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A B S T R A C T   

Machine Learning (ML) approaches are increasingly being investigated as an alternative to 
Random Utility Models (RUMs) for modelling passenger mode choice. These approaches have the 
potential to provide valuable insights into choice modelling research questions. However, the 
research and the methodologies used are fragmented. Whilst systematic reviews on RUMs for 
mode choice prediction have long existed and the methods have been well scrutinised for mode 
choice prediction, the same is not true for ML models. To address this need, this paper conducts a 
systematic review of ML methodologies for modelling passenger mode choice. The review ana
lyses the methodologies employed within each study to (a) establish the state-of-research 
frameworks for ML mode choice modelling and (b) identify and quantify the prevalence of 
methodological limitations in previous studies. 

A comprehensive search methodology across the three largest online publication databases is 
used to identify 574 unique records. These are screened for relevance, leaving 70 peer-reviewed 
articles containing 73 primary studies for data extraction. The studies are reviewed in detail to 
extract 17 attributes covering five research questions, concerning (i) classification techniques, (ii) 
datasets, (iii) performance estimation, (iv) hyper-parameter selection, and (v) model analysis. 

The review identifies ten common methodological limitations. Five are determined to be 
methodological pitfalls, which are likely to introduce bias in the estimation of model perfor
mance. The remaining five are identified as areas for improvement, which may limit the achieved 
performance of the models considered. A further six general limitations are identified, which 
highlight gaps in knowledge for future work.   

1. Introduction 

Solutions used both in industry and academic research for modelling passenger mode choice have traditionally relied almost 
exclusively on econometric Discrete Choice Models (DCMs) based on the random utility framework (McFadden, 1981). However, there 
have been two key recent drivers which have resulted in researchers exploring alternative approaches. Firstly, the adoption of new 
transportation-related technologies has driven a step change in the availability of data on passenger movements of several orders of 
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magnitude. Secondly, there have recently been significant breakthroughs in Machine Learning (ML) research, which have resulted in 
numerous success stories of ML applications in other similar tasks. 

These drivers have resulted in a number of recent research applications of ML techniques to the mode choice problem. The 
application of ML has the potential to provide valuable new insights into mode choice modelling research questions. However, the 
existing research is fragmented, and there have been few studies which comprehensively compare ML techniques with each other and 
with Random Utility Models (RUMs). Additionally, whilst systematic reviews on RUMs for mode choice prediction have long existed, 
and the methods have been well scrutinised, the same is not at all true for ML models. 

List of acronyms 

AB AdaBoost. 
ABM Agent Based Model. 
AI Artificial Intelligence. 
AMPCA Arithmetic Mean Probability of Correct Assignment. 
ANN Artificial Neural Network. 
API Application Programming Interface. 
ASC Alternative Specific Constant. 
BIC Bayesian Information Criterion. 
BL Bayesian Learner. 
BN Bayesian Network. 
CART Classification and Regression Trees. 
CEL Cross-Entropy Loss. 
CNL Cross-Nested Logit. 
DCM Discrete Choice Model. 
DT Decision Tree. 
EL Ensemble Learning. 
ELM Extreme Learning Machine. 
FFNN Feed-Forward Neural Network. 
FL Fuzzy Logic. 
GB Gradient Boosting. 
GBDT Gradient Boosting Decision Trees. 
GPS Global Positioning System. 
IVTT In-Vehicle Travel Time. 
k-NN k-Nearest Neighbours. 
LOS Level of Service. 
LR Logistic Regression. 
ML Machine Learning. 
MLP Multi-Layer Perceptron. 
MSE Mean Squared Error. 
NB Naive Bayes. 
NL Nested Logit. 
O-D Origin-Destination. 
OOB Out-Of-Bootstrap. 
OVTT Out-of-Vehicle Travel Time. 
PNN Probabilistic Neural Network. 
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses. 
PT Public Transport. 
RBF Radial Basis Function. 
RBFNN Radial Basis Function Neural Network. 
RBML Rule-Based Machine Learning. 
RF Random Forest. 
ROC Receiver Operating Characteristic. 
RP Revealed Preference. 
RSM Rough Set Model. 
RUM Random Utility Model. 
SP Stated Preference. 
SVM Support Vector Machine. 
VOC Vehicle Operating Cost. 
VoT Value of Time.  
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To address these limitations, this paper conducts a systematic review of ML machine learning approaches for modelling passenger 
mode choice. The paper specifically focuses on classification approaches, where a labelled dataset is used to estimate an individual 
mode choice model. The review focuses on the methodologies employed within each study, including the classification algorithms, 
datasets, model validation, model optimisation, and model analysis. The review aims to (a) establish the state-of-research frameworks 
for ML mode choice modelling and (b) identify and quantify the prevalence of methodological limitations in previous studies. Whilst 
this review is focused on passenger mode choice literature, the findings are relevant to other choice modelling domains. 

2. Machine learning for mode choice prediction 

The predominant approach used in industry and academic research for modelling passenger mode choice are Random Utility 
Models (RUMs) (McFadden, 1981). These models rely on functions of the input variables, called utility specifications, for each option 
(mode) in the choice-set. In a logit model, the utilities (the output values of the utility specifications) are then passed through a logistic 
function to generate choice probabilities for each option in each considered choice situation. Other model structures, such as the 
Nested Logit (NL) and Cross-Nested Logit (CNL), allow for these probabilities to be calculated given correlations among the options in 
the choice-set (Ben-Akiva and Lerman, 1985, Chapter 10). The parameter values in the utility specification are estimated using 
maximum likelihood estimation, in order to maximise the joint likelihood of the training data given the model. 

The utility specifications in the model are defined by the modeller prior to fitting the model. This allows the modeller to incorporate 
established behavioural theory and expert knowledge into the model. The estimated parameter values can then be used to test hy
pothesis about the consistency of RUM predictions with expected behaviour. These parameters can also be used to extract key 
behavioural indicators, such as the elasticities and Value of Time (VoT) (Ben-Akiva and Lerman, 1985, Chapter 5). 

The nature of all of the relationships between the input variables and the utilities must be defined in the utility specifications. This 
includes all non-linear transformations of variables and any interactions between them. As the utility functions are specified in advance 
of estimating the model, this means that the modeller must hypothesise and test these relationships manually. 

In ML terminology, an RUM can be considered as a supervised probabilistic classifier; the aim of the model is to predict the probability 
of an individual choosing each mode (i.e. the classes), given a set of features (variables) describing the choice situation. The modeller 
has access to a finite dataset of choice situations alongside the ground-truth class labels (the option chosen) to train the model. This task 
therefore appears to be a natural application for ML classification algorithms, which have shown a great deal of success with similar 
problems in other research domains, such as image recognition, text classification, and disease detection (Hastie et al., 2008). 

Rather than relying on predefined utility specifications, ML classification algorithms instead model the relationship between input 
features and the class labels directly from the data, without input from the modeller. The majority of ML classifiers (excluding linear 
models) have the ability to automatically capture non-linear relationships between the inputs and outputs. The added flexibility in ML 
classifiers compared to RUMs may allow the model to generalise to relationships not previously considered and therefore which would 
not have been identified using manually defined utility specifications. 

The greater flexibility of ML classifiers presents a much higher propensity for a model to overfit to noise in the training data. 
Additionally, as there is no underlying behavioural model in an ML model, it is not straightforward to check for or ensure for 
behavioural consistency of the model predictions, or extract behavioural indicators from the model. 

The generalisation error measures the ability of a classifier to accurately predict class probabilities for previously unseen data. In ML 
applications, this is typically estimated by validating model on separate out-of-sample data, unseen by the model during training. The 
model validation ensures that the model has successfully generalised to valid relationships in the data, without fitting to noise in the 
data. There is therefore a balance between underfitting and overfitting, known as the bias-variance trade-off (Hastie et al., 2008). If a 
model has high bias it is not flexible enough to identify valid correlations that are present in the real-world test data (underfitting). If a 
model has high variance it is too flexible and is replicating noise in the data without generalising to valid correlations between the input 
features and class labels (overfitting). 

The flexibility of an algorithm to fit to the data when training a model is regularised using the algorithm’s hyper-parameters. These 
are parameters of the algorithm, such as the maximum permissible number of splits in a decision tree, which impact the bias and 
variance of the fitted model (see Section 2.1). Model performance is highly dependent on chosen hyper-parameter values, and so it is 
important to select appropriate values for both the task and data (Hoos et al., 2014). 

In order for the model validation to be a true estimate of the generalisation error, the test-set must be truly separate from the 
training data and not seen by the model at any stage prior to final testing. Incorrect validation approaches can result in data-leakage, 
where the model is somehow exposed to the test-set (potentially including the ground-truth labels) before final testing. This can allow 
the classifier to fit to the test-set, therefore resulting in the test-error underestimating the generalisation error that would be achieved 
on truly unseen data. Examples of validation schemes that result in data-leakage include regularising the model based on test per
formance (e.g. during hyper-parameter selection, see Section 4.4) or through shared information between the train and test-sets (e.g. 
through inappropriate sampling of hierarchical data, see Section 4.3). 

ML classification investigations can be broken into two main processes; model development and model evaluation. In the model 
development process, the modeller tries to develop a model with the aim of minimising its generalisation error. This includes hyper- 
parameter selection, feature processing, and algorithm selection/development. In the model evaluation process, the modeller then 
estimates the generalisation error of the model, typically by testing on an out-of-sample test-set. 

If the model development in a study is not appropriate (e.g. if appropriate hyper-parameter selection is not used) the model will 
achieve a higher generalisation error than is possible for that algorithm. This means differences in model performance may be due to 
differences in the model development process, and not to do with the potential performance of the algorithm itself. As such, it is 
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important to consider the model development process when making comparisons between the relative performance of algorithms for a 
given task. Conversely, if the model evaluation process used is inappropriate (e.g. if there is data-leakage from the test-set during 
model development) than the estimate of generalisation error will be biased. These issues therefore represent pitfalls that will result in 
unreliable evaluation of model performance. As such, it is important to consider the model evaluation process for any evaluation of 
model or algorithm performance for a task. 

