binaural in the 
sense, that the separation between the two beamformers and the two microphones (in the training and testing phase respectively) is 
kept equal to the interaural distance. But HRIR are not included in these RIRs. So, the system can be called as ‘pseudo-binaural’, and 
can be converted to truly binaural, just by adding HRIR in the RIRs. 

The parameter settings for different rooms are given in Fig. 4. 
In both rooms of Fig. 4, the absorption weight coefficients ’abs_weights’ setting is kept as [0.6 0.9 0.5 0.6 1 0.8] (the default setting 

in ISM_setup function of (Lehmann, 2020)). These coefficients simulates a carpeted floor, and sound-absorbing material on the ceiling 
and the second x-dimension wall. For recording the direct path sound, the absorption weight coefficients ’abs_weights’ setting is kept 
as [1.0 1.0 1.0 1.0 1.0 1.0], which leads to uniform absorption coefficients for all room boundaries. The direct path signal to the left 
microphone, inside an anechoic room, is used as reference for the performance evaluation. Expect for RT60 =890ms, the dimensions 
and the equipment setup for rooms with RT60 = 250, 470 and 700ms, is similar. 

4.3. Dataset 

The dataset used for audio sources is TIMIT database (DAPRA) and University of McGill database (TSP Lab) (http://www-mmsp. 
ece.mcgill.ca/Documents/Data/) . The training data specifications for level U-Net are given in Table 1. 

Due to the restriction of spectrogram size to be equal to 2D (where ‘D’ is the encoder depth of U-Net) at the input layer of U-Net, the 
duration of the clean source files used to create the ILD spectrograms (data samples for training the level U-Net) from the beamformer 
is different for different acoustic conditions, as listed in Table 2. 

As the size of images of both classes given to any U-Net must be same, so the duration of direct path files created by the clean audio 
files of (DAPRA) and (http://www-mmsp.ece.mcgill.ca/Documents/Data/), after convolving them with the RIRs of RT60 = 0ms in 
these rooms, is kept equal to that shown in column 3 of Table 2. 

However, after training, the prediction phase of U-Net is not subjected to such restrictions (Gul et al., 2021). So during the pre-
diction phase, five clean files of (DAPRA) (not used during the training phase), each of 2 seconds duration are convolved with the 
binaural RIRs of each room, to create the testing samples of reverberant speech. The process of convolution increases the duration of 
the clean speech beyond 2 seconds, but in order to keep the reverberations intact, we would not clip it back to 2 seconds. It will not pose 
any problem to the trained level U-net or the MLE algorithm. 

4.4. U-Net architecture 

We have used Matlab (2019) U-Net architecture for our proposed system. The network architecture is shown in Fig. 5. No change in 
the default parameters of any layer is done. 

The settings of hyper parameters, during training phase of the level U-Net, are mentioned in Table 3. 
The stopping criterion of training is taken as the leveling of the training accuracy curve. 

Fig. 4. (a) and (b). Different RIRs and their respective room layouts during the training phase.  

Table 1 
Training data specifications  

Number of speakers from TIMIT and McGill database 120 
Total audio files generated from each speaker to be used for level U-Net training 100 
Audio file format .wav  
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4.5. Ground truth (GT) 

The ground truth (GT) of each class during training must have an image dimension equal to the STFT spectrogram size mentioned in 
Table 2. So, the size of the ground truth varies with the room’s RT60 value. It consists of all the white pixels (pixel value = 255) for the 
DP class and all the black pixels (pixel value = 0) for the REV class. 

Table 2 
Audio file sizes used for creating the training data spectrograms in different acoustic conditions  

RT60 

(ms) 
Clean file duration from (DAPRA) or ( 
http://www-mmsp.ece.mcgill. 
ca/Documents/Data/) in sec 

Reverberant file duration 
(after convolution with 
RIR) in sec 

Reverberant file duration (after 
convolution with RIR) at sampling 
frequency of 16 kHz (in samples) 

STFT spectrogram size 
(length (L) £ width 
(W)) 

890 1 1.645 26320 1024 £ 100 
700 0.98 1.505 24080 1024 £ 92 
470 1 1.345 21520 1024 £ 82 
250 1 1.165 18640 1024 £ 70  

