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Abstract: The use of artificial intelligence (AI) is becoming more prevalent across industries such as
healthcare, finance, and transportation. Artificial intelligence is based on the analysis of large datasets
and requires a continuous supply of high-quality data. However, using data for AI is not without
challenges. This paper comprehensively reviews and critically examines the challenges of using data
for AI, including data quality, data volume, privacy and security, bias and fairness, interpretability
and explainability, ethical concerns, and technical expertise and skills. This paper examines these
challenges in detail and offers recommendations on how companies and organizations can address
them. By understanding and addressing these challenges, organizations can harness the power of AI
to make smarter decisions and gain competitive advantage in the digital age. It is expected, since
this review article provides and discusses various strategies for data challenges for AI over the last
decade, that it will be very helpful to the scientific research community to create new and novel ideas
to rethink our approaches to data strategies for AI.

Keywords: Artificial Intelligence (AI); data strategies and learning approaches; challenges and
opportunities

1. Introduction

Artificial Intelligence (AI) refers to the ability of machines to mimic human intelligence
and perform tasks that typically require human intelligence, such as learning, problem-
solving, decision-making, and natural language understanding [1]. Figure 1 depicts AI
technologies including machine learning, natural language processing, robotics, and com-
puter vision. Machine learning is a subset of AI that involves training computer algorithms
to learn patterns in data and make predictions or decisions based on the data [2]. Deep
learning is a type of machine learning that uses neural networks with multiple layers to
process complex data such as images or speech [3]. Natural language processing is the
ability of computers to understand, interpret, and generate human language, including
speech and text [4]. Computer vision is the ability of computers to analyze and interpret
visual information such as images and videos [5].

AI is a rapidly expanding field with the potential to revolutionize the way we live and
work. From healthcare to finance and transportation, AI has the potential to transform a
wide range of industries, creating new opportunities for businesses and organizations. AI
has been transforming various sectors, including healthcare, finance, and transportation,
with significant advancements in machine learning and deep learning techniques [6,7].
The heart of this transformation is data, which are essential for training and testing the AI
models. AI models rely on large datasets to identify patterns and trends that are difficult
to detect using traditional data-analysis methods. This allows them to learn and make
predictions based on the data on which they have been trained.

However, using AI data is challenging. Data quality, quantity, diversity, and privacy
are critical components of data-driven AI applications, and each presents its own set of
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challenges. Poor data quality can lead to inaccurate or biased AI models, which can have
serious consequences in areas such as healthcare and finance. Insufficient data can lead to
models that are too simplistic and incapable of accurately predicting real-world outcomes.
A lack of data diversity can also lead to biased models that do not accurately represent the
population they are designed to serve. Lastly, data privacy is a major concern, as AI models
may require access to sensitive data, which raises concerns about data privacy and security.
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In this article, we address the challenges of using data for AI and offer recommenda-
tions for companies seeking to address them. To address these challenges, businesses and
organizations need to develop strategies and frameworks that promote data quality, quan-
tity, diversity, and privacy. This may involve implementing data cleaning and validation
processes to ensure data quality, collecting and managing large quantities of diverse data,
and implementing data privacy policies and procedures to protect the sensitive data. By
focusing on these challenges, businesses and organizations can leverage the power of data
to create accurate, effective, and fair AI applications that benefit society.

2. Materials and Methods
2.1. Data for AI

Data are critical for AI because they are the foundation upon which machine learning
algorithms learn, make predictions, and improve their performance over time. To train an
AI model, large amounts of data are required to enable the model to recognize patterns,
make predictions, and improve its performance over time.

2.1.1. Data Learning Approaches

AI algorithms require data to learn patterns and make predictions or decisions based
on the data. AI machine learning techniques are algorithms that allow machines to learn pat-
terns and make predictions from data without explicit programming [8]. These techniques
are widely used in a variety of applications, such as natural language processing, image
and speech recognition, and recommendation systems. In general, the more data available
for an AI algorithm to learn, the more accurate its predictions or decisions will be. There are
several data-learning approaches to building AI systems [8,9]; for the comprehensiveness
of the article, we include the following, as shown in Figure 2.
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Supervised Learning: In supervised learning, an AI system is trained on a labeled
dataset, where each data point is associated with a label or a target variable. The goal is to
develop a model that can accurately predict the label or target variable for new data points.
This approach is commonly used for tasks such as image classification, speech recognition,
and natural language processing [10].

Unsupervised Learning: In unsupervised learning, an AI system is trained on an
unlabeled dataset where there is no target variable to predict. The goal is to identify the
patterns, relationships, and structures in the data. This approach is commonly used for
tasks such as clustering, anomaly detection, and dimensionality reduction [11].

Reinforcement Learning: In reinforcement learning, an AI system learns to make
decisions based on feedback from the environment. The system receives rewards or
penalties based on its actions and adjusts its behavior accordingly. This approach is
commonly used for tasks such as gaming, robotics, and autonomous driving [12].

Transfer Learning: In transfer learning, an AI system leverages the knowledge gained
from one task to improve the performance in another related task. The system is pre-trained
on a large dataset and then fine-tuned on a smaller dataset for a specific task at hand. This
approach can help to reduce the amount of data required to train an AI model and improve
its accuracy and performance [13].

Deep Learning: Deep learning is a type of neural-network-based machine learning that
is particularly effective for tasks involving large amounts of data and complex relationships.
Deep learning models are composed of multiple layers of interconnected nodes that can
learn increasingly complex representations of data. This approach is commonly used for
tasks such as image and speech recognition, natural language processing, and computer
vision [14].

Ensemble Learning: Ensemble learning is a technique in which multiple models are
trained and combined to make predictions or decisions. Combining the predictions of
multiple models can improve the accuracy and reliability of the final output [15].

Overall, the choice of the data learning approach depends on the specific task, data,
and resources available. It is important to carefully evaluate the benefits and limitations
of each approach and select the one that best fits the requirements of the AI application
being developed.
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2.1.2. Data-Centric and Data-Driven AI

Data-centric and data-driven are two related but distinct concepts in the world of
data analysis and decision making. By leveraging data, organizations can gain a deeper
understanding of their operations, customers, and markets and make more informed
decisions based on data-driven insights. Data-centric approaches are commonly used in
industries such as finance, healthcare, and retail, where accurate and timely data are critical
for decision making. For example, in the healthcare industry, data-centric approaches are
used to analyze patient data to improve outcomes, identify disease patterns, and optimize
treatment plans. Data-centric and data-driven approaches are two approaches for building
AI systems that rely on data [16,17].

Data-Centric Approach: This refers to an approach in which data are the central
focus of a system or process [16,18]. A data-centric approach involves a relatively fixed
model that prioritizes the collection, storage, and analysis of high-quality data to train
AI algorithms, improve their performance, and leverage data to inform decision-making
and problem-solving processes [16,18,19]. This approach often involves using advanced
analytics such as machine learning or artificial intelligence to uncover patterns, trends,
or insights that may not be immediately apparent from the data [19]. The data-driven
approach focuses on building robust and reliable data infrastructure that can support a
wide range of AI applications. The goal is to create a centralized data repository that can
serve as a single source of truth for all AI applications within an organization [20]. This
approach is particularly useful when there is a large volume of data from different sources,
or when the data are complex and difficult to work with.

In recent years, the rise of big data and advanced analytics has led to a growing
emphasis on data-centric approaches across various industries, from healthcare to finance
and to retail [21]. By adopting a data-centric approach, organizations can gain a competitive
advantage by improving decision making, increasing efficiency, and reducing costs [22].
A data-centric approach is particularly important in the context of big data, where the
7 Vs of big data (velocity, volume, value, variety, veracity, volatility, and validity) can
make it challenging to extract meaningful insights [23]. AI algorithms must be designed
to handle large volumes of data, which must be carefully curated to ensure accuracy and
relevance [24]. A data-centric approach can lead to improved decision-making, increased
efficiency, reduced costs, improved customer experience, competitive advantage, and risk
mitigation [25,26]. It requires a strong data management infrastructure, a skilled workforce,
and advanced analytics and AI techniques to extract valuable insights from the data.

Overall, a data-centric approach is essential for effective AI decision-making and
problem solving. By placing data at the center of the AI system and following best practices
for data quality, processing, governance, and integration, organizations can unlock the full
potential of AI and drive better outcomes.

Data-Driven Approach: This focuses on building AI models that are specifically
designed to make predictions or decisions based on data. This approach emphasizes the
selection, processing, and analysis of data to identify patterns, relationships, and insights
that can be used to improve the accuracy and performance of an AI model [27]. The goal
was to develop an AI model that can learn and adapt to new data without being constrained
by a predefined set of rules or assumptions. This approach is particularly useful when data
are relatively homogeneous or when the goal is to automate a specific decision-making
process [28]. A data-driven approach to AI involves the use of data as the primary source
of information for training and improving AI models. In this approach, the AI system
learns directly from the data rather than being programmed by humans [29]. Data-driven
AI involves several key steps, as illustrated in Figure 3.
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Data Collection: Collecting relevant data from various sources is the first step in a
data-driven approach. This may involve capturing data from internal systems, external
sources, or user-generated content [30].

Data Preparation: Once the data have been collected, they need to be cleaned, pre-
processed, and transformed to make them suitable for analysis. This may involve data
cleansing, normalization, and feature engineering [31].

Machine Learning: Machine learning algorithms are applied to preprocessed data to
develop predictive models that can be used to make decisions or automate processes [32].

