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Multiple sensors are commonly used for degradation monitoring of critical components. The degradation 
indicators derived from these sensors are significantly different in terms of scale and interpretation. Since 
these indicators reflect the same degradation path but have different scales and noise, the fusion of the 
data corresponding to these indicators is important for the condition monitoring and accurate reliability 
estimation of the components. In this paper, we develop a unified degradation path that considers 
statistics-based degradation and physics-based degradation models. We also estimate the reliability of 
such components. Simulation results show that the unified degradation model approximates the actual 
degradation path effectively. Additionally, more accurate estimates of reliability are obtained when 
compared with individual degradation paths. 

1. Introduction 
For a crucial component of a system, its real time degradation condition should be monitored in order to 
make maintenance decisions in a timely manner. As more advanced sensors are developed, it becomes 
more economical and feasible to utilize multiple sensors on crucial components in order to obtain more 
accurate reliability estimates and perform maintenance and replacement in a timely fashion. The major 
reason for multi-sensor degradation monitoring is that degradation information provided by a single sensor 
may be unreliable and probably incomplete. 
Multi-sensor degradation monitoring also generates new issues and challenges, one of which is the fusion 
of different sources of information. The challenge lies in three aspects. First, collected from different types 
of sensors working based on diverse physics phenomena, the scales of different degradation indicators 
may vary dramatically. Thus the interpretations of these degradation indicators may differ totally from each 
other. Second, some sensors may be more accurate than others since they are more sensitive in certain 
degradation stages. Third, these indicators are usually correlated with each other since they reflect the 
same underlying degradation process, and hence it is necessary to interpret these indicators together. 
Therefore, it is of great significance that a unified degradation path can be obtained from multiple 
degradation indicators. Additionally, it is important to derive reliability information metrics, i.e. reliability and 
MTTF, from the multiple sources of degradation information to assist maintenance decision making. 
Degradation paths are usually modelled by stochastic processes and physics-based models. Brownian 
motion and gamma processes are widely used stochastic processes in degradation modelling. McPherson 
(2010) proposes three most often occurring physics-based degradation models. However, so far the 
modelling of multi-dimensional correlated degradation processes has seldom been considered. Moreover, 
the degradation modelling combining physics-based and stochastic models has not been investigated. 
Even though significant research has been conducted on multi-sensor data fusion for fault diagnosis and 
prognosis, sparse work has addressed data fusion of multi-sensor degradation information or unified 
degradation path. Wei et al. (2011) weigh different sensor signals by minimizing the uncertainty of unified 
measurements, but the data from different sensors are considered as independent instead of correlated 
with each other. 
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Reliability estimation for stochastic degradation models is found in many references. A recent study by 
Molini et al. (2011) presents the distribution for first passage time of Brownian motion with time dependent 
drift and diffusion coefficients. However, the research on the reliability estimate for multi-dimensional 
correlated degradation processes is rare. The first passage time distribution of even 2-dimensional 
Brownian motion with drift is quite complex (Dominé and Pieper, 1993). It is more difficult to obtain explicit 
reliability functions for more dimensions of more advanced degradation processes. 
Therefore, we investigate the use of multi-sensor information to obtain a unified degradation path using 
three main steps. First, degradation indicators from multiple sensors are modelled as a k - dimensional 
correlated Brownian motion. Additionally, physics-based degradation model is considered in combination 
with stochastic process based models. Second, a unified degradation path is obtained by averaging 
different dimensions of degradation paths considering weights that are determined utilizing lead-lag 
correlation between different paths. Third, reliability information is estimated based on multi-sensor 
degradation information by using moving block bootstrapping method, which is verified to be more 
accurate than that derived from single degradation paths. 

2. Multi-sensor Degradation Modeling 

2.1 Multi-dimensional correlated Brownian motion based degradation modelling 
For critical component, degradation indicators can be extracted from multiple sensors. These degradation 
indicators with different scales and interpretations are usually correlated with each other since they reflect 
the same underlying degradation process. Brownian motion with drift has been widely used to model 
single degradation path. For multiple degradation indicators, Multi-dimensional Correlated Brownian 
motion with drift (MCB) is used to model the degradation process under the assumption of linearly 
increasing degradation. MCB can be specified as (Birkbeck University of London, 2009) 

0( ) [ ( )]W t H Mt Z t w= + + (1)

where ( )W t is the k - dimensional MCB, 1 2[ , ,..., ]'kM μ μ μ=  is the vector of drift coefficients, H is the 
Cholesky decomposition of correlation matrix Ρ  among different dimensions of ( )W t , ( )Z t  is a vector of 
k  Brownian motions, i.e. 1 1 2 2( ) [ ( ), ( ),..., ( )]'k kZ t B t B t B tσ σ σ=  where iσ  is the diffusion coefficient of the i th

Brownian motion, and 0 0,1 0,2 0,[ , ,..., ]'kw w w w=  is the vector of initial values.  