Fig. 5. (a) Level U-Net architecture. Here only the convolution layers are shown. Number of feature maps in each convolution layer is shown inside 
the parenthesis in each circle. All convolution layers and the ‘Upconv’ layer are followed by ReLU (rectified linear unit) activation layer. The ‘DO’ 
stands for ‘drop out’, which is set to 50% by default. (b) U-Net after training i.e., during the prediction phase. The architecture is same as in (a) 

Table 3 
U-Net training parameters  

U-Net parameters Values 

Training samples per class 12000 
Training and testing examples ratio 0.98/0.02 
Input image dimensions (height £ width) STFT spectrogram size in Table 2 according to RT60 of room. 
Encoder depth 1 
Optimizer sgdm (stochastic gradient decent method) 
L2 regularization 0.0001 
Momentum 0.95 
Initial learning rate 0.01 
Mini batch size 8 
Number of epochs for RT60 = 250ms 30 
Number of epochs for RT60 = 470ms 13 
Number of epochs for RT60 = 700ms 10 
Number of epochs for RT60 = 890ms 5  
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4.6. Comparative dereverberation algorithms 

We have compared our proposed algorithm in four different rooms mentioned in Table 2 with two dereverberation algorithms; the 
first from the ‘classical’ techniques, utilizing signal processing, the second utilizing the deep learning. A brief overview of these al-
gorithms is given below. 

4.6.1. Weighted prediction error (WPE) (Yoshioka and Nakatani., December 2012) 
The reverberation causes the lengthening of RIR. The algorithm proposed in (Yoshioka and Nakatani., 2012), shortens this impulse 

response by using sub-band domain multi-channel linear prediction filters. Using these filters, the RIR shortening process is gener-
alized and can work in all kinds of acoustic conditions. This method also works well for dereverberating acoustic mixtures collected at 
multiple microphones. The WPE algorithm is probably the most widely used algorithm for speech dereverberation. Many ASR studies 
report that WPE is the best classical signal processing models available, that suppresses reverberation with low speech distortions, and 
consistently improves the ASR performance, even for multi-conditionally trained ASR back-ends (Wang and Wang., 2020) 

4.6.2. Bidirectional long short term memory (BLSTM) based dereverberation model (Wang and Wang., 2020) 
The dereverberation system proposed in (Wang and Wang., 2020) is a three stage dereverberation model using the bidirectional 

long short term memory (BLSTM) deep neural network, complemented by beamforming. The first stage consists of a BLSTM deep 
neural network; trained on real and imaginary (RI) components of the direct path waves. There are as many BLSTM trained networks as 
there are microphones installed, to collect the target signal. The purpose of this stage is to enhance the direct path signal received at 
each microphone. After enhancing through many such parallel BLSTM networks, the enhanced copies of microphone signals enter the 
second stage, which consists of a minimum variance distortionless response (MVDR) beamformer, which beamformed all single 
channel speeches, received from the first stage. The output of the beamformer is subtracted from the input signal (reverberant speech) 
at the first microphone in the time frequency (TF) domain to extract the RI components of the reverberations. These RI components of 
reverberations are then used for the training of another BLSTM network in the third stage of the model. This third stage trained 
network is then used to identify the reverberant RI components in the received signal. The block diagram of dereverberation network is 
shown in Fig. 6. 

The exact comparison of BENET with BLSTM dereverb model is not possible due to three main differences in training and testing 
conditions. The first difference is the type of noise used for the two models. Secondly, for model of (Wang and Wang., 2020), all 
training was done on data of (Kinoshita et al., 2016), which was not available to us, nor were their RIRs, on which the training was 
done and thirdly, their target to microphone spacing was not similar to our arrangement, apart from the architectural differences of the 
two models. Also this model is not a binaural dereverberation model. 

But, we chose to compare BENET with BLSTM model, as the design of our proposed model is very much inspired from this model. 
Like our proposed model, BLSTM based dereverberation system in (Wang and Wang., 2020) is also using the beamformer at the front, 
supported by the DNN at the back-end. However the number of beamformers in their network (1 vs.2), type of DNN (BLSTM vs. U-Net), 
number of DNN stages (2 vs. 1) and beamformer geometry (circular vs. linear) of (Wang and Wang., 2020) are different from BENET. 