As there is a lot of overlap in the theory and practice in the fields of RUMs and ML, there are a substantial number of equivalent or 
nearly-equivalent terms between them. As this paper reviews ML methodologies, the ML terminologies have been preferred. For clarity 
of the associated material, Table 1 some of the equivalent and nearly equivalent terms used in this paper. 

2.1. Machine learning classification algorithms 

In order to provide an understanding of the techniques used, the following sections give an overview of five classes of supervised 
classification algorithm which have previously been used to investigate mode choice, including introducing their main hyper- 
parameters: Logistic Regression (LR), Artificial Neural Networks (ANNs), Decision Trees (DTs), Ensemble Learning (EL), and Sup
port Vector Machines (SVMs). 

Logistic Regression The Logistic Regression (LR) classifier uses the same underlying mathematical formulation as an RUM, with 
linear functions of the input features passed through the softmax (logistic) function to generate class probabilities. The distinction 
between the two approaches in that in an RUM regularisation is applied manually through the utility functions, whereas in the ML LR 
approach only automatic regularisation (or no regularisation) is applied. 

Two primary types of regularisation are used in ML LR models. L1 regularisation (also known as lasso regularisation) penalises the 
model for the sum of absolute values of the weights. Conversely, L2 regularisation (also known as ridge regularisation) penalises the 
model for the sum of squares of the weights. The amount of regularisation is controlled using the C hyper-parameter, with a larger 
value of C indicating more regularisation (higher penalty for the values of the weights). 

For supervised probabilistic classification using labelled data, intercepts (or Alternative Specific Constants(ASCs) for RUMs) should 
be included in the model to ensure representative class probabilities. For RUMs, one ASC is typically normalised to zero as an addi
tional constraint to allow for an identifiable solution (Bierlaire et al., 1997). This is not needed in LR models with L1 or L2 regular
isation, where the penalty term ensures the solution is uniquely identifiable. 

Artificial Neural Networks Artificial Neural Network (ANN) is a term used to cover a family of classifiers which mimic the 
network structure of the brain. Whilst there are a huge variety of possible ANN structures for dealing with different input data types (e. 
g. images, time-series, natural language etc), mode choice applications have typically relied on the Feed-Forward Neural Network 
(FFNN) (also known as the Multi-Layer Perceptron (MLP)) (Svozil et al., 1997). 

A FFNN consists multiple layers of nodes (neurons), including (i) an input layer, which passes the feature values to the network; (ii) 
an output layer, which outputs the predicted values from the network; and (iii) any number of hidden layers. For probabilistic clas
sification, the number of nodes in the input and output layers is fixed by the number of features and classes in the data respectively. The 
number of hidden layers and number of nodes in each hidden layer are then hyper-parameters which describe the structure of the 
network. 

Each node has an activation function, which determines the output of that node from the weighted sum of its inputs. This can also 
be considered as a hyper-parameter. There are many possible activation functions used in practice, including linear, sigmoid, tanh, 
softplus, softsign, ReLU (rectified linear unit), ELU (exponential linear unit), and SELU (scaled exponential linear unit). 

As with RUMs and LR models, the output values of the network are passed through the softmax function to generate classification 
probabilities. The weights (parameters) for each link in the network are fitted to the input data (equivalent to estimating an RUM). 

FFNNs are most commonly trained using mini-batch gradient descent. This algorithm splits the input data into small batches. The 
network weights are then updated iteratively on the individual batches. Each time the model sees all of the data once is termed an 
epoch. The number of epochs can be set to regularise the model and limit overfitting. This hyper-parameter is often set automatically to 
limit overfitting by applying a stopping criterion based on out-of-sample predictive performance. 

In a fully connected network, every node in one layer is linked to every node in the next layer. Further regularisation can be applied 
using the dropout hyper-parameter, which specifies a proportion of the neurons to be dropped randomly from the network for each 

Table 1 
Equivalent and nearly-equivalent terms between random utility and ML models. ASC =Alternative Specific Constant (ASC).  

Random utility Machine 
learning 

Notes 

Attribute Feature Variables of the choice-set. 
Covariate Feature Socio-economic variables of the individual. No distinction is made between attributes and socio-economic 

covariates in ML classifiers. 
ASC Intercept/bias Used to ensure representative class proportions for logit models/ANNs estimated on labelled data 
Parameter Weights Referred to as coefficients in linear utility functions in RUMs. Weights are used only in parametric ML models 

(LR and ANNs). 
Estimate Train Both are often referred to as fitting the model. 
Logistic 

function 
Softmax Referred to as the sigmoid function in the binary case.  
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mini-batch of data (Srivastava, Hinton, et al., 2014). 
Decision Trees Decision Trees (DTs) (or Classification and Regression Trees (CART)) are classifiers which sort data into groups 

using a set of sequential splits in a tree-like structure (Breiman, 2017). The most commonly used Decision Trees (DTs) are fitted using 
recursive binary splits, with each split chosen to result in the greatest reduction in the randomness of the data at that point (i.e. it is a 
greedy algorithm). Two metrics can be used to measure how shuffled the data are, Gini impurity and entropy. 

To calculate each split, the data at the selected node are sorted according to each feature, and each possible binary split point (less/ 
greater than a certain value) is tested for each feature. The split point which results in the greatest reduction in the impurity or entropy 
(across all features) of the data is then selected, resulting in two new child nodes. The same algorithm can then be applied recursively to 
each child node. This process is repeated until a stopping condition (set using the hyper-parameters) is met. For example, the maximum 
depth specifies the maximum number of sequential splits which can be applied along a branch, the minimum leaf size specifies the 
minimum size both nodes of a split must have in order for a split to take place, and the minimum split size specifies the minimum number 
of samples in a node for a split to be considered at that node. 

Decision trees can only generate discrete predictions (either classes or finite regression values), and so are not suitable for prob
abilistic mode choice prediction when used independently. However, they can be combined in ensembles to generate probabilistic 
predictions. 

Ensemble Learning Ensemble Learning (EL) algorithms combine several individual predictive models (called estimators) in an 
ensemble to improve the quality of predictions. Provided the estimators make errors independently (i.e. the learners are uncorrelated), 
and are more likely to be right than wrong, then combining them in an ensemble reduces their individual uncertainty. 

DTs are the predominantly used estimators for (EL). DTs have high variance, making them highly unstable (small changes in the 
input result in large differences between classifiers). As such, it is relatively easy to train uncorrelated DTs compared to more stable 
classifiers (e.g. LR). In addition, DTs are algorithmically simple to fit and obtain predictions from. This means that large ensembles of 
DTs can fit and predict in reasonable time. 

Several meta-algorithms can be used to combine estimators. This includes algorithms where estimators are trained on the data (or 
samples of the data) in parallel, e.g. bootstrap aggregating (bagging) and Random Forest (RF), as well as algorithms where the weak 
learners are estimated sequentially, e.g. AdaBoost (AB) and Gradient Boosting (GB). For ensembles of discrete classifiers, probability- 
like values can be outputted by calculating the proportions of each class prediction across the estimators in the ensemble. For Gradient 
Boosting Decision Trees (GBDT), the DTs in the ensemble are trained to output discrete regression values. These values are then 
summed across the ensemble and passed through the softmax function to output choice probabilities. 

As well as the hyper-parameters of the weak learners themselves, the principle hyper-parameter of EL meta-algorithms is the 
number of estimators in the ensemble. In parallel approaches, this number must be specified. In sequential approaches, a stopping 
criterion can be applied based on out-of-sample predictive performance (similar to the number of epochs in ANNs). 

Support Vector Machine The Support Vector Machine (SVM) algorithm makes use of a kernel to transform the data into a high- 
dimension space. The algorithm then finds the optimal linear decision surface (or hyper-plane) in the transformed space which divides 
the data into two classes (Cortes and Vapnik, 1995). 

There are multiple kernels which can be used to transform the data, including linear (no transformation), polynomial, Radial Basis 
Function (RBF) (or Gaussian), and sigmoid. 

For linearly-separable data (within the transformed space), the optimal hyperplane is the one that exactly divides the data without 
misclassification whilst maximising the possible margin. The margin is defined as the perpendicular distance between the hyperplane 
and the nearest data points (these data points are called support vectors). For complex, real-world examples, the input data are not 
normally linearly-separable, even within the transformed space. As such, there is a balance between the width of the hyperplane and 
the number of misclassifications of the training data. This is controlled using the regularisation parameter (C). A higher value of C 
represents a higher importance of the misclassified points (higher variance), whilst a lower value of C will put a higher importance on 
the width of the hyperplane (higher bias). 

Support Vector Machines (SVMs) are inherently binary classifiers. However, they can be used for multiclass classification using 
either a one-vs-rest or one-vs-one strategy. 

SVMs output a continuous score for each prediction. This score can be interpreted as the confidence of the classification. However, 
these scores do not correspond well to class probabilities (Niculescu-Mizil and Caruana, 2005). Methods to calibrate the scores as class 
probabilities are proposed by Wu et al. (2004) and Platt (1999). 

2.2. Need for a review of machine learning methodologies 

As discussed above, ML approaches are increasingly being investigated as an alternative to RUMs for mode choice prediction. 
However, the research is fragmented, with inconsistent methodologies used in past studies. The implications of different methodo
logical decisions is not yet well understood. As such, there is a need to evaluate the methodologies used in previous studies in order to 
understand the scope of ML approaches and establish good standard practices. 

There exist several review papers in the literature focusing on mode choice modelling, including those by Barff et al. (1982), 
Hensher and Johnson (1983), Kruger (1991), Nerhagen (2000), Meixell and Norbis (2008), Ratrout et al. (2014), Jing et al. (2018), and 
Minal and Sekhar (2014). However, all but two of these reviews focus exclusively on statistical RUM techniques. Ratrout, Gazder, and 
Al-Madani (2014) and Minal and Sekhar (2014) explicitly review ML and Artificial Intelligence (AI) approaches within the literature, 
including ANN approaches to mode choice modelling alongside RUM based studies. The studies conclude that ANN have been suc
cessfully used for mode choice modelling, in particular due to their flexibility when dealing with multidimensional non-linear data. 
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Ratrout, Gazder, and Al-Madani (2014) further state that whilst the vast majority of existing studies are based on logit models, it can be 
expected that the trend of using ML methods will continue in future. 