Model Validation: The models developed through machine learning are validated
using various techniques to ensure accuracy and reliability [33].

Model Deployment: Once models have been validated, they are deployed in produc-
tion environments to automate the decision-making processes or provide insights [34].

Continuous Improvement: A data-driven approach involves continuous improvement,
with feedback from the models used to refine the data collection, analysis, and decision-
making processes [35].

A key advantage of a data-driven approach to AI is that it allows the AI model to
adapt and improve over time as new data become available. This means that the model can
continue to learn and refine its predictions and performance, leading to better outcomes
over time. Data-driven AI has several advantages over other approaches, including the
ability to learn from large amounts of data, detect complex patterns and relationships,
and adapt to changing conditions [36]. However, it also requires careful attention to data
quality, privacy, and ethical considerations.

Overall, a data-driven AI approach emphasizes the importance of data at every stage
of the AI development and decision-making process, from data collection to model deploy-
ment. This approach can help organizations make informed decisions and improve the
accuracy and effectiveness of their AI models.

Generally, both data-centric and data-driven approaches are important for building
effective AI systems. A strong data-centric approach can help ensure that the data used
to train AI models are of high quality, whereas a data-driven approach can help identify
patterns and insights that can improve the accuracy and performance of the AI model. The
choice between these two approaches depends on the specific needs and requirements of
the organization and AI application being developed.
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2.2. Dimensions of Data Challenges for AI

Several data challenges are associated with AI. Figure 4 depicts the dimensions of the
data challenges for AI. This section covers the most important and essential and major ones,
as illustrated in Figure 4.
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2.2.1. Dimension I: Data Quality

Data quality is a critical aspect of AI. The accuracy, completeness, and consistency
of the data used for training and testing AI models directly affects the performance and
effectiveness of the AI system. Low-quality data can lead to biased, inaccurate, or irrelevant
results, negatively affecting decision-making processes based on AI outputs. Therefore,
ensuring the high quality of data is crucial for AI systems to produce reliable and valuable
results. This may include data cleansing, validation, enrichment, and management. AI
applications require high-quality relevant, representative, and reliable data to produce
optimal outcomes. AI systems also require ongoing monitoring and maintenance to ensure
that data quality is consistent over time. The performance of AI systems is heavily reliant
on the quality of the data used for training and validation [37]. Data quality is a multidi-
mensional concept that encompasses factors such as accuracy, completeness, consistency,
and timeliness [38]. Ensuring data quality is a challenging task given the vast amount of
data generated daily and the inherent complexity of data structures [39]. Figure 5 shows
the challenging elements of data quality.
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Challenging Measures of Data Quality and Implications on AI Systems

This section presents different measures to ensure the data quality for AI applications.
Figure 6 represents the challenging measures of Data Quality.
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Accuracy: Data accuracy is critical for AI to function effectively. Accuracy refers to
the degree to which data are correct and error-free. In other words, it aims to describe the
degree to which data correctly represent real-world phenomena [40]. AI systems require
accurate data for training and validation to ensure accurate predictions and decisions [41].
Inaccurate data can lead to biased or erroneous outcomes, undermining the reliability and
usefulness of AI systems [42].

Completeness: Completeness refers to the extent to which all relevant and sufficient
data coverage is present in the dataset to provide insight and meaningful results for AI [37].
Incomplete data can lead to biased or unrepresentative AI models because the algorithms
may not have sufficient information to learn the underlying patterns and relationships [43].
Missing data can be attributed to various factors such as data collection or data entry
errors [44].

Consistency: Consistency refers to the uniformity of data representations and formats
across a dataset [38]. In other words, this is the extent to which the data are free from
conflicts, inaccuracies, or discrepancies when compared to other sources or systems. In-
consistent data can lead to confusion and misinterpretation by AI algorithms, resulting
in suboptimal performance [45]. Ensuring consistency requires the standardization and
harmonization of data formats, units, and terminologies [46].

Timeliness: Timeliness refers to the degree to which data are updated and relevant to
the current context [37]. AI systems require timely data to adapt to dynamic environments
and provide accurate predictions [47]. Outdated data may lead to poor performance and
even harmful consequences because AI systems may not account for recent changes in the
underlying phenomena [48]. Timeliness is particularly important in domains such as fi-
nance, healthcare, and transportation, where real-time insights offer significant advantages.
For instance, if the data used to build a weather forecasting model are outdated, the model
might not be able to make accurate predictions. Similarly, if the data used for training a
stock market predictor are not timely, the model can make decisions based on outdated
information that may not be relevant to the current state of the market. Therefore, data
timeliness is an important dimension of AI data quality.

Integrity: Data integrity refers to the maintenance of data accuracy and consistency
throughout its lifecycle, including during storage, retrieval, and processing [46]. In other
words, it is the degree to which data are reliable and trusted to be correct. Compromised
data integrity can result in AI systems making decisions based on corrupt or inconsistent
data, leading to unreliable or flawed outcomes.

Relevance: Relevant data refer to the degree to which the data used for training and
building machine learning models are appropriate and applicable to the task or problem
being addressed [37]. This is directly related to a specific problem or task being addressed
by an AI system. Irrelevant data can introduce noise or bias into a system, thereby reducing
their performance and effectiveness [39].
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By considering these dimensions of data quality and their implications for AI systems,
organizations can better understand the challenges they face in maintaining high-quality
data for AI applications. This understanding can inform the development of strategies and
best practices to address data quality issues, thereby ensuring that AI systems can deliver
accurate, reliable, and valuable insights and outcomes.

Challenges in Data Collection, Pre-Processing, and Management

Data Collection: Data collection for AI applications is often driven by the need to solve
the problem of ensuring that relevant data are collected, which is a challenge because of
the sheer volume of data, the diversity of data sources, and the need for representative
samples [49]. Data collection to ensure data quality is determined by data requirements and
identifying the types of data needed for the application, data sources, and data quantity [50].
To ensure data quality in the data collection phase, the following considerations must
be considered:

Data Pre-Processing: Data pre-processing is a crucial step in ensuring data quality,
as it involves cleaning, transforming, and integrating the data to facilitate analysis [51].
Pre-processing can be time-consuming and resource-intensive, given the need to handle
missing values, outliers, inconsistencies, and other data quality issues [52]. Moreover,
pre-processing decisions can have significant implications for AI model performance, as
they influence the characteristics of the input data [53].

Data Quality Management: Effective data management is essential for maintaining
data quality and ensuring that AI systems can access and process data efficiently [41].
Data management challenges include maintaining data storage and retrieval systems,
implementing version control, and ensuring data security and privacy [46].

The Role of Data Governance in Ensuring Data Quality

Data governance plays a critical role in maintaining, ensuring, and enhancing data
quality in organizations [54]. It encompasses the processes, policies, standards, and tech-
nologies that manage the availability, usability, integrity, and security of data [55]. Effective
data governance helps organizations make better decisions, optimize operations, comply
with regulations, and create a competitive advantage [56]. Implementing a comprehensive
data governance framework is essential for addressing data quality challenges in AI [57].

Data governance includes several aspects such as data stewardship, data quality
management, data privacy and security, and data architecture [58]. Data stewardship
involves assigning responsibility and accountability for data quality to designated data
stewards to ensure that data meet organizational standards [59]. Data quality management
refers to the processes and tools used to measure, monitor, and improve data quality,
such as data profiling, cleansing, and enrichment [60]. Data privacy and security are
concerned with protecting sensitive information and ensuring compliance with relevant
regulations [61]. Data architecture includes the design, organization, and management of
data structures, storage systems, and data integration technologies [57].

Implementing an effective data governance framework requires a clear understanding
of the organization’s goals, data quality requirements, and existing data management
practices [62]. Organizations must establish data quality metrics, set data quality targets,
and monitor data quality performance regularly [63]. In addition, organizations should
invest in data governance technologies such as data catalogs, data lineage tools, and data
quality management systems to support the data governance process [54]. By adopting a
robust data governance framework, organizations can significantly improve data quality
and unleash the full potential of AI.

Furthermore, effective data governance is essential for fostering a data-driven culture
within an organization. By promoting collaboration and communication between different
departments and stakeholders, data governance helps to break down data silos and facili-
tates the sharing of data assets [54]. This enables organizations to leverage their data more
effectively and gain valuable insights into strategic decision-making [58].



Appl. Sci. 2023, 13, 7082 9 of 33

Training and education are critical components of data governance [60]. Ensuring that
employees have a solid understanding of data quality concepts, tools, and best practices
helps create a shared vision and commitment to maintaining high-quality data. This can
lead to more accurate and reliable AI models that drive innovation and create a competitive
advantage [59].

In addition to internal data governance efforts, organizations should consider the
importance of external data quality. As AI systems often rely on data from various sources,
including third-party providers and public datasets, ensuring the quality of external data is
crucial for the success of AI initiatives [57]. Collaborating with data providers and estab-
lishing data quality agreements can help mitigate potential data quality issues stemming
from external sources [58].

In summary, implementing a comprehensive data governance framework is vital for
addressing data quality challenges in AI. Organizations that prioritize data governance can
enhance their decision making, optimize operations, and unlock the full potential of AI
technologies. By fostering a data-driven culture, investing in data governance technologies,
and ensuring both internal and external data quality, organizations can build a solid
foundation for AI success.