Due to limited computational resources available to us, we have mentioned the results of BLSTM algorithm directly from its paper, 
along with its respective acoustic conditions, under which the experiments were carried out. 

4.7. Evaluation criteria 

The output of BENET is evaluated under noisy conditions using three evaluation metrics for comparison of different models. The 
evaluation metrics used are signal-to-reverberation modulation energy ratio (SRMR) (https://github.com/MuSAELab/SRMRToolbox), 
cepstral distance (CEP) (https://github.com/schmiph2/pysepm) and frequency weighted segmental SNR (fwsegSNR) (Zexin et al., 
2017), as these metrics were also used for the evaluation of BLSTM model. Except for CEP, for all other metrics, higher is better. Except 
for SRMR, which does not require any reference, all other metrics use the direct path signal to the left microphone of binaural setup of 
Fig. 2(c), as a reference for the performance evaluation. 

Fig. 6. Dereverberation model of (Wang and Wang., 2020)  
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4.8. STFT parameters for creating interaural spectrograms 

The STFT parameters used for converting the time domain signal to time frequency domain for the beamformer Eq. (3)) and 
interaural spectrograms (Eqs. (5), (6) and (7)) are summarized in Table 4. 

The non-target signal extracted from the reverberated signal at each beamformer is again converted to time domain audio signal by 
overlapadd function in voicebox (http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html). 

4.9. Beamformer comparison 

We have tested different beamformers for BENET under similar acoustic conditions. Finally we have chosen minimum variance 
distortionless response (MVDR) (Higuchi et al., 2016) for two reasons. The most important one is its better performance in experiments 
on a small amount of traininig dataset and the second is that, it is also used in BLSTM model. Eight (8) elements were kept in each 
beamformer and no other changes were done in the model of (Higuchi et al., 2016). During the training phase, the source is placed at 
the center of the two beamformers, as shown in Figs. 4(a) and (b), making an angle of -10.758o with the perpendicular plane passing 
through the center of left beamformer and +10.758 o with the perpendicular plane passing through the center of right beamformer. 
The geometry and spacing of sensors, the room dimensions and the source position are given as input to simulator of (Lehmann, 2020), 
to achieve RIRs according to these steering angles. The steering angle of each beamformer is focused on the real source S. The REV 
signal from each beamformer is obtained by subtracting the beamformed signal from the reverberated speech collected at the first 
sensor of each beamformer, which has also collected an omnidirectional signal from multiple virtual sources, as the single sensor itself 
is omnidirectional. The process of subtraction is depicted mathematically in Eq. (3) of Section 3. 

4.10. Noisy conditions 

In noisy conditions, we have performed the experiments under the signal to noise ratio (SNR) of 20 dB to make a fair comparison 
with BLSTM model, as this SNR is also used for their model testing. However, as the model of (Wang and Wang., 2020) has added their 
own recorded fan sound, which was not available to us, so, we have added white noise to our speech signal of (DAPRA) by 
(https://www.mathworks.com/matlabcentral/fileexchange/33198-segmental-snr?focused=5202375&tab=function). One thing 
must be clear, that this noisy data is not used during the training phase. It is only used for the prediction phase. 

5. Experiments and Results 

We have performed two different experiments. The details and results of these experiments are given below. 
Case I: BENET comparison with other algorithms. 
In this experiment, we have compared the output of BENET model of Fig. 2(c) with the other dereverberation algorithms mentioned 

above. 
For all comparisons, the tests are carried under all reverberant conditions mentioned in Table 2 at SNR of 20dB, with 5 reverberant 

audio speech signals in each room, generated from the clean files of two seconds each, after convolving them by the RIRs of these rooms 
and the results of all the rooms are then averaged. 

First, the source is placed at the same position, as in the training phase. But the results were not encouraging, so we have tested the 
model at positions, in the vicinity of its training position and the BENET’s performance is much improved as compared to its previous 
performance at the training position. 

The average results of testing our proposed model in noisy conditions, inside a room with RT60 of 890ms, when placed at and other 
slightly shifted positions in elevation (up and down), azimuth (left and right) and front and back in the range of [5cm:5cm:15cm] of the 
training position, are shown in Table 5 and depicted in Fig. 7 . 