( )W t  has k  dimensions, each can be described as a Brownian motion with drift. 

,0( ) ( )i i i i iW t t B t wλ θ= + +    (2) 

where ( )iW t  is the i th dimension of ( )W t , iλ  and iθ  are its drift and diffusion coefficients respectively, 

and ( )iB t  is a standard Brownian motion. 

From Eq. (1) and (2) it follows that 
1
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2.2 Physics-based degradation model with randomness 
In this paper, physics-based model is also considered to model degradation processes. The power law 
model is used since it is the most widely observed degradation model in practice (McPherson, 2010). 
Combining randomness, the power law degradation model is specified as Eq. (4) 

1
0 0 0( ) ( )m mY t t t B t Yβ δ β −= + +   (4) 

where ( )Y t  is the degradation process, 0β  and m  is power law coefficients,  0Y  is its initial value of 

degradation, 1
0
mtδ β −  is the diffusion coefficient at time t  and ( )B t  is a standard Brownian motion. 

3. Unified degradation path based on correlation information 
In order to determine the degradation condition of a critical component, it is necessary to derive a unified 
degradation path from multi-sensor degradation information. The correlations among different degradation 
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paths are important information, and are used to obtain weight for each path; hence the weight-averaged 
unified degradation path approach is utilized in this paper. 
The weights are calculated by employing and modifying the leadership score proposed by Wu et al. (2010) 
considering the PageRank proposed by Brin and Page (1998). The leaders in a group of time series 
(degradation paths) behave ahead of other time series, and are considered as “good representatives” of 
the whole group. In this paper, the normalized leadership score is perhaps an effective approach to weigh 
the different degradation paths in order to obtain a unified degradation path. Suppose there are k  single 
degradation paths, the leadership score at time t is obtained using the following four steps. 
Step 1. A sliding window of length g  for the i th degradation path, ( )iD t , is defined as a subsequence of 

the degradation path, which is , , 1 ,( ,..., )i
t g i t g i ts D D− += . The lagged correlation between two sliding windows 

,
i
t gs  and ,

j
t gs of two degradation paths iD  and jD  at lag l , denoted as ,

, ( )i j
t g lρ , can be calculated by Eq. 

(5), see (Wu et al., 2010) 
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(5)

where ,
c
a bs  and ,

c
a bσ  are the mean value and standard deviation of sliding window ,

c
a bs .  It should be noted 

that lag l  should not exceed ( / 2)g  and has to satisfy lag span / 2l q g≤ ≤ .

Step 2. The lagged correlation values between any two degradation paths over the entire lag span are 
aggregated by calculating the expected correlation value conditioning on l . That is (Wu et al., 2010) 

max{ ( | 0), ( | 0)}ij ij ij
t t tE E l E l <ρ ρ= ≥   (6) 

where  

( ) { }0
| 0 max ( ),0 Pr( | 0)qij ij

t l
E l l l lρ ρ

=
≥ = ≥  and ( ) { }1| 0 max ( ),0 Pr( | 0)ij ij

t l q
E l l l lρ ρ−

=−
< = < . Note that the 

uniformly distributed conditional probabilities Pr( | 0) 1 / ( 1)l l q≥ = +  and Pr( | 0) 1 /l l q< = .

Step 3. Leadership matrix tL  is determined based on the values of ( )| 0ij
tE lρ ≥  and ( )| 0ij

tE lρ < , the third 

criterion is added by authors to enhance the robustness of this method. 
(1) If ( ) ( )| 0 | 0ij ij

t tE l E lρ ρ< > ≥ , the i th degradation path leads the j th one, and 1ij
tL = ;

(2) If ( ) ( )| 0 | 0ij ij
t tE l E lρ ρ< < ≥ , the i th degradation path is led by the j th one, and 0ij

tL = ;

(3) If ( ) ( )| 0 | 0ij ij
t tE l E lρ ρ< = ≥ , the i th degradation path leads or is led by the j th one with probability ½, 

i.e. Pr( 1) Pr( 0) 1 / 2ij ij
t tL L= = = = .

Since the calculation of ij
tE  and ji

tE is not fully symmetric considering the case of 0l = , it is possible that 
ij ji
t tL L= . Therefore, the authors propose two criteria to revise tL  as follows. 