Whilst the studies by Ratrout et al. (2014) and Minal and Sekhar (2014) evaluate some of the existing ML mode choice research, 
they have a number of limitations. Primarily, they focus only on ANN (and Fuzzy Logic (FL)) approaches, and as such do not cover any 
contributions using other ML techniques, including DTs, SVMs, and EL. Secondly, these reviews are intended to be exploratory as 
opposed to systematic, and do not represent comprehensive coverage of all relevant studies. Additionally, the reviews are intended to 
be general, and do not focus on specific aspects of the methodologies used in each study. Finally, there have been a substantial number 
of new studies published since these reviews were carried out. To address these limitations, this paper conducts a systematic review of 
ML approaches to passenger mode choice modelling. 

2.3. Overview of paper 

The remainder of the paper is laid out as follows. Section 3 outlines the methodology for the review, including the research 
questions, review protocol, and study selection. Next, Section 4 presents the results of the review, first giving an overview of the 
selected studies, before exploring each research question in turn to identify the methodological limitations. The limitations are cat
egorised into  

• technical limitations: technical issues within the methodologies of specific studies that are likely to have an impact on their results, 
which are further categorised into  

– pitfalls: issues in the model evaluation process which are likely to introduce bias into modelling results, and  
– areas for improvement: modelling decisions which are not incorrect but could be addressed in order to improve the reliability of the 

results for comparing the classification algorithms and or the predictive performance of the models; and  
• general limitations: gaps in knowledge or areas across multiple studies that require further investigative work. 

Finally, Section 5 summarises the findings, identifies potential limitations of the review, and presents the conclusions. 

3. Methodology 

The procedure for this systematic review is adapted from that given by Kitchenham and Charters (2007). The suggested procedure 
suggested has 10 stages broken down into three phases:  

• Planning the review  
1. Identification of the need for a review  
2. Specifying the research questions  
3. Developing a review protocol  

• Conducting the review  
4. Identification of research  
5. Selection of primary studies  
6. Study quality assessment  
7. Data extraction and monitoring  
8. Data synthesis  

• Reporting the review  
9. Specifying dissemination mechanisms  

10. Formatting the main report 

This review is focused on summarising the methodologies used in each study, and as such, no attempt is made to draw conclusions 
from the aggregate results or combined findings of the studies. Consequently, no assessment of the quality of each study is made (step 6 
in the framework). The review presented in this paper therefore consists of the nine remaining stages presented above. 

The focus of this review is the methodologies used in ML approaches to modelling passenger mode choice. In particular, the review 
serves to investigate the following research questions:  

1. Which classification techniques have been used to investigate mode choice?  
2. What is the nature of datasets used to investigate mode choice?  
3. How is model performance determined?  
4. How are optimal model hyper-parameters selected?  
5. How is the best model selected? 

3.1. Review protocol 

This section outlines the protocol for the search strategy, selection criteria, and data extraction strategy. 
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3.1.1. Search strategy 
The search strategy is used to identify relevant papers to the review. In order to ensure full coverage of relevant papers, papers are 

collated from three databases: the two major online curated publication databases, Web of Science and Scopus; and the Google Scholar 
search engine. The same search is repeated for each database. 

In order to only select papers that discuss ML techniques, only papers with one or more selected phrases relating to ML across all 
relevant fields are selected. The following initial phrases are tested: machine learning, neural network, decision tree, ensemble method, 
random forest, boosting, and support vector. 

This review focuses on papers with a core focus of mode choice modelling. As such, only papers with the title directly relating to 
mode choice are included. The following initial phrases are tested: mode choice, mode selection, travel mode, transport mode, trans
portation mode, and mode of travel. The requirement of having one of the mode choice phrases in the title is used to automatically pre- 
screen irrelevant papers. A Google scholar search for papers containing at least one of the above ML phrases alongside at least one of 
the mode choice phrases across all relevant fields returns over 15000 results (as of December 2019). 

Papers from any period up until the search date are included in the search. 
The initial search phrases are tested in different combinations across the three databases. The terms mode of travel and mode selection 

are omitted from the title search, as they return no relevant papers when used alongside the ML search terms. 
Additionally, a number of papers using Fuzzy Logic (FL) (within Rule-Based Machine Learning (RBML)) were found in the initial 

search results. To reflect this, the phrase fuzzy logic is added to the search across all relevant fields. 

3.1.2. Selection criteria 
The following eligibility criteria are determined for the papers found in the search to be included in the study:  

• Studies in peer-reviewed journals or conference proceedings written in English  
• Studies which investigate passenger mode choice at disaggregate (individual) level.  
• Studies which employ one or more ML technique(s) for predictive modelling. 

Paper selection is carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines 
(Moher et al., 2009). Firstly, duplicates are removed from the search records. Secondly, the record titles and abstracts are screened 
against the eligibility criteria. Finally, the remaining full-text articles are assessed for eligibility. All stages of the selection criteria are 
carried out independently by the first author.Where a paper contains more than one relevant modelling scenario (defined as having 
separate input datasets and different methodologies), each modelling scenario is treated as a separate study for the analysis. 

3.1.3. Data extraction strategy 
In order to extract the necessary data from each study without bias, a list of attributes is collected from each study. The attributes, 

shown in Table 2, are intended to be specific, objective, and quantifiable/categorical, in order to limit subjectivity in the data 

Table 2 
Research questions and corresponding attributes of studies for data 
extraction.  

No. Description 

Q1 Which classification techniques have been used to investigate mode 
choice? 

Q1a Classification algorithms used in study 
Q1b Logit model implementation 

Q2 What is the nature of datasets used to investigate mode choice? 
Q2a Nature of dataset 
Q2b Unit of analysis 
Q2c Dataset availability 
Q2d Modes in choice-set 
Q2e Modelling of mode-alternatives 
Q2f Input features dependent on output choice 
Q2g Hierarchical data 

Q3 How is model performance determined? 
Q3a Validation method 
Q3b Sampling method 
Q3c Performance metrics used 

Q4 How are optimal model hyper-parameters selected? 
Q4a Hyper-parameter search method 
Q4b Hyper-parameter validation method 
Q4c Hyper-parameter validation data 

Q5 How are the final models analysed? 
Q5a Statistical testing 
Q5b Extraction of behavioural indicators  
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extraction process. Together the attributes provide the evidence for the research questions. 
Data extraction is carried out independently by the authors. Each study is reviewed in detail, with each attribute for each study 

determined and tabulated in a spreadsheet. Separate entries are entered into the spreadsheet for papers containing multiple studies 
(modelling scenarios). 

Fig. 1. PRISMA flowchart of study selection process.  
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3.2. Study selection 

The following search terms are used to carry out the search strategy outlined in Section 3.1.  

• Web of Science: TITLE: (“mode choice” OR “travel mode” OR “transport mode” OR “transportation mode”) AND TOPIC: (“machine 
learning” OR “neural network” OR “decision tree” OR “ensemble method” OR “random forest” OR “boosting” OR “support vector” OR 
“fuzzy logic”)  

• Scopus: (TITLE ( “mode choice” OR “travel mode” OR “transport mode” OR “transportation mode”) AND TITLE-ABS-KEY (“machine 
learning” OR “neural network” OR “decision tree” OR “ensemble method” OR “random forest” OR “boosting” OR “support vector” OR 
“fuzzy logic”) )  

• Google Scholar: (intitle:“mode choice” OR intitle:“travel mode” OR intitle:“transport mode” OR intitle:“transportation mode”) 
AND (“machine learning” OR “neural network” OR “decision tree” OR “ensemble method” OR “random forest” OR “boosting” OR 
“support vector” OR “fuzzy logic”). 

Due to the restriction on search length in Google Scholar, this search is divided into two separate searches, with the results 
combined. 

The search was carried out on 20/12/2019 on all three databases. Fig. 1 shows a PRISMA flowchart of the study selection process. 
There were 110 records returned from the Web of Science search, 192 records from Scopus, and 536 records from Google Scholar, 

for a total of 838 records. Duplicates are then removed, leaving 574 records to be screened. The total number of records after removing 
duplicates is more than were obtained from any one database, showing that there were results from Web of Science/Scopus which were 
not returned with the Google Scholar search. 

The 574 remaining records are then screened as to whether they meet the eligibility criteria outlined in Section 3.1. During 
screening, 396 papers are excluded for relevance on the basis of their title and abstract. The majority of these records relate to 
transportation mode detection from Global Positioning System (GPS) data. Of the records which are deemed relevant, a further 62 are 
excluded as they are not published in peer reviewed publications, (e.g. Thesis/dissertation, unpublished paper, book section), or are 
not written in English (only having a title and abstract in English). 

Table 3 
Selected primary articles for review.  