Although the SRMR after shifting the source remains almost similar to the one obtained at its training position, yet there is an 
enormous improvement in CEP and fwsegSNR. The exact cause of this improvement needs further investigation but it appears that 
moving the source slightly in the vicinity of its training position has not altered its spatial cues much (Gul et al., 2021), but has changed 
the reverberation pattern inside room, resulting in creation of new virtual sources and diminishing of the older ones, resulting in 
misclassification of reverberation spatial cues, adding the early reverberation more in the direct path signal, thus enhancing its 
intelligibility, as depicted by an increase in the fwsegSNR, as this metric is found to correlate well with speech intelligibility (Liu et al., 
December 2017). So, it is suggested that the source must be placed in the vicinity and not at the training position during the testing 

Table 4 
STFT parameters for Eq,s (3), 5, (6) and (7)  

Parameters Eq. (3) Eqs. (5), (6) and (7) 

Sampling frequency 16 kHz 16 kHz 
Window Shape Hamming Hamming 
STFT frame length 400 samples 1024 samples 
Hop size 160 samples 256 samples 
FFT length 512 1024  
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phase, for better system performance. 
Our proposed system has worked well on the positions in the vicinity of its training position, allowing mild excursions of source 

during his speech. Moving far apart the training positions results in changing the spatial cues of the real source and consequently their 
misclassification and the resultant drop in performance as shown in Table 6, where the source placed at 5cm to the left of its training 
position is compared with the source placed at 50 cm towards left of the training position, inside a room with RT60 =890ms. 

The results in Table 6 show that moving farther away from the trained position results in degradation of systems performance. This 
is because the system is spatial cue-based and moving the source farther would result in changing its spatial cues too much, resulting in 
them being unrecognized by the trained system. 

Now we will compare our proposed system with other dereverberation algorithms. The average results of source placed 10cm in 
front of its training position in BENET, with the other dereverberation algorithms, are mentioned in Table 7. 

Under similar RT60 values, Table 7 shows that BENET has outperformed other competing models in terms of CEP and fwsegSNR. 
The lower value of CEP is useful for machine listening applications, which require minimum distortion, as machines are not as resilient 
as the human listening. However, the SRMR of our proposed algorithm is slightly lower than WPE (<1 dB), and it is almost half in value 
of that offered by BLSTM (Wang and Wang., 2020). The two reasons behind this poor performance may be, i) the differences in the 
room design and RIRs of (Wang and Wang., 2020) from those, that we have used for our proposed model and ii) the effect of keeping 
the beamformers intact in (Wang and Wang., 2020), also during its testing phase (as discussed in context of Table 8) . 

Although, speech-to-reverberation modulation energy ratio (SRMR-CI) (Santos et al., 2013) (the objective metric designed espe-
cially to measure the speech intelligibility for CI users in noisy and reverberant environments), is not mentioned in paper (Wang and 
Wang., 2020), we found that the average SRMR-CI of our proposed algorithm is 0.1 dB higher than WPE (4.3dB vs. 4.2dB), under the 
acoustic conditions mentioned in Table 7, verifying its suitability for people, using the restorative hearing instruments. 

The average performance of our proposed model is better than WPE, as it is equipped with both the beamforming and the DNN. 
Although the same is true for the BLSTM model, yet BENET has surpassed it, not only in performance, but also in terms of requiring 
lesser training data (80 hours for BLSTM vs. 12 hours for BENET). However, our data set creation step is very lengthy due to 
involvement of beamformers, while they have trained their system on the already available dataset of REVERB challenge (Kinoshita 
et al., 2016). The reason of their better SRMR is because of using the beamforming even in the testing phase, while our proposed 
algorithm uses only two microphones during the testing phase. It has been found that beamforming improves the SRMR of BENET also, 
when it is used in its testing phase too, as shown in Table 8. 

As clear from Table 8, keeping the beamformers intact during the testing phase has degraded the fwsegSNR, yet it has improved the 
SRMR by more than 1 dB. But, these variations in SRMR and fwsegSNR must be compromised according to their impact on the 
application under consideration. In the next experiment, we will check the generality of BENET model in unseen acoustic conditions. 