(a) If 1ij ji
t tL L= = , then ij

tL  is set as 0 if ij ji
t tE E<  and ji

tL  is set as 0 if ij ji
t tE E≥ ;

(b) If 0ij ji
t tL L= = , then ij

tL  is set as 1 if ij ji
t tE E<  and ji

tL  is set as 1 if ij ji
t tE E≥ .

The reason for criterion (a) is that ij ji
t tE E≥  means the evidence of i  leading j  is more powerful than that 

of j  leading i . The reason for criterion (b) is that ij ji
t tE E≥  means the evidence of i  being led by j  is 

more powerful than that of j  being led by i . The matrix of aggregated lagged correlation matrix tE  is 

revised by setting { }max ,ij ij ji
t t tE E E= .

Step 4. According to Wu et al. (2010) The leadership score weights have similar relationship as those of 
PageRank proposed by Brin and Page (1998) and is obtained as: 

(1 )
(1 )

jk
j kt
t tki ki

k j t ti k

LScore d d Score
E Lε≠ ≠

= − + ⋅
+ −

(7)

where i
tScore  is the leadership score of degradation path i  at time t , d  is a damping factor which can be 

set between 0 and 1, and is set as 0.85 as suggested (Brin and Page, 1998), ε  is a small number, say 1, 
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to avoid zero valued denominator. Eq. (7) forms a system of linear equations, which can be solved 
immediately. The leadership scores are then normalized to obtain the weights for any dimensions of 

degradation, that is , 1

ki j
i t t tj

Score Scoreη
=

= . The unified degradation path is then obtained as  

,1
( ) ( )k

i t ii
D t W tη

=
=   (8) 

However, due to the difference in scales of different degradation paths, the unified degradation path 
should be modified considering the scales. The modification is carried out by Eq. (9) 

( ) ( ),1 1
( ) ( ) ( ) ( )k k

i i t i ij i
D t t k D t tϕ η ϕ

= =
= ⋅   (9) 

where ( )i tϕ  is the slope for the i th degradation path at time t . Slope is used since after degradation 

value ( )iD t  being divided by slope ( )i tϕ , the scale related information is eliminated from ( )iD t .

4. Bootstrapping based approach for reliability estimation 
Due to the difficulty in deriving explicit form of reliability function for multi-dimensional degradation process, 
Moving Blocks Bootstrap (Efron and Tibshirani, 1993) is used to obtain the distribution of the first passage 
time and reliability estimate. 

4.1 Bootstrapping based reliability estimation 
Suppose k  degradation signals are collected from sensors. The first passage time of the degradation 
process is defined as the time when any one of the k  degradation paths reaches its critical threshold ih .
Suppose at time t , /n t t= Δ  data are collected from each sensor. Thus an n k×  degradation matrix is 
obtained. Let 10%b n=  be the length of a moving block, the j th block contains the j  to 1j b+ −  rows 
of degradation matrix. Multiple blocks are resampled from the degradation matrix and added to the end of 
the matrix sequentially so that first passage time is obtained for the overall degradation process. Note that 
the data in each block should be modified before being added to the end of the degradation matrix. First, 
the initial values in each resampled block should be eliminated by subtracting the row just prior to the block 
from each row of the block. Second, the row at the end of the present matrix should be added to each row 
of the block to follow. The resample process is carried out for V  times to obtain V  realizations of first 
passage time, the distribution of first passage time and the reliability estimate. 

4.2 Explicit form of reliability function for Brownian motion 
When a degradation path is modelled as a Brownian motion with drift, then the reliability function can be 
specified explicitly since the distribution of the first passage time of Brownian motion with drift coefficient λ
and diffusion coefficient θ  is Inverse Gaussian, and the reliability can be obtained by Eq. (10)  

0 0
02

2( ) exp ( )h w t h w tR t h w
t t

λ λ λ
θθ θ

− − − += Φ − − Φ − (10)

where ( )Φ ⋅  is the CDF of normal distribution, h  is the critical threshold and 0w  is the initial value of 
degradation. 
For k - dimensional correlated Brownian motions, each dimension can be described as a Brownian motion 
with drift as specified in Eq. (2). Thus the reliability function for each individual degradation path can be 
calculated by Eq. (10). The corresponding parameters can be estimated using MLE and the data collected 
by time t . The estimates of parameters iλ , iθ , and ,0iw can be obtained for each dimension respectively. 