No. Paper No. Paper 

S1 Raju et al. (1996) S36 Ermagun and Ansari Lari (2015) 
S2 Subba Rao et al. (1998) S37 Gazder and Ratrout (2015) 
S3 Hensher and Ton (2000) S38 Jia et al. (2015) 
S4 Cantarella and de Luca (2003) S39 Kedia and Krishna (2015) 
S5 Van Middelkoop, Borgers, and Timmermans (2003) S40 Ma (2015) 
S6 Xie et al. (2003) S41 Omrani (2015) 
S7 Karlaftis (2004) S42 Papaioannou and Martinez (2015) 
S8 Cantarella and de Luca (2005) S43 Pitombo and Souza (2015) 
S9 Andrade et al. (2006) S44 Tang et al. (2015) 
S10 Shafahi and Nazari (2006) S45 Li et al. (2016) 
S11 Edara et al. (2007) S46 Sekhar et al. (2016) 
S12 Errampalli et al. (2007) S47 Semanjski et al. (2016) 
S13 Moons et al. (2007) S48 Hagenauer and Helbich (2017) 
S14 Wang and Moon (2007) S49 Hussain et al. (2017) 
S15 Zhang and Xie (2008) S50 Juremalani (2017) 
S16 Biagioni et al. (2009) S51 Lindner and Souza Pitombo (2017) 
S17 Chalumuri et al. (2009) S52 Ma et al. (2017) 
S18 Seetharaman et al. (2009) S53 Nam et al. (2017) 
S19 Lu and Kawamura (2010) S54 Assi and Nahiduzzaman, 2018 
S20 Zhao et al. (2010) S55 Ding et al. (2018) 
S21 Xian-Yu (2011) S56 Golshani et al. (2018) 
S22 Yin and Guan (2011) S57 Lee et al. (2018) 
S23 Zenina and Borisov (2011) S58 Liang et al. (2018) 
S24 Zhou and Lu (2011) S59 Srivastava and Ravi Sekhar (2018) 
S25 Dell’Orco and Ottomanelli (2012) S60 Wang and Ross (2018) 
S26 Tang et al. (2012) S61 Zhu et al. (2018) 
S27 Gao et al. (2013) S62 Assi et al. (2019) 
S28 Kumar et al. (2013) S63 Chang et al. (2019) 
S29 Omrani et al. (2013) S64 Chapleau et al. (2019) 
S30 Pulugurta et al. (2013) S65 Cheng et al. (2019) 
S31 Ramanuj and Gundaliya (2013) S66 Minal et al. (2019) 
S32 Shukla et al. (2013) S67 Pirra and Diana (2019) 
S33 Cheng et al. (2014) S68 Wang and Zhao (2019) 
S34 Hossein et al. (2014) S69 Yang and Ma (2019) 
S35 Rasouli and Timmermans (2014) S70 Zhou et al. (2019)  
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The full text is obtained for the remaining 116 articles for further review. Of these, a further 46 are excluded on the basis of the 
selection criteria, as detailed in Fig. 1. This leaves 70 selected articles for data-extraction. 

Two articles contain multiple modelling scenarios, for a total of 73 separate studies for meta-analysis. 

4. Results and discussion 

This section presents the results obtained from the systematic review process. Firstly, sec:articles provides an overview of the 70 
articles used for data extraction, including the publication sources and years. The articles with multiple studies are identified, and each 
of the 73 studies are given a unique identifier. Sections 4.1 to 4.4 then use evidence from the 73 studies to explore each of the five 
research questions in turn. 

4.1. Articles for data extraction 

This section provides an overview of the 70 articles used for data extraction. Table 3 provides a unique identifier for each article, 
alongside its individual reference. 

Two papers [S7; S8] contain multiple modelling scenarios, using separate datasets and a different methodology for each one. A 
separate identifier is assigned to each modelling scenario in each of these papers, and they are treated as separate studies for the meta- 
analysis. Table 4 provides the label for the additional studies, alongside a description of each modelling scenario. The two papers have 
a total of five modelling scenarios. This results in a total of 73 studies for meta-analysis. 

Five further papers have multiple modelling phases but are deemed not to be separate studies for the purpose of this review. 
S3, S17 and S63 each include input datasets for two separate cities. In each of these papers, the datasets are collected and analysed 

using very similar methodologies, and so are treated as part of the same study for the purpose of this review. The largest dataset in each 
paper is used for the analysis in Section 4.2: the combined dataset of Sydney and Melbourne for S3, the Visakahpatnam dataset for S17, 
and the German nationwide dataset for S63. 

S34 and S37 each include three separate modelling phases. In S34 each phase represents a choice in a sequence for tour-based mode 
choice. Model 2-1, which predicts attributes of the first trip in a day made by an individual, is analysed within this review. In S37 each 
phase models different choice situations using the same modelling methodology on subsets of the same dataset. Phase I, which models 
the revealed preference choice between car and plane, is used for the analysis in the review. 

4.1.1. Publication source 
Table 5 provides details of all journals and conferences/proceedings from which more than one article was selected. The articles 

come from a wide spread of publications, with a total of 33 different journals and 16 different conferences featured. The majority of the 
papers (45/70) are published in journals, making up 64% of the articles, with the remaining 25 papers (36%) published in conference 
proceedings. 

The top two sources for articles are the Transportation Research Record Journal and the Transportation Research Board Annual 
Meeting conference, both of which are published by the Transportation Research Board. Together, they make up 20% (14/70) of the 
articles. 

4.1.2. Publication year 
Fig. 2 shows the distribution of article publication dates from 1995 to 2019. 
There is a clear upwards trend of increasing number of publications regarding ML applications to mode choice per year. Half of the 

selected articles were published from 2015 onwards. Conversely, only 10 relevant papers were published prior to 2007. 

4.2. Which classification techniques have been used to investigate mode choice? 

The following sections present an overview of the classification techniques used in the 73 studies in the review. 

Q1a: Classification algorithms used in study 

Based on the responses to Q1a, the classification techniques are grouped into nine categories, as shown in Table 6. A brief overview 
of the classification techniques identified in this paper is given in Section 2.1. For each algorithm, an example paper from the 

Table 4 
Primary studies with multiple modelling scenarios in review.  

No. Paper No. Scenario 

S7 Karlaftis (2004) S7.1 Interurban mode choice in Australia   
S7.2 Commuter mode choice in Athens, Greece   
S7.3 Commuter mode choice in Las Condes-CBD corridor, Chile 

S8 Cantarella and de Luca (2005) S8.1 VENETO dataset   
S8.2 UNISA dataset  
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systematic review which makes use of that algorithm is provided. 
Table 7 shows which classification techniques are used in each study. The majority of studies (47/73) compare ML techniques with 

statistical RUMs and LR, making logit models the most commonly used classification technique in the studies. The most commonly 
used ML algorithms are ANNs (34 studies). 

Table 7 also shows an increasing focus in the literature on EL (7/15 studies published in the last two years) and SVMs (5/15 studies 
published the last two years). 

Q1b: Logit model implementation 

Whilst the overall focus of this review is the ML methodologies used in the studies, Q1a identifies 47 studies which compare ML 
approaches with logit models (statistical RUMs and (LR)). As such, this section gives a brief overview of the logit models used in these 
studies. 

Table 8 summarises the regularisation method used for the logit model or models in each study, as well as whether intercepts or 
ASCs are included in the model specification. 

As discussed in Section 2.1, a distinction is made between RUMs, where the model is regularised manually through the use of utility 
specifications and LR, where either no regularisation or L1/L2 regularisation (or a combination of the two) is used. A logit model is 
classed as using manual utility specification regularisation if significance testing is used to remove any variables or if the utility 
functions used for each mode are not uniform (including the use of alternative specific Level of Service (LOS) variables for each mode). 

Table 5 
Summary of publication sources contributing more than one paper to review. Multi-conference proceedings are 
shown in bold, with the individual conferences in italics below.  

Publication Type No. 

Transportation Research Record Journal 8 
Transportation Research Board Annual Meeting Conference 7 
Transportation Research Procedia: Proceedings 4 
Euro Working Group on Transportation Conference 3 
Transportation Planning and Implementation Methodologies for Developing Countries Conference 1 
Travel Behaviour and Society Journal 3 
International Journal for Traffic and Transport Engineering Journal 2 
Transportation Planning and Technology Journal 2 
Transportmetrica A: Transport Science Journal 2 
East Asia Society for Transportation Studies Conference 2 
International Conference of Chinese Transportation Professionals Conference 2 

Totals (all papers) Journal 46  
Conference 26  

Fig. 2. Publication distribution of articles in systematic review (a) per year and (b) cumulative.  
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Of the 47 studies which use logit models, 22 regularise the model through the use of manually specified utility functions [S2; S3; S4; 
S8.1; S8.2; S9; S15; S17; S18; S21; S30; S36; S37; S43; S44; S45; S53; S54; S56; S57; S59; S60]. A single study [S70] makes use of an LR 
classifier with ML regularisation, though it is not stated whether L1 or L2 regularisation is used. 11 studies [S6; S13; S24; S40; S48; S49; 
S51; S52; S55; S58; S65] make use of no regularisation and include all variables uniformly for all modes. The remaining 13 studies 
[S7.2; S12; S16; S23; S25; S29; S33; S41; S50; S61; S64; S66; S68] do not describe the logit modelling in sufficient detail to ascertain 
either regularisation was applied to the model (either through utility functions or L1/L2 regularisation). 

Regarding the use of ASCs/intercepts, one study [S2] includes an RUM specification with no ASCs. A further 19 studies [S7.2; S12; 
S13; S16; S23; S25; S29; S33; S37; S41; S48; S50; S55; S61; S64; S65; S66; S68; S70] do not describe the model in enough detail to 
ascertain whether intercepts/ASCs are included in the model. 

4.2.1. Techniques - limitations 
One general limitation is identified regarding the ML techniques used to investigate mode choice: the inconsistent representation of 

logit models in ML studies. Q1b highlights the inconsistent representation of logit models in the studies in the review. Twenty-four 
studies either use no regularisation for the logit model, or do not provide sufficient information to gather whether regularisation is 
used. A further 20 models either do not include intercepts or ASCs in the utility specifications, or do not describe the model in enough 
detail to verify whether they are included. This is despite intercepts/ASCs being a necessity to reproduce representative choice 
probabilities for labelled data. In order to make valid comparisons between RUMs and LR with other ML classifiers, it is essential a 
valid model specification is used. 

4.3. What is the nature of datasets used to investigate mode choice? 

The following sections discuss the datasets used in the 73 studies in the review, focusing in turn on the nature of the dataset (trip 

Table 6 
Classification techniques used in studies in review.  