Addressing Data Quality Challenges: Techniques and Strategies

This section proposes solutions to address the challenges in data quality. The results
are summarized in Figure 7.
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Data Cleaning: Data cleaning is an essential step in improving data quality for AI. This
involves identifying and correcting errors, missing values, inconsistencies, and outliers in
data. Techniques such as data profiling and validation can help identify areas of data that
require cleaning.

Data Profiling and Data Preparation: Data profiling involves analyzing datasets to
identify data quality issues such as missing data, duplicate records, and inconsistent values.
Data preparation involves cleaning and transforming the raw data into a usable format for
AI algorithms. These processes are essential to ensure that the data used to train the AI
models are accurate, complete, and consistent.

Data Labeling: Data labeling involves tagging data with relevant metadata that de-
scribe its characteristics, which can help ensure that AI models are trained with high-quality



Appl. Sci. 2023, 13, 7082 10 of 33

data. For example, in image recognition, data labeling may involve identifying objects in
the images and adding descriptive labels to the data.

Imputation Techniques for Missing Data: Missing data are a significant challenge
in ensuring the data quality of AI systems. Various imputation techniques have been
proposed to handle missing data, including mean imputation, regression imputation, and
multiple imputation [54]. Advanced techniques, such as matrix completion methods, have
been explored in recent years [55]. These methods aim to provide reasonable estimates of
the missing values and ensure the completeness of the dataset.

Feature Selection and Engineering: Feature selection and engineering play a crucial
role in addressing data quality challenges, as they involve identifying relevant features and
transforming raw data into a format suitable for analysis [64]. Techniques such as Recursive
Feature Elimination (RFE), LASSO, and principal component analysis can be employed
to reduce the dimensionality of the data and eliminate noise [65]. Moreover, domain
knowledge can be leveraged to create new features that better capture the underlying
patterns and relationships.

Data Augmentation: Data augmentation techniques can be used to address the data
quality challenges related to limited or unbalanced datasets. These techniques generate
synthetic data samples by applying various transformations such as rotation, scaling, and
flipping to the original data [66]. Data augmentation has been particularly successful
in improving the performance of deep learning models in computer vision and natural
language processing tasks [67].

Active Learning: Active learning is an approach that can help address data-quality
challenges by guiding the data-collection process. In active learning, AI models iteratively
select the most informative samples to be labeled and added to the training set, thereby
reducing the amount of labeled data required and improving model performance [68].
Active learning has shown promise in various applications, including text classification
and object recognition [69,70].

Data Validation and Testing: Data validation involves checking data for accuracy and
completeness, whereas testing involves assessing the performance of AI models using
various metrics. These processes can help identify and address data quality issues that may
affect the accuracy and effectiveness of AI models.

Algorithmic Fairness: Algorithmic fairness involves ensuring that AI models are not
biased towards specific groups or individuals. This can be achieved by carefully selecting
training datasets and implementing algorithms designed to reduce bias.

Data Bias Mitigation: Data bias can lead to inaccurate or unfair AI predictions and
decisions. Mitigating data bias involves identifying and addressing bias in the training data
through techniques such as dataset balancing, which involves adjusting the distribution of
data to reduce bias.

Continuous Monitoring and Maintenance: AI models need to be continuously mon-
itored and maintained to ensure that they remain accurate and effective. This involves
ongoing data-quality checks, updating models with new data, and retraining models
as needed.

Data Lineage: Data lineage involves tracking the history of the data and ensuring that
it is used appropriately. This can help prevent issues such as data drift, where the quality
of data changes over time.

2.2.2. Dimension II: Data Volume
Challenging Elements of Data Volume

The data volume challenge is a key aspect of AI research and application. Large
datasets are critical for training AI models, and continue to grow in size and complexity.
This growth brings with it some challenges that must be addressed to ensure the effective
use of AI in various domains [71]. The challenging elements of data volume are presented
in Figure 8.
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Data Deluge: A double-edged sword. Exponential data growth is the driving force
behind the success of AI, particularly in deep learning techniques [72]. However, the
massive amount of data poses several challenges, including in storing, processing, and
managing data [73].

Storage Challenges: The huge amount of data generated today requires more efficient
storage solutions to support artificial intelligence applications [74]. Traditional storage
architectures may not be able to meet the scalability, performance, and cost requirements
of AI workloads [75]. New storage technologies, such as nonvolatile memory (NVM) and
distributed storage systems, have been proposed as possible solutions [76].

Processing Challenges: AI models, particularly deep learning algorithms, require
enormous computing resources to process large datasets [77]. This has led to an increased
need for specialized hardware such as GPUs and TPUs to accelerate AI training and
inference [78]. In addition, new techniques such as model compression, pruning, and
quantization have been explored to optimize AI models for more efficient processing [79].

Data Management Challenges: From the perspective of big data volume, effective data
management is critical for AI systems to handle massive amounts of data. This includes
data cleaning, preprocessing, labeling, and curation [80]. Techniques such as active learning,
weak supervision, and transfer learning have been proposed to alleviate the burden of
manual data annotation [81].

Data Heterogeneity: Large datasets may contain data from multiple sources, which
can be challenging to integrate and harmonize, particularly when the data are in different
formats or structures.

Data Privacy and Security: Large data volumes can increase the risk of data breaches
and privacy violations, particularly when sensitive data are involved. These issues need to
be addressed as the amount of data increases [82].

Bias and Representativeness: Large volumes of data do not necessarily guarantee
representativeness or lack bias, as they may still contain demographic, cultural, or other
biases that can impact the accuracy of AI models.

Data Access: In some cases, organizations may have access to large datasets but may
not be able to use them due to legal or regulatory constraints. Organizations must ensure
that they have the necessary permissions and licenses to access and use data.
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Mitigation Solutions for Challenges of Data Volume

Several solutions have been proposed to address the data volume challenges in artifi-
cial intelligence. Figure 9 depicts the proposed solutions that this includes.
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(a) Transfer Learning: Transfer learning involves leveraging pre-trained AI models to
improve the performance of new models. Using pre-trained models, organizations
can reduce the amount of training data required and improve the efficiency of the
training process.

(b) Federated Learning: This enables collaborative model training across multiple devices
without sharing raw data [83].

(c) Edge Computing: This brings data processing closer to the data source, thereby
reducing the network latency and bandwidth usage [84].

(d) Multimodal Learning: This leverages multiple data sources to improve the model
performance and reduce reliance on large datasets [85].

Federated Learning as a proposed solution:

Federated learning was introduced as a solution to preserve user privacy while ben-
efiting from the collective knowledge of multiple data sources [86]. In this framework,
devices (also known as clients) train machine learning models using local data, and then
share model updates with a central server. The server aggregates these updates, improves
the global model, and distributes the updated model back to the clients. This process is
repeated iteratively until the model converges. The benefits of Federated Learning include
several benefits that can help address data volume challenges in AI.

(a) Privacy: Because raw data remain on client devices, federated learning inherently
provides a higher level of privacy compared to centralized approaches [83].

(b) Reduced Data Transfer: By sharing only model updates rather than raw data, feder-
ated learning can significantly reduce the amount of data that needs to be transferred
over the network, reducing bandwidth and latency issues [87].

(c) Scalability: Federated learning can accommodate a large number of client devices,
allowing the use of different data sources without overloading the central server [75].

(d) Real-time learning: By allowing clients to learn from local data, federated learning
enables real-time adaptation and improves model performance [82].
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Challenges and Future Directions: Despite its benefits, federated learning also presents
some challenges that need to be addressed.

(a) Heterogeneity: The heterogeneity of client devices and data distribution may lead to
an unbalanced contribution to the global model, which may affect convergence and
model performance [75].

(b) Communication Overhead: The iterative process of exchanging model updates incurs
significant communication overhead and may negate the benefits of reduced data
transfer [87].

(c) Security: Federated learning is vulnerable to various security threats, including model
poisoning, inference attacks, and Sybil attacks [88].

To overcome these challenges, researchers are exploring various techniques such as
weighted averaging to deal with heterogeneity [89], communication-efficient algorithms
for reducing overhead [90], and differential privacy for enhancing security [91]. Continued
research in these areas will be crucial to fully realize the potential of federated learning in
addressing the data-volume challenge in AI.

- Edge Computing as a Proposed Solution: Edge computing is a distributed computing
paradigm that aims to bring computation and data storage closer to the data source,
or the “edge” of the network, where the data are generated [84]. By performing data
processing on edge devices, such as smartphones, IoT devices, or edge servers, edge
computing can reduce the amount of data that must be transmitted to the cloud or
a centralized data center. This approach enables real-time data processing, reduces
latency, and conserves the bandwidth.

- Advantages of Edge Computing: Edge computing offers several benefits that can help
address the data volume challenge in AI.

(a) Reduced Latency: By processing data closer to the source, edge computing can
significantly reduce latency and enable real-time AI applications [84].

(b) Bandwidth Efficiency: Edge computing helps conserve bandwidth by reducing
the amount of data transmitted over the network, which is particularly useful
in situations where the network bandwidth is limited or expensive [76].

(c) Enhanced privacy and security: Because data are processed and stored locally,
edge computing can provide improved data privacy and security compared to
centralized approaches [92].

(d) Scalability: Edge computing can support many devices and applications, mak-
ing it suitable for the growing demands of AI and IoT [84].

Challenges and Future Directions:

Despite its advantages, edge computing presents some challenges that need to
be addressed.

(a) Resource Constraints: Edge devices typically have limited computational resources,
which may hinder the performance of complex AI models [93].