For a single dimension of the multi-dimensional correlated Brownian motion process, the MLEs for the 
three parameters with n  data are 

1
ˆ ( )n
i ijj

W n tλ
=

= Δ Δ , 2 2
1

ˆ ˆ( ) ( )n
i ij ij

W t n tθ λ
=

= Δ − Δ Δ , and 0, 1ˆ i iw W= .

4.3 Explicit form of reliability function for physics-based degradation model 
If a degradation path is modelled by power law degradation model combining randomness as specified by 
Eq. (4), the reliability can be estimated by Eq. (11) (Molini et al., 2011) 

0 0 0 0 0
2

0 0

( ) 2( ) ( )( ) exp
m m

m m

m h Y m t h Y m h Y m tR t
m t m t

β β
δδ β δ β

− − − − − −= Φ − Φ (11)
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where the degradation path parameters m , 0β , δ , and 0Y  have the same meaning as in Eq. (4);  and h
is the critical threshold. The MLE parameters estimates with n  data are obtained by maximizing the 

likelihood function in Eq. (12) and 0̂ (0)Y Y= .

( )21
0

0 2 11
00
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2 ( )2 ( )
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n t

mt t m

Y t m t t
L Y t t m

m t tm t t

β
β δ

δ βπδ β

−
Δ

−=Δ −

Δ − Δ
Δ Δ = −

ΔΔ
∏  (12) 

5. Numerical Simulation 

5.1 Unified degradation path for multi-dimensional correlated Brownian motion 
A numerical simulation of 4-dimensional Brownian motion process is conducted with parameters shown in 
Table 1 and the correlation matrix Ρ .

Table 1:  Parameter settings for 4-dimensional Brownian motion process 

Dimension 1  Dimension 2 Dimension 3 Dimension 4 

iμ 15 10 25 5

iσ 6 3 5 2

Additionally, the initial values for the four dimensions of degradation process, ,0iw , are all set as 10. 

In the case of k - dimensional correlated Brownian motion, the slope of each degradation path is just the 

drift coefficient ,
ˆ
j tλ  estimated at time t , the unified degradation path is modified as 

( ), , ,1 1
ˆ ˆ( ) ( ( ) )k k
j t i t i i tj i

D t k W tλ η λ
= =

= ⋅   (13) 

    Figure 1. Unified degradation path and threshold             Figure 2. Moving block bootstrapping at time 5 

For the k - dimensional correlated Brownian motion specified by Table 1, the unified degradation path is 
shown in line with circle markers in Figure 1. As can be seen from the figure, the weight-averaged 
threshold for the unified degradation path fluctuates around an average threshold line through time and 
converges due to more available data. The first passage time of the unified degradation path is 
approximately in the middle of the first passage times of the four single degradation paths. This shows that 
the unified degradation path can represent the underlying degradation process quite well. 

5.2 Moving block bootstrapping method based reliability estimation 
Bootstrapping based reliability information estimation is carried out at times 3, 5, and 7 respectively, with 
g = 10 and 0.6( / 2)q g= . Figure 2 shows the bootstrapping degradation paths at time 5. The estimate 

for MTTF (Mean Time to Failure) becomes more accurate when more data are available. The true first 
passage time is 7.75, and MTTF is estimated as 6.60, 7.40 and 7.69 at times 3, 5, and 7 respectively. 
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The bootstrapping based reliability values at time 3 and 7 are shown in bold lines in Figure 3. From the 
figure it can be observed that the distribution of the first passage time, i.e. the failure time, converges to 
the true first passage time. The reliability values based on single degradation paths are calculated using 
Eq. (10) at different time points, as shown in Figure 3 in dashed lines. By comparison, it can be seen that 
any reliability function obtained from single degradation paths is not as accurate as the reliability obtained 
from k - dimensional correlated degradation paths, especially at the early stage of degradation. 

Figure 3. Reliability values at time points 3 (left figure) and 7 (right figure) 

6. Conclusions 
Multi-sensor degradation data analysis is studied in this paper. Multi-dimensional correlated Brownian 
motion and power law model (a physics-based degradation model) have been used to model multiple 
degradation paths. A unified degradation path is obtained by weighing multiple degradation paths, where 
weights are calculated by using lead-lag correlation information among different paths. The numerical 
simulation result shows that the unified degradation path can represent the underlying degradation quite 
well and hence may provide more useful information for maintenance. For multi-dimensional correlated 
Brownian motion based degradation data, reliability and MTTF are estimated utilizing moving block 
bootstrapping method. It is shown that the estimate converges with time to the true values and the 
reliability estimate is more accurate than using data for any of the single degradation paths. 
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