Classification algorithm Example reference 

1. Logit models (Log)  
Logistic Regression (LR) Cantarella and de Luca (2005) 
Nested Logit (NL) Hensher and Ton (2000) 
Cross-Nested Logit (CNL) Nam et al. (2017) 

2. Artificial Neural Networks (ANNs)  
Feed-Forward Neural Network (FFNN) Lee et al. (2018) 
Radial Basis Function Neural Network (RBFNN) Omrani (2015) 
Probabilistic Neural Network (PNN) Zhou and Lu (2011) 
Extreme Learning Machine (ELM) Assi et al. (2019) 
Other neural network structures Cantarella and de Luca (2003) 

3. Decision Trees (DTs) Karlaftis (2004) 

4. Extreme Learning Machine (ELM)  
Random Forests (RFs) Rashidi et al. (2014) 
Gradient Boosting (GB) Wang and Ross (2018) 
AdaBoost (AB) Biagioni et al. (2009) 
Bagging Hagenauer and Helbich (2017) 

5. Support Vector Machines (SVMs) Xian-Yu (2011) 

6. Bayesian Learners (BLs)  
Naïve Bayes (NB) Hagenauer and Helbich (2017) 
Bayesian Network (BN) Ma (2015) 
Tree Augmented Naïve Bayes Tang et al. (2012) 

7. Rule-Based Machine Learning (RBML)  
Fuzzy Inference System Dell’Orco and Ottomanelli (2012) 
Rough Set Model (RSM) Cheng et al. (2014) 
Class Association Rules Lu and Kawamura (2010) 

8. Hybrid methods (HM)  
Clustered Logistic Regression Li et al. (2016) 
Logit-ANN Gazder and Ratrout (2015) 
Mixed classifier ensembles Chang et al. (2019) 

9. Miscellaneous (Msc)  
Multivariable Fractional Polynomials Nam et al. (2017) 
Discriminant Analysis Karlaftis (2004) 
Structural Equation Modelling Papaioannou and Martinez (2015) 
Linear regression Ramanuj and Gundaliya (2013) 
k-Nearest Neighbours (k-NN) Zhou et al. (2019)  
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diary/single-trip questionnaire/stated preference survey, etc); the unit of analysis (trip/tour/commute pattern/mobility); the size of 
the dataset; the dataset availability; the modes in the choice-set; the modelling of mode-alternatives; input features dependent on 
output choice; and hierarchical data. 

Q2a: Nature of dataset 

Table 9 shows the description and size of each dataset. 
Only four studies [S3; S9; S53; S68] use (SP) data. One study [S18] uses synthetic choice data, where the choice for a hypothetical 

metro service is synthesised based on a proposed fare structure and the respondent’s willingness-to-pay (which is recorded during the 
interview). 

The remaining 68 studies use Revealed Preference (RP) data. One study [S70] makes use of Origin-Destination (O-D) pairs collected 
from taxi GPS and bike-sharing scheme data. The remaining 67 studies use datasets specifically collected to investigate mode choice, 
either from trip-diaries or or single-trip questionnaires. 

Thirty-six studies make use of trip diary or activity-diary data, over periods ranging from one day to one year. These diaries are 
collected either from household surveys [S6; S11; S16; S19; S30; S32; S33; S34; S35; S39; S43; S44; S48; S51; S55; S56; S57; S58; S60; 
S61; S63; S64; S65; S67; S69] or individual surveys [S5; S13; S40; S42; S47; S52]. Five studies which use trip diary data do not specify 
enough detail to determine if an individual or household survey is used [S15; S21; S24; S26; S27]. 

In many studies, a subset of trips is selected from complete trip diaries, e.g. work trips only [S1; S6; S13; S15; S19; S21; S52; S55], 
education trips only [S39], shopping/social trips only [S56; S61], outbound trips only [S33], trips from home only [S57], first trip of 
the day only [S34], morning peak trips only [S64], or random sampling [S24; S26; S27]. 

Twenty studies use individual single-trip questionnaires, where an individual is asked about a single trip they have made [S2; S4; 
S7.1; S7.2; S7.3; S8.1; S8.2; S14; S20; S23; S25; S36; S37; S45; S49; S59] or a commute they make regularly [S28; S50; S54, S62]. 

Table 7 
ML techniques used in each study in review. 
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Two studies [S29; S41] make use of a household survey, in which each working member of the household details their work 
commute. 

Nine studies [S1; S10; S12; S17; S22; S31; S38; S46; S66] do not describe the data in enough detail to be able to determine the 
nature of the dataset. 

The size of each dataset is also shown in Table 9. One study [S59] uses a dataset with under 100 entries. Twenty studies use small 
datasets, with between 100 and 1000 entries. Thirty-four studies use medium datasets, with between 1000-10 000 entries. Ten studies 
use large datasets, with between 10000-100 000 entries. Six studies use datasets larger than 100 000 entries. 

Two studies [S30; S35] do not give the exact size of the dataset. They both use the trip diaries of individuals in a household survey 
(5822 individuals in S30, 1446 individuals in S35). 

Q2b: Unit of analysis 

Sixty-seven of the studies use a single independent choice as the unit of analysis. The choice can be for a single one-way trip per 
respondent, a return trip (by assuming each leg is made by the same mode), trip diary data where sequences of trips are treated as 
independent, a regular commute, or a stated preference. Sixty-five of these studies model the mode choice only, whilst two studies 
[S34; S61] jointly consider other trip attributes (see Q2e). 

Six studies use a different unit of analysis. Four studies analyse mobility. S51 and S58 both analyse household mobility by predicting 
the predominant mode used by a household across all trips made on the survey day. S43 analyses individual mobility, by predicting the 
predominant mode used by an individual across all trips they make on the survey day. Finally, S11 analyses the mobility within 
clusters. Clusters of similar trips are generated using k-means clustering (Hartigan and Wong, 1979). The proportions of trips made by 
each mode within these clusters is then predicted. 

Two studies use a tour-based approach. S16 uses the predicted mode choice of the first trip in a tour (the anchor mode) as an input 
feature for subsequent trips. S67 groups trips into home-based tours across eight categories and predicts overall mode choice for each 
tour (including mixed mode tours). 

Note that (as discussed in Section 4) S34 implements a tour-based analysis, but the subsequent trips in a tour are predicted on the 
basis of the attributes of the previous trip (including mode choice) as recorded in the dataset, and not as predicted by a model. As such, 
only the model which predicts attributes of the first trip of the day is analysed in the review (Model 2-1 in the paper). 

Q2c: Dataset availability 

An attempt was made to identify and check the availability of the dataset used in each study. The following section discusses all 
datasets which were found to be openly available. Note that some studies which make use of open data may not have been identified, 
due to resource constraints when searching for datasets (see Section 5). 

Twenty-one studies are identified as using open or partially open data. The majority (11) use openly available household travel 

Table 8 
Summary of logit models used in each study in review. Reg. = Regularisation, Int. = Intercept included, UF=Utility functions.  

No. Reg. Int. No. Reg. Int. No. Reg. Int. 

S2 UF ✓ S24 × ✓ S52 × ✓ 

S3 UF ✓ S25 ? ? S53 UF ✓ 

S4 UF ✓ S29 ? ? S54 ? ? 

S6 × ✓ S30 UF ✓ S55 UF ✓ 

S7.2 ? ? S33 ? ? S56 × ? 

S8.1 UF ✓ S36 UF ✓ S57 UF ✓ 

S8.2 UF ✓ S37 UF ? S58 UF ✓ 

S9 UF ✓ S40 × ✓ S59 × ✓ 

S12 ? ? S41 ? ? S60 UF ✓ 

S13 × ? S43 UF ✓ S61 UF ✓ 

S15 UF ✓ S44 UF ✓ S64 ? ? 

S16 ? ? S45 UF ✓ S65 × ? 

S17 UF ✓ S48 × ? S66 ? ? 

S18 UF ✓ S49 × ✓ S68 ? ? 

S21 UF ✓ S50 ? ? S70 L1/L2 ? 

S23 ? ? S51 × ✓     
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Table 9 
Nature and size of dataset used in each study in review.  

No. Type N 

S1 Unclear household survey (work trips only, 535 trips sampled randomly from 3 500) 535 
S2 Individual single-trip questionnaire (access to rail on work trip) 4335 
S3 Stated preference - individual panel survey (3 trips per person) 801 
S4 Individual single-trip questionnaire (mixed purpose urban) 2350 
S5 Trip diaries from individual survey (1 year, >2 day vacations only, 7 121 vacations, 2 791 individuals) 7121 
S6 Trip diaries from household survey (2-day, 4 746 outbound work trips) 4746 
S7.1 Individual single-trip questionnaire (mixed-purpose) 210 
S7.2 Individual single-trip questionnaire (mixed purpose urban) 7100 
S7.3 Individual single-trip questionnaire (morning home-work trip) 617 
S8.1 Individual single-trip questionnaire (student extra-urban trips) 1116 
S8.2 Individual single-trip questionnaire (mixed purpose urban) 2350 
S9 Stated preference - individual panel survey (160 individuals, 6 trips per individual) 960 
S10 Unclear household survey 4147 
S11 Trip diaries from household survey (1 year, >100 mile, business trips only) 118000 
S12 Unclear individual survey 2868 
S13 Trip (Activity) diaries from individual survey (commute patterns extracted) 1025 
S14 Individual single-trip questionnaire (fixed O-D, mixed-purpose) 366 
S15 Trip diaries from unclear survey (outbound work trip only) 5029 
S16 Trip diaries from household survey (1–2 day, 116 666 trips, 19 118 tours) 116666 
S17 Unclear survey 1045 
S18 Individual single-trip questionnaire (synthetic choice) 229 
S19 Trip diaries from household survey (1-day, morning-peak home-work trips only) 9210 
S20 Individual single-trip questionnaire 100 
S21 Trip diaries from unclear survey (work travel mode choice) 4725 
S22 Unclear survey 1007 
S23 Individual single-trip questionnaire (mixed-purpose) 498 
S24 Trip diaries from unclear survey (500 trips sampled from larger survey, 125 for each mode) 500 
S25 Individual single-trip questionnaire (outbound home-work trip) 361 
S26 Unclear daily travel survey (2000 trips sampled from larger survey, 500 for each mode) 2000 
S27 Trip diaries from unclear survey (650 trips sampled from larger survey, 130 for each mode) 650 
S28 Individual single-trip questionnaire (work commute) 606 
S29 Commute patterns in household economic survey (9 500 individuals, 3 670 households) 3673 
S30 Trip diaries from household survey (Unknown trips, 5 822 individuals, 2 627 households) ? 
S31 Unclear household survey 1348 
S32 Trip diaries from household survey (1-day) 100000 
S33 Trip diaries from household survey (5 721 outbound trips only, 4 831 individuals, 1809 households) 5721 
S34 Trip diaries from household survey (1 day, only first trip, 24 807 individuals, 12 568 households) 24807 
S35 Trip diaries from household survey (1-day, unknown trips, 1 446 individuals) ? 
S36 Individual single-trip questionnaire (outbound home-school trip) 4700 
S37 Individual single-trip questionnaire (cross-border) 516 
S38 Unclear trip survey (4 500 trips sampled from 17 539) 4500 
S39 Trip diaries from household survey (education trips only) 409 
S40 Trip diaries from individual survey (1-day, 11 993 trips made by 7 235 people) 11993 
S41 Commute patterns in household economic survey (9 500 individuals, 3 670 households) 3670 
S42 Trip diaries from individual survey (530 trips, <382 individuals) 530 
S43 Trip diaries from household survey (1-day, mobility of household head only) 1216 
S44 Trip diaries from household survey (2-day, 72 536 trips, ∼31 000 individuals, ∼14 000 households)  72536 
S45 Individual single-trip questionnaire (holiday travel) 731 
S46 Unclear household survey 5843 
S47 Trip diaries from individual GPS survey (4 months, 17 040 trips, 292 individuals) 17040 
S48 Trip diaries from household survey (6 day, 230 608 trips, 69 918 individuals) 230608 
S49 Individual single-trip questionnaire (mixed purpose urban) 620 
S50 Individual single-trip questionnaire (work commute) 224 
S51 Trip diaries from household survey (mode choice analysed at household mobility level) 18733 
S52 Trip diaries from individual survey (1-day, commute patterns extracted) 5040 
S53 Stated preference - individual panel survey 6768 
S54 Trip diaries from household survey (1-day, home-based social activity) 5 213 
S55 Individual single-trip questionnaire (education commute) 597 
S56 Trip diaries from household survey (1-day, morning-peak home-work trips only) 6392 
S57 Trip diaries from household survey (1–2 day, outbound shopping trips only) 9450 
S58 Trip diaries from household survey (home-based trips, sampled to over-represent transit) 4764 
S59 Trip diaries from household survey (mode choice analysed at household mobility level) 101053 
S60 Individual single-trip questionnaire (mixed purpose) 94 
S61 Trip diaries from household survey (1-day) 51910 
S62 Individual single-trip questionnaire (education commute) 1484 
S63 Trip diaries from household survey (6-weeks, 52 265 trips, 361 individuals, 162 households) 52265 
S64 Trip diaries from household survey (1-day, morning-peak trips only) 155016 
S65 Trip diaries from household survey (1-day, 7 276 trips, 2 991 individuals, 1 435 households) 7276 