Case 2: Testing BENET in unseen acoustic conditions 

Table 5 
Performance of BENET trained in RT60 (s) =890ms at different positions during the testing phase  

Position of source during testing CEP fwsegSNR (dB) SRMR (dB) 

Same as the training position 3.02 10.3 3 
Up/down shift 1.0 20.1 3.1 
Left/right shift 1.1 19.8 2.9 
Front/back shift 1.1 19.7 3.2  

Fig. 7. Source positions in the vicinity of training position during the testing phase are shown by the red dots. The training position itself is shown 
by the black dot. 
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Ideally, all binaural dereverberation must be implemented without any prior measurement of the room response, thus being blind 
or at least semi-blind (when some broad parameters related to the acoustic environment have to be known) (Blauert, 2013). In this 
experiment, we will test BENET trained in one room, in rest of other rooms, where it was not trained (unseen conditions). For testing 
the network trained in low reverberation conditions, we have selected the BENET model trained in room of RT60 =250ms, and test it 
under the medium (470ms) and high reverberation (890ms) conditions. Likewise, we have selected the model trained in high 
reverberation (890ms) and test it in other two unseen conditions of 250 and 470ms. The results are shown in Tables 9 and 10. The 
source is placed 10cm in front of its training position during this experiment. 

As shown in Table 9, BENET trained in low reverberations (RT60 (s) = 250ms) maintains its performance in unseen conditions of 
medium reverberations (RT60 (s) = 470ms), but there is a sharp decline in all metrics in high reverberant condition (890ms). Likewise, 
as shown in Table 10, the BENET trained in higher reverberant conditions (RT60 (s) = 890ms) failed to adapt to the lower reverberant 
condition (RT60 (s) = 250ms). Except SRMR, all performance metrics decline. So, it can be concluded that our proposed models works 
well under unseen acoustic conditions, which are closer to the one under which the model was trained, while the performance drops in 
unseen conditions which are entirely different from the training conditions. 

6. Conclusion 

In this paper, our main idea is to preserve the beamforming effect in a deep neural network (U-Net), so that after training, it can 
discriminate and identify the direct path spatial cues from the reverberations by using only the binaural setup i.e. without the aid of 
beamformers. Our proposed model, surpasses the signal processing and deep learning dereverberation models, when during the testing 
phase, the source is placed in the vicinity of its original position of training phase. It’s lower CEP than the competing algorithms 
(considered in this paper), makes it an ideal choice for ASR and ASV applications. The higher values of fwsegSNR and SRMR-CI of our 
proposed model, shows improved intelligibility, both for normal listeners and for users of assistive listening devices (e.g. cochlear 
implants). Also the performance of the proposed system is not depreciated under relatively similar unseen acoustic conditions. 
Although the proposed model has shown its effectiveness with simulated RIRs, yet, in future it requires testing with the real RIRs, 
pretrained networks and implementation using the light weight U-Net architecture (e.g. as used by speech separation model (Jeon 
et al., 2020)), suitable for wearable and mobile devices, before being incorporated in real life dereverberation applications. 
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Table 6 
Performance of BENET at near and far positions with respect to its training position  

Position of source during testing CEP fwsegSNR (dB) SRMR (dB) 

5cm left of training position 1.1 20 3.1 
100cm left of training position 1.4 18 2.6  

Table 7 
Comparison of BENET with other algorithms under noisy conditions  

Method RT60 (s) CEP fwsegSNR (dB) SRMR (dB) 

BENET 0.25, 0.47, 0.7 1.74 17 3.5 
WPE 0.25, 0.47, 0.7 3.13 9 4.1 
BLSTM 0.25, 0.5, 0.7 3.01 16.94 6.38  

Table 8 
BENET performance with and without using beamformers in the testing phase  

Method Microphones in the testing phase RT60 (s) CEP fwsegSNR (dB) SRMR (dB) 

BENET Two microphones 0.25, 0.47, 0.7 1.7 17 3.5 
BENET Two beamformers 0.25, 0.47, 0.7 1.7 14.1 4.4  

Table 9 
Performance of BENET trained in RT60 (s) = 250ms in medium and high reverberant conditions.  

RT60 (s) CEP fwsegSNR (dB) SRMR (dB) 

0.25 (seen) 2.6 11.4 5.3 
0.47 (unseen) 1.1 20 5.4 
0.89 (unseen) 2.5 10.7 3.4  
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