(b) Model Deployment and Management: Deploying and managing AI models across a
large number of edge devices can be challenging because it requires efficient model
distribution, updates, and monitoring [94].

(c) Heterogeneity: The heterogeneity of edge devices in terms of hardware, software, and
network connectivity can pose challenges for implementing consistent and efficient
AI solutions [95].

Researchers have explored various techniques to overcome these challenges, such
as model compression and hardware-aware neural architecture searches for resource-
constrained devices [79], edge-cloud collaborative learning for model deployment and
management [96], and federated edge learning to address heterogeneity [97]. Continued
research in these areas will be crucial to fully realize the potential of edge computing in
addressing the data-volume challenge in AI.
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2.2.3. Dimension III: Data Privacy and Security

The use of personal or sensitive data in AI can raise concerns regarding privacy
and security. It is important to ensure that the data are stored and processed securely
and that privacy regulations are followed. To address this challenge, businesses should
implement data privacy and security policies and procedures such as data encryption and
access control.

This section provides a comprehensive review of the challenges associated with data
privacy and security in AI, and discusses data collection and sharing, inference attacks,
differential privacy, adversarial attacks, data poisoning, and model and data tampering. It
also presents state-of-the-art mitigation strategies, such as privacy-preserving AI techniques,
robustness and adversarial training, monitoring and anomaly detection, and compliance
with data protection regulations. The results are summarized in Figure 10.
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Data Privacy Challenges in AI

Data Collection and Sharing: AI systems require large quantities of data to train
effectively, often leading organizations to aggregate data from various sources, potentially
exposing sensitive user information [98]. Data-sharing agreements and collaborative data
analysis projects can exacerbate these concerns, especially when data are shared across
international borders with differing privacy regulations [99].

Inference Attacks: AI models can inadvertently reveal sensitive information about
training data, even when the data are anonymized [100]. For example, attackers can use
model inversion or membership inference attacks to extract private information from a
model’s predictions or to learn whether a specific data point is included in the training
set [101].

Differential Privacy: Differential privacy (DP) is a popular approach for preserving
privacy during data analysis by adding controlled noise to the data [102]. Although
DP provides strong privacy guarantees, it can be challenging to implement in practice,
especially when balancing privacy protections and model utility [103].

Data Security Challenges in AI

Adversarial Attacks: Adversarial attacks, in which small perturbations are introduced
to input data to deceive AI models, pose significant security risks [104]. These attacks can
lead to incorrect predictions or classifications, undermining the reliability of AI systems in
critical applications, such as healthcare, finance, and autonomous vehicles [105].

Data Poisoning: Data poisoning attacks involve tampering with training data to de-
grade the performance of an AI model [106]. These attacks can be difficult to detect because
they often target a small subset of the training data and require minimal modifications to
the poisoned data points [107].
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Model and Data Tampering: Attackers can also target AI models and data directly
by altering model parameters, weights, or the data itself [108]. Techniques such as back-
door attacks or Trojan neural networks can introduce hidden malicious behavior into AI
models, thereby posing significant security risks [109]. In backdoor attacks, an attacker
injects malicious code into the model during the training process, causing the model to pro-
duce incorrect outputs or exhibit unintended behavior when triggered by a specific input
pattern [110]. Trojan neural networks, on the other hand, involve embedding a hidden
trigger within the model, which, when activated by a specific input, causes the model to
perform unauthorized actions or provide incorrect predictions [111].

Model extraction attacks involve model tampering, in which an attacker seeks to
replicate a target model by querying it and learning from the responses [112]. This can
lead to intellectual property theft, or even the creation of duplicate models with malicious
intent [113].

To defend against model and data tampering, organizations can employ various
strategies such as model hardening, secure model storage, and input validation. Model
hardening techniques, such as fine pruning, can help remove malicious components from
a model while maintaining its overall performance [114]. Secure model storage using
encryption and access controls can protect a model from unauthorized modifications [115].
Input validation can be employed to ensure that only legitimate inputs are processed by
the AI system, mitigating the risk of triggering hidden backdoors or Trojan networks [116].
By implementing these countermeasures, organizations can enhance the security and
trustworthiness of their AI systems in the face of model and data-tampering threats.

Mitigation Strategies for Data Privacy and Security Challenges

Several mitigation techniques are proposed, as depicted in Figure 11.
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Privacy-Preserving AI Techniques: To address privacy concerns, organizations can
employ privacy-preserving AI techniques, such as federated learning, secure multi-party
computation, and homomorphic encryption [117]. These methods allow organizations to
train AI models on distributed data without sharing raw data between parties, thereby
reducing the risk of data breaches or leakage [118].

Robustness and Adversarial Training: To defend against adversarial attacks and
improve model robustness, researchers have developed adversarial training techniques
that involve augmenting a training dataset with adversarial examples [119]. By training
the model on a combination of clean and adversarial data, it becomes more resilient to
adversarial perturbations [120].

Monitoring and Anomaly Detection: To detect data poisoning and model tamper-
ing, organizations can employ monitoring and anomaly detection techniques to identify
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deviations from the expected behavior in model performance, training data, or model pa-
rameters [59]. Early detection can help prevent further damage to AI systems and provide
valuable insights for improving security measures [121].

Compliance with Data Protection Regulations: Organizations should adhere to data
protection regulations, such as the General Data Protection Regulation (GDPR) in Europe
and the California Consumer Privacy Act (CCPA) in the United States, to ensure that they
collect, store, and process data in a secure and compliant manner [122]. Compliance with
these regulations can help minimize the risk of data breaches and protect user privacy [123].

Data privacy and security challenges in AI are significant concerns for organizations
that develop and deploy AI systems. By understanding these challenges and implementing
mitigation strategies, such as privacy-preserving AI techniques, robustness training, and
compliance with data protection regulations, organizations can enhance the privacy and
security of their AI systems. As AI continues to evolve and impact various industries, it is
crucial for researchers, practitioners, and policymakers to work together to address these
challenges and ensure that it serves the greater good without compromising user privacy
and security.

2.2.4. Dimension IV: Bias and Fairness

AI has seen rapid advancements over the past decade, transforming many aspects of
our lives. However, as AI systems have become more prevalent, concerns regarding data
bias and fairness have emerged. The performance of AI models depends heavily on the
quality of the data used for training, and biased data can lead to biased outcomes [124].
This section provides a comprehensive review of the challenges related to data bias and
fairness in AI, with a focus on recent research and solutions.

Bias, in the context of artificial intelligence and machine learning, refers to systematic
errors in the algorithms’ predictions or decisions resulting from skewed training data,
flawed algorithms, or the influence of pre-existing assumptions. These biases can lead to
unfair or discriminatory outcomes, impacting individuals or groups based on attributes
such as race, gender, age, or socioeconomic status. Addressing and mitigating bias in AI
systems is crucial for ensuring the fair and ethical deployment of these technologies in
various domains, from healthcare and finance to criminal justice and social media.

Amazon’s AI Recruiting Tool: In 2018, Amazon discontinued its AI recruiting tool
after it was found to be biased against female candidates. The system was designed to
review resumes and rank candidates based on their qualifications. However, the model was
trained on resumes submitted to the company over a ten-year period, which predominantly
belonged to male candidates. Consequently, the AI system preferred male candidates over
equally qualified female candidates [125].

Google Photos’ Racial Bias: In 2015, Google Photos was criticized for its image recog-
nition algorithm, which mistakenly labeled African Americans as gorillas. This incident
highlighted racial bias in the AI system, which was attributed to the lack of diversity in the
training data. Google apologized for this mistake and worked on improving the algorithm
to avoid such issues in the future [126].

Microsoft’s Tay Chatbot: In 2016, Microsoft launched a Twitter-based AI chatbot called
Tay. The chatbot was designed to learn from user interactions and to mimic human conver-
sations. However, within 24 h of its launch, Tay started posting offensive and racist tweets,
as it had learned from malicious users who intentionally fed biased and inappropriate
content. Microsoft quickly took Tay offline and apologized for the incident [127].

Apple Card’s Gender Bias: In 2019, Apple faced a backlash when its Apple Card, a
credit card service powered by Goldman Sachs, was accused of gender bias. Several users
reported that the credit limit offered to male applicants was significantly higher than that
offered to their female counterparts despite having similar or even worse financial profiles.
This issue raised concerns about the fairness and transparency of AI algorithms used for
credit assessment [128].
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COMPAS Risk Assessment Tool: The Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS) tool is an AI-based system used in the United States to
assess the risk of recidivism in criminal defendants. A 2016 investigation by ProPublica
revealed that the tool exhibited racial bias, with African American defendants being more
likely to be incorrectly labeled as high-risk compared to white defendants with similar
criminal records. This controversy led to increased scrutiny of AI-based risk assessment
tools in the criminal justice system [129].

Types of Data Bias

Figure 12 represents ten types of data bias.
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Measurement Bias: Measurement bias occurs when data collection methods systemati-
cally over- or under-represent certain features or aspects of data [130]. This can lead to AI
models that generate biased predictions that are not representative of the true population.

Label Bias: Label bias arises when labels assigned to data instances are incorrect or
unrepresentative of true outcomes. This can result from human errors, subjective judgments,
or systemic issues during the labeling process [131].

Sampling Bias: Sampling bias occurs when the collected data are not representative
of the population of interest. This can lead to biased AI models, as they learn from a
non-representative sample [132].

Aggregation Bias: Aggregation bias emerges when data are combined from multiple
sources with different characteristics or distributions. This can cause AI models to learn
patterns that are not generalizable to the entire population [133].