(continued on next page) 
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survey data:  

• CMAP Travel Tracker Survey, 2007–2008 (Chicago Metropolitan Agency for Planning 2018[b]) - 3 studies [S16; S56; S57]  
• CATS Household Travel Survey, 1990 (Chicago Metropolitan Agency for Planning 2018[a]) - [S19]  
• Sydney Household Travel Survey (Transport for NSW, 2018) - 2 studies [S32; S69]  
• San Francisco Bay Area Travel Survey, 2000 (Metropolitan Transportation Commission 2018[b]) - [S6]  
• San Francisco Bay Area Travel Survey, 1990 (Metropolitan Transportation Commission 2018[a]) - [S15]  
• Delaware Valley Household Travel Survey, 2012 (Delaware Valley Regional Planning Commission, 2018) - [S60]  
• National Household Travel Survey, 2009 (Federal Highway Administration, 2018) - [S67]  
• American Travel Survey, 1995 (Bureau of Transportation Statistics, 2018) - [S11]  
• Victorian Integrated Survey of Travel and Activity, 2007–2008 (Transport for Victoria, 2018) - [S34] 

Three studies make use of academic datasets made public by the authors: S7.1 makes use of the CLOGIT dataset, available with the 
Ecdat R library (Croissant, 2016; Greene, 2011); S53 uses the SwissMetro dataset (Bierlaire et al., 2001; Bierlaire, 2018); and S63 uses 
the Mobidrive dataset (Axhausen et al., 2002). Four studies [S29; S40; S41; S52] make use of the partially open LISER PSELL data, 
which is available on registration (Luxembourg Institute of Socio-Economic Research, 2018). Finally, one study [S70] makes use of 
openly available bike-sharing and taxi data from the city of Chicago (Divvy Bikes, 2020; City of Chicago, 2020). 

Whilst 21 studies make use of open or partially open data, only one study [S48] is identified as making the fully processed data 
openly available, in the format used for modelling within the paper. 

Q2d: Modes in choice-set 

Fig. 3 shows a frequency plot of the number of modes considered in each study, which ranges from two to nine. The most common 
number of modes considered is four, which is used in 18/73 studies. 

Five studies have a different number of classes modelled in the classification problem from the number of modes considered. Three 
studies perform only one-vs-one or one-vs-rest modelling. S11 and S13 both consider three modes, but in both studies the modelling is 
performed one-vs-rest across the three modes, so that each model considers two different classes. Unlike other studies which use one- 
vs-rest modelling, the individual models are not combined to create a multiclass classifier in either study. Similarly, S44 considers four 
modes, but the modelling is performed one-vs-one. As with S11 and S13, the individual models are not combined to create a single 
multiclass classifier. 

Two models jointly model other variables alongside mode choice. S61 jointly considers four modes across two different time- 
periods (peak/off-peak), therefore modelling a total of eight classes. Similarly, S34 jointly models three modes, three trip purposes, 
three departure periods, and four distance categories, for a total of 108 classes, 102 of which are observed in the data. 

A total of 14 studies use only binary classification. This includes the 11 studies which model only two modes [S12; S17; S18; S37; 
S42; S45; S51; S54; S55; S62; S70] and the three studies which use one-vs-rest/one-vs-one modelling without combining individual 
models to a single classifier [S11; S13; S44]. 

Fig. 4 shows the frequency of each mode/grouping of modes considered in each study. The car mode is the most commonly 
modelled, appearing in 49 studies, followed by walk (35 studies) and public transport (29 studies). Certain modes either appear 
individually or grouped. For example, cycling is treated as an independent mode in 25 studies and grouped with walking in nine 
studies. The grouping of public transport modes cannot be immediately understood from Fig. 4, due to different combinations of 
groupings being possible. For example, for many studies, rail services are not a viable mode of transport, and so bus is the only mode 
considered. Twenty-nine studies consider all public transport modes under one combined public transport mode. Of the 30 studies 
which consider the independent bus mode, 15 include bus as the only public transport mode. A total of 19 studies consider two or more 
separate public transport modes. 

Q2e: Modelling of mode-alternatives 

In order to understand the impact that the transport network has on mode choice, it is necessary for the dataset to include attributes 
of the mode-alternatives, e.g. the expected duration and cost of travelling by each mode in the choice-set. These are commonly referred 
to as Level of Service (LOS) attributes in the literature. For revealed preference data, typically only details of the choice made by the 

Table 9 (continued ) 

No. Type N 

S66 Unclear household survey 4976 
S67 Trip diaries from household survey (grouped into tours: 39 167 home-based tours, 24 396 individuals) 39167 
S68 Stated preference - individual panel survey (sampled from 2073 individuals, 7 trips per individual) 8418 
S69 Trip diaries from household survey (67 299 trips, unkown individuals, 3 000–3 500 households) 67299 
S70 O-D pairs from vehicle tracking data (15000 taxi trips and 15000 bike-sharing scheme trips) 30000  
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passenger are recorded. As such, details of the mode-alternatives need to be synthesised and added to the dataset to be included in the 
modelling. 

Of the 68 studies which use revealed preference data, 33 include no attributes of the mode-alternatives in the choice-set [S5; S6; 
S14; S21; S23; S24; S26; S27; S31; S32; S33; S34; S35; S37; S38; S39; S40; S43; S45; S47; S48; S49; S50; S51; S54; S55; S58; S62; S63; 
S64; S65; S67; S69]. A further four studies do not list the input features used in the model with enough clarity to deduce whether any 
attributes of the mode-alternatives are included [S22; S46; S66; S70]. 

Table 10 shows the relevant features used in the 31 studies which include attributes of the mode-alternatives. The definition of each 
term is given below:  

• Duration - journey time from start-point to end-point (including access, transfers etc.)  
• Cost - Out of pocket cost (e.g. transport fares, Vehicle Operating Costs)  
• Generalised costs - Combined duration and cost as a single value of disutility, expressed in the unit of currency  
• Vehicle Operating Cost (VOC) - the mileage dependent costs of operating a vehicle (e.g. fuel, tires, maintenance, repairs, 

depreciation)  
• In-Vehicle Travel Time (IVTT) - the duration spent in vehicle/on-board public transport services  
• Out-of-Vehicle Travel Time (OVTT) - the combined access, egress, transfer, and waiting durations for Public Transport (PT)  
• Access - The walking duration/distance between the start-point and first public transport access stop  
• Egress - The walking duration/distance between the last public transport stop and the end-point 

Fifteen of the 31 studies which model mode-alternatives do not state the methods used to calculate these attributes [S2; S4; S7.2; 
S7.3; S10; S12; S13; S15; S17; S20; S25; S28; S30; S57; S59]. Fourteen studies use zonal, time-independent (static) transport models to 
calculate durations and/or costs [S1; S7.1; S8.1; S8.2; S11; S16; S19; S29; S36; S41; S42; S44; S52; S61]. One study [S8.2] additionally 
makes use of a time-dependent public transport model to calculate transfer and combined access/egress durations for the PT route at 
the time of departure. Finally, two studies [S56; S60] make use of an online directions service to generate trip durations. 

Q2f: Input features dependent on output choice 

In order to be used as a valid predictive model, model input features must be independent of the output choice. Features which are 
dependent on the choice, e.g. the recorded trip duration (which is dependent on the mode taken) cannot be known until the trip is 
made, and so cannot be used for prediction. 

A substantial proportion of studies (19/73) include input features which are related to the output choice, either directly or 
indirectly. 

Ten studies [S6; S23; S31; S40; S44; S45; S54; S58; S62; S63] include the recorded travel duration of the selected mode as an input 
feature. Five of these studies also include the trip distance [S31; S40; S44; S58; S63], which would allow the classifier to infer the speed 
of the mode-selected. A further two studies [S6; S31] additionally include the reported cost of the selected mode. 

Two studies [S16; S32] implicitly include the reported duration by including both the reported departure time and arrival time in 
the feature vector. 