Confirmation Bias: Confirmation bias emerges when data or information are selectively
chosen or weighted to support pre-existing beliefs or expectations. This can inadvertently
affect AI model outcomes because the training data may disproportionately represent
certain aspects or patterns [134].

Group attribution bias: This bias arises when AI systems generalize, or stereotype
individual behaviors based on the perceived characteristics of the group to which they
belong. This can lead to biased predictions that do not accurately represent an individual’s
unique attributes [135].

Temporal Bias: Temporal bias occurs when AI models are trained on historical data
that no longer reflects current trends or patterns. This can lead to biased predictions because
the models fail to adapt to changes in the underlying data distribution over time [136].

Feature Selection Bias: Feature selection bias emerges when certain features are given
greater importance or focus during the model development process, leading to biased
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outcomes. This can be a result of domain-specific biases or biases inherent to the algorithms
used for feature selection [137].

Anchoring Bias: Anchoring bias occurs when AI models rely heavily on initial in-
formation or data points to make predictions. This can result in biased outcomes, as the
models may not sufficiently consider other relevant factors or adjust their predictions based
on new information [138].

Automation Bias: Automation bias refers to the tendency of humans to over-rely
on AI system outputs, even when they are flawed or biased. This can exacerbate the
consequences of biased AI models because users may not question or scrutinize biased
decisions or recommendations generated by these systems [139].

Consequences of Data Bias and Unfairness in AI

Discrimination: Biased AI systems can inadvertently discriminate against certain
groups or individuals, thereby leading to unfair treatment. For example, biased facial
recognition systems can misidentify individuals from minority groups at a higher rate than
those from majority groups [140].

Misinformation: AI systems trained on biased data may propagate false or misleading
information, exacerbating existing stereotypes and prejudices [141].

Legal and Ethical Implications: Biased AI systems can pose legal and ethical challenges
as they may violate anti-discrimination laws or ethical guidelines [142].

Addressing Data Bias and Fairness in AI

This section proposes a solution to address data bias and fairness in AI. These results
are shown in Figure 13.
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Data Collection and Pre-processing: Collecting diverse and representative data is
crucial for mitigating data bias [143]. Additionally, preprocessing techniques such as
resampling, reweighting, or data augmentation can help reduce bias in the dataset [144].

Algorithmic Fairness: Researchers have proposed various fairness-aware machine-
learning algorithms that aim to minimize discriminatory outcomes (Friedler et al., 2019).
These techniques typically incorporate fairness constraints into the model training process
or post-process model predictions to ensure fairness [145].

Fairness Metrics: Developing appropriate fairness metrics is essential for quantifying
and comparing the performance of AI models in terms of fairness [146]. Some commonly
used metrics include demographic parity, equalized odds, and disparate impact ratios [147].

Explainable AI: Explainable AI (XAI) techniques can provide insights into the decision-
making process of AI models, helping identify potential sources of bias and unfairness [148].
Researchers can develop more effective interventions to improve fairness by understanding
the underlying reasons for the biased outcomes.

Interdisciplinary Collaboration: Addressing data bias and fairness requires the col-
laboration of experts from various fields, including computer science, social sciences,
and ethics [149]. Interdisciplinary efforts can help develop comprehensive strategies that
consider the complex interplay between data, algorithms, and social contexts.

2.2.5. Dimension V: Interpretability and Explainability

AI models can be difficult to interpret and explain, which can make it difficult for
organizations to understand how decisions are made. It is important to ensure that AI
models are transparent and explainable. To address this challenge, organizations should
implement interpretability and explainability controls such as feature importance analysis
and model visualization tools. Figure 14 shows the challenging elements of interpretability
and explainability.
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Artificial intelligence has become an integral part of modern society, with its influ-
ence seen in various domains, including healthcare, finance, transportation, and many
others [150]. The rise of AI has been largely driven by advances in machine learning and
deep learning techniques, which have demonstrated impressive results in solving complex
problems [151]. However, these techniques have also given rise to “black-box” models,
characterized by their lack of interpretability and explainability [150].
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The Necessity of Interpretability and Explainability

The demand for interpretability and explainability in AI systems is driven by the
need for trust, accountability, and ethical considerations [152]. Trust is essential for the
adoption and successful integration of AI systems, as users need to understand and believe
in the decisions made by these systems [153]. Accountability ensures that AI systems
comply with legal and ethical standards and can be audited when necessary [154]. Ethical
considerations call for AI systems to adhere to the principles of fairness, transparency, and
nondiscrimination [155].

Current Techniques for Interpretability and Explainability

Various techniques have been proposed to enhance the interpretability and explain-
ability of AI systems, ranging from inherently interpretable models to post hoc explanations
for black-box models [156]. Some of these techniques include the following:

Inherently interpretable models, such as decision trees, linear regression, and rule-
based systems, are designed to be easily understood by humans, providing a direct rela-
tionship between input features and the model’s output [157].

Local Explanations: Local Interpretable Model-agnostic Explanations (LIME) and
SHapley Additive explanations (SHAP) are methods that explain individual predictions
by approximating a complex model’s behavior using simpler, interpretable models for a
specific instance [158–160].

Visualization Techniques: Techniques such as t-distributed Stochastic Neighbor Em-
bedding (t-SNE) and activation can provide visual representations of high-dimensional
data processed by AI models, enabling human users to understand the relationships and
patterns present in the data [161,162].

Remaining Challenges and Future Directions

Despite progress in developing techniques for interpretability and explainability,
several challenges still need to be addressed [150]:

Trade-Off between Performance and Interpretability: Highly interpretable models
often come at the cost of reduced predictive performance. Future research should focus on
developing models that balance interpretability and performance [157].

Evaluation Metrics: The development of standardized evaluation metrics to assess
the interpretability and explainability of AI models remains a challenge. Establishing
universally accepted metrics will enable researchers to compare different techniques more
effectively and drive further innovation [162].

Domain-Specific Solutions: Certain application domains require specific interpretabil-
ity and explainability techniques. For example, in the medical field, explanations must be
tailored to the knowledge and understanding of both clinicians and patients [163]. Further
research is required to develop domain-specific solutions that satisfy unique requirements.

Ethical Considerations: As explainable AI techniques become more advanced, there is
a risk of generating explanations that may be misleading or biased, leading to potentially
harmful consequences [164]. Future research should address the ethical implications of
explainability and develop guidelines to ensure that the explanations are accurate, unbiased,
and useful.

Thus, interpretability and explainability are crucial components of the successful
integration of AI systems into our daily lives. By addressing the challenges related to
these concepts, trust can be fostered, accountability ensured, and ethical AI deployment
promoted. The development of techniques to enhance interpretability and explainability
remains an active area of research, with significant progress already being achieved. How-
ever, several challenges still need to be addressed, including balancing performance with
interpretability, developing standardized evaluation metrics, creating domain-specific solu-
tions, and considering ethical implications. By addressing these challenges, we can bridge
the gap between AI and human understanding, paving the way for a more transparent and
trustworthy AI-powered future.
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2.2.6. Dimension VI: Technical Expertise

Building and deploying AI models requires technical expertise, which can be challeng-
ing for companies that do not have the necessary skills in-house. To address this challenge,
organizations can hire data scientists or partners with external vendors who provide the
required expertise.

The growth of artificial intelligence (AI) has revolutionized multiple industries, includ-
ing healthcare, finance, and manufacturing [165]. AI-driven systems have demonstrated
exceptional performance in various tasks, such as natural language processing, computer
vision, and robotics [166]. However, the increasing complexity and sophistication of AI
algorithms have resulted in new challenges in terms of technical expertise [167]. This
section investigates these challenges and proposes potential solutions.

Scarcity of Skilled Professionals

One of the primary challenges in the AI domain is the scarcity of skilled profes-
sionals [168]. The rapid development of AI technologies has outpaced the growth of a
workforce capable of handling the complexity and diversity of AI systems [169]. This
talent gap can hinder further progress in AI and impede the adoption of AI technologies in
various ways [167]. Potential solutions to address this talent gap include increasing invest-
ment in education and training, promoting interdisciplinary collaboration, and developing
AI-driven tools for education [169].

Ethical Concerns

AI technologies have raised various ethical concerns that require careful consideration
and technical expertise [170]. These concerns include bias, fairness, transparency, account-
ability, and potential misuse of AI technologies [171]. Addressing these ethical issues
necessitates the development of robust AI systems that align with human values and ethi-
cal principles, as well as fostering interdisciplinary collaboration between AI researchers,
ethicists, and policymakers [170,172].

The Growing Demand for AI-Related Expertise

The increasing adoption of AI technologies across various industries has led to a surge
in the demand for AI-related expertise [173]. According to [174], AI and machine learning
are among the top 10 emerging professions, with a projected growth rate of 41% between
2020 and 2025. This increasing demand for AI professionals is driven by the need for
specialized knowledge in areas such as algorithm development, data analysis, and systems
integration [175]. Addressing this demand requires concerted efforts in education and
training as well as the fostering of interdisciplinary collaboration to develop a workforce
capable of tackling the complex challenges associated with AI technologies [169].

Key Disciplines in High Demand for AI-Related Expertise

As AI technologies continue to evolve, the demand for expertise in various disciplines
is expected to grow. Some of the key disciplines that are needed in the AI domain are:

(a) Computer Science and Computer Engineering: Professionals with skills in algorithm
development, machine learning, deep learning, natural language processing, and com-
puter vision are essential for designing, building, and maintaining AI systems [175].

(b) Data Science and Analytics: AI systems often rely on large volumes of data. Experts
in data science and analytics are required to preprocess, analyze, and interpret data to
generate actionable insights and improve AI models [173].

(c) Human–computer Interaction (HCI) and Cognitive Science: As AI technologies be-
come more integrated into our daily lives, understanding how humans interact with
these systems is becoming increasingly important. HCI and cognitive science experts
can help design AI systems that are intuitive, user-friendly, and adaptable to human
needs [176].
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(d) Ethics, Philosophy, and Policy: The growing influence of AI technology raises several
ethical and philosophical questions. Experts in these fields are needed to address
issues related to fairness, transparency, and accountability and to develop policies
and frameworks that ensure responsible AI development and deployment [170].

(e) Cybersecurity and Privacy: Protecting sensitive data and maintaining the security
of AI systems is a critical concern. Professionals skilled in cryptography, secure
multiparty computation, and privacy-preserving machine learning techniques are
essential to ensure data privacy and security [177].

(f) Robotics and Autonomous Systems: As AI-powered robotics and autonomous sys-
tems become more prevalent, expertise in areas such as control systems, sensor fusion,
and robotics software engineering will become increasingly valuable [178].

Collaboration between Humans and AI

AI systems are becoming increasingly more autonomous. As a result, there is a
growing need for effective collaboration between humans and AI [178]. This collaboration
requires developing AI systems that can understand and adapt to human preferences,
communicate effectively, and support human decision making [178]. Technical expertise in
human–computer interactions, cognitive science, and explainable AI is crucial for designing
AI systems that can seamlessly integrate into human workflows [176].

The references used in this study to address the challenges of data in AI applications
are listed in Table 1.

Table 1. References for challenges of data in AI.

Challenge Reference

Data Quality

Introduction [37–39]

Quality Measures [37–47]

Collection and Management [41,46,49–53]

Data Governance [54–63]

Proposed solutions [54,55,64–70]

Data Volume

Introduction [71]

Data Deluge [72,73]

Storage Challenges [74–76]

Processing Challenges [77–79]

Data Management Challenges [80,81]

Data Privacy and Security [82]

Proposed Solutions [75,76,79,82–97]

Data Privacy and Security

Data Privacy [98–103]

Data Security [104–116]

Mitigation Strategies [117–123]

Bias and Fairness

Introduction [124–129]

Types of Data Bias [130–139]

Consequences of Data Bias
and Unfairness [140–142]

Proposed Solutions [143–149]
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Table 1. Cont.

Challenge Reference

Interpretability and Explainability

Introduction [150,151]

The Necessity [152–155]

Current Techniques [156–162]

Remaining Challenges and
Future Directions [150,157,162–164]

Technical Expertise

Introduction [165–167]

Scarcity of Skilled Professionals [168,169]

Ethical Concerns [170–172]

The Growing Demand for
AI-Related Expertise [169,173–175]

Key Disciplines in High Demand
for AI-Related Expertise [170,173,179–183]

Collaboration between Humans
and AI [176,178,184–187]

3. Results

In our quest to understand the hurdles to data quality in terms of artificial intelligence,
we stumbled upon a few noteworthy insights. Specifically, we noticed that data quality
plays a vital role in AI systems, which span multiple dimensions with significant implica-
tions. Therefore, ensuring the quality of data requires not only appropriate governance,
but also adherence to best practices to ensure optimal results.

3.1. Dimension of Data Quality and Implication for AI systems

Particularly pertinent to AI systems, our analysis disclosed the following dimensions
of data quality: Accuracy, Completeness, Consistency, Timeliness, Relevance, and Integrity.

AI predictions and decisions are influenced by crucial dimensions of performance,
reliability, and trustworthiness. The quality of data across these dimensions must be
diligently maintained to minimize the hazards of distorted or prejudiced outcomes and
optimize the efficiency of AI programs.

3.2. The Role of Data Governance in Ensuring Data Quality

Ensuring data quality is a crucial aspect of data governance. It involves managing and
monitoring the data to maintain accuracy, completeness, and consistency. Data governance
plays a vital role in this process by establishing policies and standards to regulate how data
are collected, used, and shared. By implementing effective data governance, organizations
can reduce the risk of errors and inconsistencies in their data that could lead to costly
mistakes and poor decision making. Overall, data governance is essential for maintaining
high-quality data and ensuring their usefulness and reliability for various purposes.

Maintaining the data quality for AI systems can be ensured through data governance,
an aspect that our analysis has also highlighted. Organizational benefits from establishing
a strong data governance system include the following:

(a) Quality standards and policies for data must be defined and put into action.
(b) Throughout the lifecycle of the data, it is important to keep a close eye on their quality

and maintain control.
(c) Quality data and holding ourselves accountable should be part of a culture we strive

to create.
(d) The sharing, integration, and management of data can be enhanced through various

means. The optimization of data management techniques should be prioritized.
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Improved data sharing is crucial for seamless exchanges between different systems.
The integration of various data types can be achieved using appropriate methods.

(e) Regulations and laws must be followed carefully to maintain compliance.

Systematically addressing data quality challenges and minimizing the risks associ-
ated with poor data quality can be achieved by integrating data governance into the AI
development process.

3.3. Best Practices to Ensure Data Quality for AI

AI systems’ data quality can be ensured by adopting the following best practices:

(a) Implementing an effective data management strategy that includes data curation and
preprocessing before usage.

(b) Fostering transparency and accountability in the data collection process, including
defining data sources and conducting regular audits.

(c) Conducting diversity checks on the collected dataset to avoid bias, and making sure
that it is representative of the target population.

(d) Ensuring the security and privacy of the data by implementing the necessary security
protocols and obtaining consent from the data subjects.

(e) Proactively monitoring and updating the dataset to maintain accuracy and relevance,
especially when it comes to dynamic or constantly changing environments.

AI systems can provide reliable data quality if organizations implement certain best
practices, and we have identified quality data frameworks and strategies that need to
be developed and implemented. The structures and processes for data governance must
be established to ensure proper management. Governance data structures and processes
provide accountability and responsibility for data management. Establishing governance
structures and processes is critical for ensuring the proper use of data. To effectively
manage data, clear guidelines and procedures must be in place for those responsible for
handling them. Proper governance ensures that data are properly managed, and that rights
permissions and access are granted. Without these structures and processes, data can be
lost or misused, affecting an organization’s overall performance. Regular assessments
and audits must be conducted to ensure data quality. Do not forget to conduct these
examinations sporadically. Enrichment tools, coupled with data cleansing and validation,
should be used. Traceability solutions and data lineages are means of implementing change.
Machine learning and AI-based solutions offer powerful tools for improving data quality;
therefore, their adoption is highly recommended. The best data quality practices should
be taught to employees through training sessions. To enhance the quality of the data,
alliances can be formed with colleagues and associates. Organizations can improve their AI
performance and reliability by embracing these best practices, which in turn will increase
the quality of the data used. Implementing data governance and best practices across
various dimensions is necessary to unlock the full potential of AI and to drive better
outcomes. Organizations must address data-quality challenges to ensure the successful
development and deployment of AI systems, as evidenced by our analysis. Data quality
plays a critical role and should be a top priority for organizations that utilize AI.

4. Discussion

The comprehensive analysis of the data quality challenges for artificial intelligence
presented in this article underscores the importance of understanding and addressing data
quality issues in the development and deployment of AI systems. In this discussion section,
we emphasize the broader implications of our findings, highlight the limitations of the
current study, and suggest future research directions.
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4.1. Broader Implications

Our analysis has several broader implications for organizations, policymakers, and
researchers involved in AI development and deployment. First, by identifying and un-
derstanding the key dimensions of data quality and their implications for AI systems,
organizations can prioritize their efforts to address data quality challenges, ensuring that
their AI systems deliver accurate, reliable, and unbiased results. Second, our analysis
highlights the significance of data governance in maintaining and improving data quality,
emphasizing the need for organizations to invest in robust data governance structures and
processes. Finally, the best practices identified in this study can serve as a practical guide
for organizations seeking to enhance their data quality management efforts and optimize
the performance and reliability of AI systems.

4.2. Limitations

Despite providing a comprehensive analysis of the data quality challenges for AI, this
study had several limitations. First, the scope of our analysis primarily focused on the
dimensions of data quality, data governance, and best practices. Additional factors, such
as organizational culture and technical infrastructure, could impact data quality and AI
performance. Second, although we have drawn upon a wide range of literature sources,
there may be other relevant publications that were not considered in this study. Finally, our
findings were largely based on a synthesis of the existing literature, and future empirical
research is needed to further validate and expand these findings.

4.3. Real-Time Time Environment Challenges

Real-time data pose unique challenges in AI applications because of the need to
process and analyze data in near real-time or with minimal delays. Some key challenges
associated with real-time data in AI applications are as follows:

(a) Real-Time Data Volume and Velocity: Real-time data often come in high volumes and
at high velocities, requiring efficient processing and analysis techniques. AI systems
must handle incoming data streams and make timely decisions or predictions based
on these data.

(b) Latency and Response Times: Real-time applications demand low latency and fast
response times. AI models must be designed and optimized to provide quick insights
and actions in real-time scenarios. High computational requirements and complex
algorithms can hinder real-time performance.