Three studies [S7.1; S7.2; S7.3] implicitly include the selected mode in the input feature vector by labelling attributes of the selected 
mode and best alternative mode. For example, one node in the DT for S7.2 separates trips between those made by Auto and those made 

Fig. 3. Frequency bar chart of number of modes considered in each study in review.  
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by Metro on the basis of whether the cost of the selected mode is greater than or equal to 1.6 euro. 
Two studies use different definitions of duration in the mode-alternative attributes for the selected mode. S52 uses the reported 

duration from the survey as the driving duration if the trip is made by car and uses the driving time predicted by a static zonal transport 
model if the trip is not made by car. S60 similarly uses the reported duration for the selected mode, and the duration as predicted by the 
Google Directions Application Programming Interface (API) for all other modes. In both cases, treating the selected mode differently to 
the unchosen alternatives may cause leakage of the selected mode into the input feature vector. 

Finally, two studies [S37; S43] include survey questions on reasons for not taking a particular mode in the input feature vector. 
As with the modelling of mode-alternatives, four studies [S22; S46; S66; S70] provide insufficient detail of the modelling process to 

determine whether input features are included which are dependent on the output choice. 

Q2g: Hierarchical data 

As shown by Q2a, 36 studies make use of trip diary data. Household trip survey data has an inherent hierarchical structure: 
households are made up of multiple people, each of whom make multiple tours, in which there are multiple legs or trips. Elements 
within the same groups in the hierarchical structure may show interdependency. This hierarchical structure arises from the specific 
nature of how trip diary data is collected, and introduces strong correlations which can be observed in the data. Formally, three levels 
of hierarchy can be considered (each with examples of how the structure could cause interdependency):  

• Household-Person (H–P) - e.g. multiple members of a household travelling together therefore all travelling by the same mode, one 
person using the only vehicle in a household meaning that others cannot use that vehicle, all members of a household sharing a 
tendency to/not to travel by a particular mode, etc.  

• Person-Tour (P-T) - e.g. individual showing a tendency to/not to travel by a particular mode, individual not being able drive/cycle 
for all tours due to a vehicle/bike not being available to them on the survey date, individual having a season ticket and therefore 
being more likely to travel by public transport, etc.  

• Tour-Trip (T-T) - e.g. return trip being highly likely to be made by the same mode as the outbound trip, vehicle/bike not being 
available for onwards travel as it was not used for first leg (trip) in tour, vehicle/bike needing to be used for onwards travel as it was 
used for first leg (trip) in tour and cannot be left behind, etc. 

Individual survey trip diaries do not have a household-person grouping, leaving person-tour and tour-trip groupings. 
Whilst they do not use trip diaries, household surveys where multiple members of the same household are interviewed to extract 

commute (as in S29 and S41) also contain a household-person hierarchical structure. 
As well as RP surveys, panel SP data, where each individual provides multiple choices in a survey, also has a Person-Tour hierarchy. 
The details of all studies which use data which has or may have a hierarchical structure are shown in Table 1. This includes the 

studies with datasets of unknown nature, which may be hierarchical [S1; S10; S12; S17; S22; S31; S38; S46; S66]. 
Many of the studies which make use of trip diary data sample the data in a way which removes all/part of the hierarchical structure, 

e.g. by sampling only outbound trips (removes tour-trip hierarchy), or by sampling only trips made by one member of a household 

Fig. 4. Frequency bar chart of individual modes/grouping of modes in each study in review. The ‘Other’ category groups all modes/combinations of 
modes with less than three occurrences across all studies. 
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(removes household-person hierarchy). This sampling is also presented in Table 11. 
Table 11 shows the levels present in the input dataset (after any sampling/processing) for all studies which make use of hierarchical 

data. Whilst S16 uses a tour-based analysis, it still predicts mode choice for individual trips, and so the Tour-Trip hierarchy in the data 
is still present. In total, there are 45 studies which use hierarchical data, or data which may be hierarchical, after sampling/processing. 
This includes 13 studies which use complete, unsampled trip diaries [S16; S30; S32; S35; S40; S42; S44; S47; S48; S60; S61; S63; S65; 
S69]. Note that using hierarchical data is not an issue in itself, as long as appropriate sampling is used for validation. The sampling used 
in these studies (and its associated implications) is therefore discussed in Q3b. 

4.3.1. Model datasets - limitations 
Five limitations are identified in relation to the datasets used to investigate mode choice. Two limitations are technical: (i) studies 

not including any attributes of the mode-alternatives, (ii) studies using input features dependent on output choice; and three limi
tations are general: (i) not describing the dataset and modelling process in sufficient detail, (ii) the lack of relevant, openly available 
datasets including mode-alternative attributes, (iii) not considering sampling of the data from the population. 

Note that using hierarchical data is not an issue in itself, as long as appropriate sampling is used for validation. This is therefore 
discussed in Section 4.3. 

Two technical limitations are identified related to datasets. Q2f identifies 33 studies which include no LOS attributes of the mode- 
alternatives in the choice-set, and a further four studies which do not list the input features used in the model with enough detail to be 
able to determine whether any attributes of the mode-alternatives are included. In order to model the impact that the transport 
network has on mode choice, it is necessary for the feature vector to contain attributes of the mode-alternatives, e.g. the expected 
duration and cost of travelling by each mode in the choice-set. As significant correlations between attributes of each mode-alternative 
and mode choice are likely to exist, not including these variables in the feature vector will result in models with lower predictive 
performance. Additionally, for statistical RUM models, omitting relevant predictors (features) in the input results in endogenous errors 
in the parameters of the remaining variables (Train, 2009, Chapter 13). This can cause biased, inconsistent estimates of these pa
rameters, which may be important for explaining behaviour (e.g. VoT). Finally, when using the choice model for simulation of future 
trips under unknown conditions (e.g. in an Agent Based Model (ABM)), the impacts of changes to the transport network on mode choice 
cannot be modelled if attributes of the mode-alternatives are not included in the feature vector. These studies therefore do not allow for 
modelling the impacts of changes to the transport network on the mode choice decisions made by an individual. 

Of the studies which do model mode-alternatives, the majority generate LOS variables from static zonal graphs. This means that 
they do not capture the highly granular spatial and temporal variability of conditions on a transport network. 

Q2f identifies 19 studies which include input features which are related to the output choice. These features cannot be known in 
advance of a trip being made, and so this prevents these models from being used in a predictive context. Additionally, input features 
which are directly and explicitly dependent on class membership, e.g. travel speed being dependent on travel mode, may be highly 
correlated with the class membership. As such, this will result in better apparent performance of the model than could be achieved using 
only valid independent variables (i.e. the performance of the model will be overestimated through data leakage). As with omitting the 
mode-alternative LOS variables, including input variables which are dependent on the output in a statistical model (RUM) can 

Table 10 
Attributes of mode-alternatives in selected studies in review. Unless stated otherwise, each attribute is a duration. PT=Public Transport, IVTT=In- 
Vehicle Travel Time, OVTT=Out-of-Vehicle Travel Time, VOC=Vehicle Operating Cost.  

No. Duration Cost Other No. Duration Cost Other 

S1   IVTT and route distance (Each mode) S20 ✓ ✓  

S2 ✓ ✓  S25   Generalised costs (Each mode) 

S4 ✓ ✓ Access (Bus) S28 ✓ ✓  

S7.1 ✓ ✓ IVTT (PT) S29   Generalised costs (Each mode) 

S7.2 ✓ ✓  S30  ✓ IVTT and OVTT (Each mode) 

S7.3 ✓ ✓ IVTT (PT) S36 ✓  Access distance (PT) 

S8.1 ✓ ✓ Transfer, access/egress (PT) S41   Generalised costs (Each mode) 

S8.2 ✓ ✓  S42   IVTT, transfer, speed, directness (PT) 

S10   OVTT (Bus) S44 ✓   

S11 ✓ ✓  S52 ✓ ✓  

S12 ✓ ✓  S54 ✓ ✓  

S13   Duration ratios (each mode) S57 ✓  Access & egress distance (PT) 

S15 ✓ ✓  S58 ✓ ✓  

S16 ✓ ✓  S60  ✓ IVTT and OVTT (Each mode) 

S17  ✓ Access, egress, IVTT (PT) S61 ✓   

S19   Duration, VOC (Drive), IVTT (train)      
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introduce endogeneity through reverse causality (Train, 2009, Chapter 13). This can also cause biased, inconsistent estimates of model 
parameters. Again, a further two studies provide insufficient detail of the modelling process to be able to determine whether any input 
features which are dependent on the output choice are included. 

Of the two technical limitations related to datasets, using input features dependent on output choice a pitfall that is likely result in 
incorrect conclusions being drawn from the modelling results. Conversely, not including any attributes of the mode-alternatives is an 
area for improvement, as doing so is likely to improve the performance of the model. 

The discussion of the research question also highlights four general limitations. Firstly, multiple studies do not describe the dataset 
and modelling process in sufficient detail for the required information for the systematic review to be extracted. This is problematic for 
repeatability of the mode choice experiments implemented in these studies, particularly when there is such large variation in the 
methodologies used in each study. In order to ensure repeatability of the results, methodologies should be recorded in detail, and 
where possible, data and code should be made available. 

The discussion also highlights the need for relevant, openly available datasets including mode-alternative attributes. There exist 
several openly available, large datasets for investigating passenger mode choice. Of the 16 studies which use datasets with greater than 
10 000 entries, 11 make use of openly available datasets [S11; S14; S16; S32; S34; S40; S48; S63; S67; S69; S70]. However, only two of 
these studies [S11; S16] add mode-alternative information to these datasets, and the processed dataset is not openly available for either 
study. As mentioned, only the processed dataset for S48 is openly available, and this dataset does not include any mode-alternative 
attributes. For an example of a large, openly available dataset with mode-alternative attributes see Hillel et al. (2018). 

Finally, no studies checked the representivity of the sample in the dataset with respect to the target population, or discussed how to 
correct for sampling biases in forecasting. When using a model for forecasting, it is essential to consider the bias in the sample, for 
example for accurate predictions of market shares. 