(c) Real-Time Data Quality and Noise: Real-time data can be noisy, incomplete, or contain
outliers. Ensuring data quality becomes challenging as there is limited time for data
validation and cleaning. AI models must be robust in order to handle such noisy data
and make accurate predictions or decisions.

(d) Scalability and Resource Constraints: Real-time AI applications often require scalabil-
ity to handle large volumes of incoming data. Scaling AI models and infrastructure to
handle the increased workload can be challenging considering resource constraints
such as computing power, memory, and network bandwidth.

(e) Data Synchronization: Real-time data may come from multiple sources and must be
synchronized for accurate analysis and decision-making. Aligning and integrating
data streams from various sources in real time can be complex, particularly when
dealing with data in different formats or time zones.

(f) Real-Time Model Training and Adaptation: Updating or retraining AI models in
real-time can be challenging. Continuous learning and model adaptation may be
required to incorporate new data and adjust model parameters to changing conditions.
Balancing the model stability with the need for real-time updates is crucial.

(g) Real-Time Analytics and Visualization: Effectively analyzing and visualizing real-time
data to extract meaningful insights and support decision making is a challenge. Real-
time analytics techniques and interactive visualization tools are required to process
and present data in a timely and actionable manner.



Appl. Sci. 2023, 13, 7082 26 of 33

Addressing these challenges requires the careful design, optimization, and integration
of AI algorithms, infrastructure, and data-processing pipelines. It often involves a combi-
nation of efficient data streaming techniques, distributed computing, real-time analytics
frameworks, and scalable AI architectures to enable real-time decision making and insights.

4.4. Future Research Directions

Based on the limitations and findings of this study, we suggest several directions for
future research:

(a) Investigate the role of organizational culture, leadership, and technical infrastructure
in ensuring data quality for AI systems.

(b) Conduct empirical research to assess the effectiveness of different data governance
practices and data quality management strategies in real-world AI applications.

(c) Examine the relationship between specific dimensions of data quality and AI perfor-
mance across different industries and use cases.

(d) Develop novel AI and machine learning techniques to automatically detect, diagnose,
and resolve data quality issues.

(e) Explore the ethical and legal implications of data quality challenges in AI, particularly
in relation to privacy, transparency, and fairness.

By addressing these future research directions, we can further deepen our understand-
ing of the challenges of data quality for AI, develop more effective strategies to overcome
these challenges, and harness the full potential of AI technologies.

5. Conclusions

This work addresses the challenges surrounding data for AI technology and appli-
cations, which businesses and organizations are recommended to develop strategies and
frameworks to meet, and handles these challenges in the following different dimensions.
(1) Data Quality covers accuracy, completeness, consistency, timeliness, integrity, rele-
vance, data collection, pre-processing, management, data governance, data labeling, etc.
(2) Data Volume covers data deluge, storage challenges, processing challenges, data manage-
ment challenges, data heterogeneity, data privacy and security, bias and representativeness,
data access, etc. (3) Data Privacy and Security cover inference attacks, differential privacy,
adversarial attacks, data poisoning, model and data tampering, privacy-preserving AI
techniques, robustness and adversarial training, monitoring and anomaly detection, and
compliance with data protection regulations. (4) Bias and Fairness cover measurement
bias, label bias, sampling bias, aggregation bias, confirmation bias, temporal bias, feature
selection bias, etc. (5) Interpretability and Explainability cover local explanations, visualiza-
tion techniques, trade-offs between performance and interpretability, evaluation metrics,
domain-specific solutions, and ethical considerations. (6) Technical Expertise covers com-
puter science and computer engineering, data science and analytics, human–computer
interactions, ethics, philosophy and policy, cybersecurity and privacy, etc. Technical ex-
pertise in AI is essential to address the challenges posed by the rapid development of AI
technologies. By fostering interdisciplinary collaboration, investing in education and train-
ing, and promoting the development of ethical, secure, and human-centered AI systems,
researchers and policymakers can overcome these challenges and pave the way for further
advancements in AI.
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B.; et al. Towards federated learning at scale: System design. In Proceedings of the 2nd Workshop on Systems for ML at Scale,
2019; pp. 1–6.

118. Liu, P.; Wang, L.; Ranjan, R.; He, G.; Zhao, L. A Survey on Active Deep Learning: From Model Driven to Data Driven. ACM
Comput. Surv. 2022, 54, 1–34. [CrossRef]

119. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In
Proceedings of the 35th International Conference on Machine Learning, Vienna, Austria, 25–31 July 2018; pp. 297–306.

120. Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Trans. Neural Netw. Learn.
Syst. 2019, 30, 2805–2824. [CrossRef] [PubMed]

121. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; Cristofaro, E.D.; Ross, G.; Stringhini, G. Mamadroid: Detecting android malware by
building markov chains of behavioral models (extended version). ACM Trans. Priv. Secur. (TOPS) 2019, 22, 1–34. [CrossRef]

https://www.usenix.org/system/files/sec19-carlini.pdf
https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1145/3243734.3243835
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_tramer.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_tramer.pdf
https://doi.org/10.1145/3460120.3485368
https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/3419764
https://doi.org/10.1145/3510414
https://doi.org/10.1109/TNNLS.2018.2886017
https://www.ncbi.nlm.nih.gov/pubmed/30640631
https://doi.org/10.1145/3313391


Appl. Sci. 2023, 13, 7082 31 of 33

122. Ramirez, M.A.; Kim, S.K.; Hamadi, H.A.; Damiani, E.; Byon, Y.J.; Kim, T.Y.; Cho, C.S.; Yeun, C.Y. Poisoning attacks and defenses
on artificial intelligence: A survey. arXiv 2022, arXiv:2202.10276.

123. Polonetsky, J.; Tene, O. GDPR and AI: Friends or Foes? IEEE Secur. Priv. 2018, 16, 26–33.
124. Barocas, S.; Hardt, M.; Narayanan, A. Fairness and Machine Learning. 2019. Available online: FairMLBook.org (accessed on

20 May 2023).
125. Dastin, J. Amazon Scraps Secret AI Recruiting Tool That Showed Bias against Women; Reuters: London, UK, 2018.
126. Simonite, T. When It Comes to Gorillas, Google Photos Remains Blind; Wired: San Francisco, CA, USA, 2018.
127. Vincent, J. Twitter Taught Microsoft’s AI Chatbot to Be a Racist in Less Than a Day; The Verge: Sant Monica, CA, USA, 2016.
128. Harding, S. Apple’s Credit Card Gender Bias Draws Regulatory Scrutiny; Forbes: New York, NY, USA, 2019.
129. Angwin, J.; Larson, J.; Mattu, S.; Kirchner, L. Machine Bias: There’s Software Used Across the Country to Predict Future Criminals. And

It’s Biased against Blacks; ProPublica: New York, NY, USA, 2016.
130. Olteanu, A.; Castillo, C.; Diaz, F.; Kıcıman, E. Social data: Biases, methodological pitfalls, and ethical boundaries. Front. Big Data

Sci. 2019, 2, 13. [CrossRef] [PubMed]
131. Sun, T.; Gaut, A.; Tang, S.; Huang, Y.; ElSherief, M.; Zhao, J.; Wang, W.Y. Mitigating gender bias in natural language processing:

Literature review. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
28 July–2 August 2019; pp. 1630–1640.

132. Torralba, A.; Efros, A.A. Unbiased look at dataset bias. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Springs, CO, USA, 20–25 June 2011; pp. 1521–1528.

133. Zhao, Z.; Wallace, B.C.; Jang, E.; Choi, Y.; Lease, M. Combating human trafficking: A survey of AI techniques and opportunities
for technology-enabled counter-trafficking. ACM Comput. Surv. 2021, 54, 1–35.

134. Nickerson, R.S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 1998, 2, 175–220. [CrossRef]
135. Krueger, J.I.; Funder, D.C. Towards a balanced social psychology: Causes, consequences, and cures for the problem-seeking

approach to social behavior and cognition. Behav. Brain Sci. 2004, 27, 313–327. [CrossRef] [PubMed]
136. Gupta, P.; Raghavan, H. Temporal bias in machine learning. arXiv 2021, arXiv:2104.12843.
137. Gutierrez, M.; Serrano-Guerrero, J. Bias-aware feature selection in machine learning. arXiv 2020, arXiv:2007.07956.
138. Kahneman, D. Thinking, Fast and Slow; Farrar, Straus, and Giroux: New York, NY, USA, 2011.
139. Lee, J.D.; See, K.A. Trust in automation: Designing for appropriate reliance. Hum. Factors 2004, 46, 50–80. [CrossRef] [PubMed]
140. Buolamwini, J.; Gebru, T. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings

of the Conference on Fairness, Accountability and Transparency, New York, NY, USA, 23–24 February 2018; pp. 77–91.
141. Crawford, K. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence; Yale University Press: New Haven, CT,

USA, 2021.
142. Kriebitz, A.; Lütge, C. Artificial intelligence and human rights: A business ethical assessment. Bus. Hum. Rights J. 2020, 5, 84–104.

[CrossRef]
143. Pleiss, G.; Raghavan, M.; Wu, F.; Kleinberg, J.; Weinberger, K.Q. On fairness and calibration. Adv. Neural Inf. Process. Syst. 2020,

33, 2–4.
144. Zhao, J.; Wang, T.; Yatskar, M.; Ordonez, V.; Chang, K.W. Gender bias in contextualized word embeddings. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 629–634.

145. Bellamy, R.K.E.; Dey, K.; Hind, M.; Hoffman, S.C.; Houde, S.; Kannan, K.; Nagar, S. AI Fairness 360: An extensible toolkit for
detecting, understanding, and mitigating unwanted algorithmic bias. IBM J. Res. Dev. 2018, 63, 4.

146. Verma, S.; Rubin, J. Fairness definitions explained. In Proceedings of the International Workshop on Software Fairness, Gothen-
burg, Sweden, 29 May 2018; pp. 1–7.

147. Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; Zemel, R. Fairness through awareness. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, Cambridge, MA, USA, 8–10 January 2012; pp. 214–226.

148. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Herrera, F. Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]

149. Hao, K. This Is How AI Bias Really Happens—And Why It’s So Hard to Fix; MIT Technology Review; MIT Press: Cambridge, MA,
USA, 2020.

150. Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6,
52138–52160. [CrossRef]

151. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
152. Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability

of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89.

153. Bhatt, U.; Xiang, A.; Sharma, S.; Weller, A.; Taly, A.; Jia, Y.; Eckersley, P. Explainable machine learning in deployment. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020;
pp. 648–657.

FairMLBook.org
https://doi.org/10.3389/fdata.2019.00013
https://www.ncbi.nlm.nih.gov/pubmed/33693336
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1017/S0140525X04000081
https://www.ncbi.nlm.nih.gov/pubmed/15736870
https://doi.org/10.1518/hfes.46.1.50.30392
https://www.ncbi.nlm.nih.gov/pubmed/15151155
https://doi.org/10.1017/bhj.2019.28
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1109/ACCESS.2018.2870052


Appl. Sci. 2023, 13, 7082 32 of 33

154. Wachter, S.; Mittelstadt, B.; Russell, C. Counterfactual explanations without opening the black box: Automated decisions and the
GDPR. Harv. J. Law Technol. 2017, 31, 841–887. [CrossRef]

155. Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [CrossRef]
156. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box

models. ACM Comput. Surv. (CSUR) 2018, 51, 1–42. [CrossRef]
157. Rudin, C. Stop explaining black-box machine learning models for high stakes decisions and use interpretable models instead.

Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef] [PubMed]
158. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

159. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774.
160. Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
161. Carter, S.; Armstrong, Z.; Schönberger, L.; Olah, C. Activation atlases: Unsupervised exploration of high-dimensional model

internals. Distill 2019, 4, e00020.
162. Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.
163. Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial intelligence in medicine.

Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [CrossRef]
164. Mittelstadt, B.; Russell, C.; Wachter, S. Explaining explanations in AI. In Proceedings of the Conference on Fairness, Accountability,

and Transparency, Atlanta, GA, USA, 29–31 January 2019; pp. 279–288.
165. Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Langhans, S.D. The role of artificial intelligence in

achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [CrossRef]
166. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Agarwal, S. Language models are few-shot learners.

arXiv 2020, arXiv:2005.14165.
167. Knight, W. The Future of AI Depends on a Huge Workforce of Human Teachers; Wired: San Francisco, CA, USA, 2021.
168. Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications

of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [CrossRef]
169. Wang, S.; Fisch, A.; Oh, J.; Liang, P. Data Programming for Learning with Noisy Labels. Adv. Neural Inf. Process. Syst. 2020, 33,

14883–14894.
170. Crawford, K.; Calo, R. There is a blind spot in AI research. Nature 2021, 538, 311–313. [CrossRef]
171. McDermid, J.A.; Jia, Y.; Porter, Z.; Habli, I. Artificial intelligence explainability: The technical and ethical dimensions. Philos. Trans.

R. Soc. A 2021, 379, 20200363. [CrossRef] [PubMed]
172. Whittlestone, J.; Nyrup, R.; Alexandrova, A.; Dihal, K.; Cave, S. Ethical and Societal Implications of Algorithms, Data, and Artificial

Intelligence: A Roadmap for Research; Nuffield Foundation: London, UK, 2019.
173. Bughin, J.; Hazan, E.; Ramaswamy, S.; Chui, M.; Allas, T.; Dahlström, P.; Trench, M. Skill Shift: Automation and the Future of the

Workforce; McKinsey Global Institute: Washington, DC, USA, 2018.
174. World Economic Forum. Jobs of Tomorrow: Mapping Opportunity in the New Economy. 2021. Available online:

http://www3.weforum.org/docs/WEF_Jobs_of_Tomorrow_2020.pdf (accessed on 12 February 2023).
175. Bessen, J.E.; Impink, S.M.; Reichensperger, L.; Seamans, R. The Business of AI Startups; NBER Working Paper No. 24255; Boston

University School of Law: Boston, MA, USA, 2019.
176. Miller, T. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 2019, 267, 1–38. [CrossRef]
177. Xu, H.; Gu, L.; Choi, E.; Zhang, Y. Secure and privacy-preserving machine learning: A survey. Front. Comput. Sci. 2021, 15, 1–38.
178. Yang, G.Z.; Bellingham, J.; Dupont, P.E.; Fischer, P.; Floridi, L.; Full, R.; Wood, R. The grand challenges of Science Robotics.

Sci. Robot. 2020, 3, 7650. [CrossRef] [PubMed]
179. Holzinger, A.; Keiblinger, K.; Holub, P.; Zatloukal, K.; Müller, H. AI for life: Trends in artificial intelligence for biotechnology.

New Biotechnol. 2023, 74, 16–24. [CrossRef]
180. Jawad, K.; Mahto, R.; Das, A.; Ahmed, S.U.; Aziz, R.M.; Kumar, P. Novel Cuckoo Search-Based Metaheuristic Approach for Deep

Learning Prediction of Depression. Appl. Sci. 2023, 13, 5322. [CrossRef]
181. Yaqoob, A.; Aziz, R.M.; Verma, N.K.; Lalwani, P.; Makrariya, A.; Kumar, P. A review on nature-inspired algorithms for cancer

disease prediction and classification. Mathematics 2023, 11, 1081. [CrossRef]
182. Aziz, R.M.; Mahto, R.; Goel, K.; Das, A.; Kumar, P.; Saxena, A. Modified Genetic Algorithm with Deep Learning for Fraud

Transactions of Ethereum Smart Contract. Appl. Sci. 2023, 13, 697. [CrossRef]
183. Aziz, R.M.; Desai, N.P.; Baluch, M.F. Computer vision model with novel cuckoo search based deep learning approach for

classification of fish image. Multimed. Tools Appl. 2023, 82, 3677–3696. [CrossRef]
184. Aziz, R.M.; Baluch, M.F.; Patel, S.; Kumar, P. A Machine Learning based Approach to Detect the Ethereum Fraud Transactions

with Limited Attributes. Karbala Int. J. Mod. Sci. 2022, 8, 13. [CrossRef]
185. Thayyib, P.V.; Mamilla, R.; Khan, M.; Fatima, H.; Asim, M.; Anwar, I.; Shamsudheen, M.K.; Khan, M.A. State-of-the-Art of

Artificial Intelligence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary. Sustainability 2023,
15, 4026. [CrossRef]

https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1038/s42256-019-0088-2
https://doi.org/10.1145/3236009
https://doi.org/10.1038/s42256-019-0048-x
https://www.ncbi.nlm.nih.gov/pubmed/35603010
https://doi.org/10.1002/widm.1312
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.1016/j.bushor.2018.08.004
https://doi.org/10.1038/538311a
https://doi.org/10.1098/rsta.2020.0363
https://www.ncbi.nlm.nih.gov/pubmed/34398656
http://www3.weforum.org/docs/WEF_Jobs_of_Tomorrow_2020.pdf
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1126/scirobotics.aar7650
https://www.ncbi.nlm.nih.gov/pubmed/33141701
https://doi.org/10.1016/j.nbt.2023.02.001
https://doi.org/10.3390/app13095322
https://doi.org/10.3390/math11051081
https://doi.org/10.3390/app13020697
https://doi.org/10.1007/s11042-022-13437-3
https://doi.org/10.33640/2405-609X.3229
https://doi.org/10.3390/su15054026


Appl. Sci. 2023, 13, 7082 33 of 33

186. Saghiri, A.M.; Vahidipour, S.M.; Jabbarpour, M.R.; Sookhak, M.; Forestiero, A. A Survey of Artificial Intelligence Challenges:
Analyzing the Definitions, Relationships, and Evolutions. Appl. Sci. 2022, 12, 4054. [CrossRef]

187. Serey, J.; Quezada, L.; Alfaro, M.; Fuertes, G.; Vargas, M.; Ternero, R.; Sabattin, J.; Duran, C.; Gutierrez, S. Artificial Intelligence
Methodologies for Data Management. Symmetry 2021, 13, 2040. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app12084054
https://doi.org/10.3390/sym13112040

	Introduction 
	Materials and Methods 
	Data for AI 
	Data Learning Approaches 
	Data-Centric and Data-Driven AI 

	Dimensions of Data Challenges for AI 
	Dimension I: Data Quality 
	Dimension II: Data Volume 
	Dimension III: Data Privacy and Security 
	Dimension IV: Bias and Fairness 
	Dimension V: Interpretability and Explainability 
	Dimension VI: Technical Expertise 


	Results 
	Dimension of Data Quality and Implication for AI systems 
	The Role of Data Governance in Ensuring Data Quality 
	Best Practices to Ensure Data Quality for AI 

	Discussion 
	Broader Implications 
	Limitations 
	Real-Time Time Environment Challenges 
	Future Research Directions 

	Conclusions 
	References