Table 11 
Details of hierarchies in datasets in relevant studies in review, after sampling/processing. H–P=Household-Person, P-T=Person-Tour, T-T = Tour- 
Trip.  

No. H–P P-T T-T Sampling No. H–P P-T T-T Sampling 

S1 ?   Work trips only, sampled from larger survey S39 ? ? ? Education trips only 

S3  ✓  None (SP - Multiple choices per person) S40  ✓ ✓ None (complete trip diary, individual) 

S5  ✓  None (complete activity diary, individual) S41 ✓   None (Household survey) 

S6 ? ?  Outbound work trips only (2-day) S42  ✓ ✓ None (complete trip diary, individual) 

S9  ✓  None (SP - Multiple choices per person) S43    Mobility of head of household only 

S10 ? ? ? Unclear data S44 ✓ ✓ ✓ None (complete trip diary, household) 

S11    Mobility of similar clusters S46 ? ? ? Unclear data 

S12 ? ? ? Unclear data S47  ✓ ✓ None (complete trip diary, individual) 

S13    Commute patterns from individual survey S48 ✓ ✓ ✓ None (complete trip diary, household) 

S15 ?   Outbound work trips only S51    Household mobility only 

S16 ✓ ✓ ✓ None (complete trip diary, household) S52    Commute patterns from individual survey 

S17 ? ? ? Unclear data S53  ✓  None (SP - Multiple choices per person) 

S19 ✓   Morning home-work trips only S54 ✓ ?  Home-based social trips only 

S21 ?   Outbound work trips only S56 ✓   Morning home-work trips only 

S22 ? ? ? Unclear data S57 ✓ ?  Outbound shopping trips only 

S24 ? ? ? Random sampling from larger survey S58 ✓ ✓  Home-based trips only 

S26 ? ? ? Random sampling from trip diaries S59    Household mobility only 

S27 ? ? ? Random sampling from larger survey S61 ✓ ✓ ✓ None (complete trip diary, household) 

S29 ✓   None (Household survey) S63 ✓ ✓ ✓ None (complete trip diary, household) 

S30 ✓ ✓ ✓ None (complete trip diary, household) S64 ✓ ✓  Morning peak trips only 

S31 ? ? ? Unclear data S65 ✓ ✓ ✓ None (complete trip diary, household) 

S32 ✓ ✓ ✓ None (complete trip diary, household) S66 ? ? ? Unclear data 

S33 ✓ ✓  Outbound trips only S67 ✓ ✓  Tours from household trip diary 

S34 ✓   First trip in day only S68  ✓  None (SP - Multiple choices per person) 

S35 ✓ ✓ ✓ None (complete trip diary, household) S69 ✓ ✓ ✓ None (complete trip diary, household) 

S38 ? ? ? Unclear data       
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4.4. How is model performance determined? 

The following sections discuss the techniques used to determine model performance in the 73 studies in the review, focusing in turn 
on the validation method, the sampling method, and the performance metrics used. 

Q3a: Validation method 

The validation method most commonly used in the studies is holdout validation (non-repeated), which is used in 50 studies. Train- 
test splits range from 23:77 to 91:9, but the most commonly used splits are 70:30 (12 studies), and 80:20 (12 studies). 

Seven studies use repeated holdout validation: S26 runs 50 repetitions of a 70:30 split, S37 runs 10 repetitions of a 75:25 split, S53 
runs 10 repetitions of a 70:30 split, S54 runs 3 repetitions of a 75:25 split, S60 runs 100 repetitions of a 75:25 split, and finally S29 and 
S41 run 100 repetitions of a 60:40 split. Confusingly, S26 only shows the results for both the train and validation data combined, 
averaged over the 50 runs. 

k-fold cross-validation is used in seven studies. Four studies use 10-fold cross-validation [S34; S48; S57; S61], two studies use 5-fold 
cross-validation [S52; S67], and one study [S70] uses 3-fold cross-validation. As well as 10-fold cross-validation, S57 also performs 
holdout validation (60:40 split). 

Four studies use different validation techniques for different models. Whilst they all use in-sample validation for the logit models, 
S9 uses 80:20 holdout validation for the neuro-fuzzy multinomial logit model; S7.2 uses 60:40 holdout validation for the ANN, DTY, 
and discriminant analysis models; and S58 uses Out-Of-Bootstrap (OOB) error for the RF model. Furthermore, S70 uses 3-fold cross 
validation for the majority of the ML classification techniques but uses holdout validation for the ANN models. 

Five studies use in-sample validation for all models [S5; S14; S23; S45; S59]. 
Three studies do not state the validation method used [S16; S42; S50]. 
Finally, one study [S55] does not perform any validation of the final model, instead using 5-fold cross-validation for hyper- 

parameter selection (see Q4b), and then extracting behavioural indicators from the structure of the final model. 

Q3b: Sampling method 

Of the 45 studies which use hierarchical data, or data which may be hierarchical, none mention the use of grouped (by household or 
individual) sampling. This includes all 13 studies which make use of complete, unsampled trip diaries. Furthermore, two studies which 
make use of trip diaries [S16; S42] do not state which validation technique is used at all (see Q3a). 

All studies which perform out-of-sample validation appear to use random sampling (either stated explicitly or assumed). 
Only two studies [S3; S64] test models on data collected separately from, or after, the training data (external validation). In S3, each 

city-specific model is additionally validated on the data from the other city (i.e. the model trained on Melbourne is validated on the 
data from Sydney and vice-versa). In S64 the model estimated on travel survey data collected in 2008 is tested on the data collected in 
2013. 

Q3c: Performance metrics 

The performance metrics used for model validation in each study are shown in Table 12. Note, that Table 12 and the discussion in 
this section only considers the metrics used in the studies in the review. There are many other relevant metrics which can be used to 
evaluate classifier performance, though if they are not used in the studies they are not discussed here. 

The first four columns of Table 12 show discrete metrics, where each trip is assigned to the mode with highest predicted probability. 
This is used to produce the confusion matrix, from which the other metrics (accuracy, recall, and the mode-shares) are derived. Three 
further discrete metrics (which can also be calculated from the confusion matrix) are not shown in Table 12, as they are only used in 
one or two studies each. Precision is used in S16 and S70, specificity is used in S13, and F1-score is used in S70. 

Metrics which evaluate probabilistic classification (i.e. which evaluate the probability distributions generated by classifiers, and 
not the discretised maximum probability classes) are grouped together in Table 12. Seven different probabilistic metrics are used in the 
10 different studies: percent clearly right (pi > 0.9)/clearly wrong (pi < 0.1)/unclear (0.1 <= pi <= 0.9) (i.e. where different 
probability thresholds are used to classify the confidence of the prediction) [S4; S8.1; S8.2], Arithmetic Mean Probability of Correct 
Assignment (AMPCA) (referred to as fitting factor in S4, S8.1, and S8.2; and average probability of correct assessment in S41), Mean 
Squared Error (MSE) [S4; S8.1; S8.2; S46], simulated mode shares [S4; S8.1; S8.2; S53], Receiver Operating Characteristic (ROC) 
curves [S38; S49; S61], log-likelihood [S52; S53], Bayesian Information Criterion (BIC) [S52], and Expected Simulation Recall (ESR) 
[S41]. 

Table 12 does not show the metrics used in three studies. As explained in Q3a, S55 does not perform validation of the final model, 
instead extracting behavioural indicators (sensitivities) from the structure of the final model. Note that three further papers [S2; S9; 
S68] also extract behavioural indicators from the model structure (see Q5b), however these papers validate the models using the 
confusion matrix/accuracy, which are included in Table 12. S11 performs regression on the total number of trips performed by each 
mode within a cluster, and so uses regression-based metrics (MSE and average relative variance of regression). S3 uses three metrics: 
predicted share less observed share, weighted percent correct, and weighted success index. However, no definitions for the performance 
metrics are provided in the paper, and so it cannot be determined if the metrics are discrete or probabilistic. 

In total, 60 of the remaining 70 studies use only discrete classification metrics (including three which extract behavioural indicators 
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from the probability distributions) and 10 studies use a combination of probabilistic and discrete classification metrics. Of the studies 
which use only discrete classification metrics, 35 make use of LR models. 

Fourteen studies use only one performance metric: accuracy is used as the sole metric in 9 studies [S10; S17; S25; S34; S35; S42; 
S47; S50; S54; S58; S62], recall per mode in S45, and the confusion matrix in S2. 

4.4.1. Model performance estimation - limitations 
Four technical limitations are identified in relation the model performance estimation techniques used in the studies: (i) studies 

using inappropriate validation schemes, (ii) studies using incorrect sampling methods for hierarchical data, (iii) studies not performing 

Table 12 
Summary of performance metrics used for validation in each study in review. Acc = Accuracy, Rec = Recall, CM=Confusion Matrix, MS = Mode 
Shares (Discrete), Pro = Probabilistic metric.  

No. Acc Rec CM MS Pro No. Acc Rec CM MS Pro 

S1 ✓ ✓    S35 ✓     

S2   ✓   S36 ✓ ✓    

S3 – – – – – S37 ✓ ✓    

S4 ✓ ✓   ✓ S38 ✓ ✓ ✓  ✓ 

S5 ✓ ✓  ✓  S39 ✓  ✓ ✓  

S6 ✓ ✓ ✓ ✓  S40 ✓ ✓    

S7.1  ✓ ✓   S41   ✓  ✓ 

S7.2 ✓ ✓ ✓   S42 ✓     

S7.3  ✓ ✓   S43 ✓ ✓    

S8.1 ✓ ✓   ✓ S44 ✓  ✓   

S8.2 ✓ ✓   ✓ S45  ✓    

S9 ✓  ✓   S46 ✓    ✓ 

S10 ✓     S47 ✓     

S11 – – – – – S48 ✓ ✓ ✓   

S12 ✓  ✓   S49 ✓  ✓  ✓ 

S13 ✓ ✓  ✓  S50 ✓     

S14 ✓  ✓   S51 ✓ ✓ ✓   

S15 ✓ ✓ ✓   S52 ✓  ✓  ✓ 

S16 ✓ ✓    S53 ✓   ✓ ✓ 

S17 ✓     S54 ✓ ✓ ✓  ✓ 

S18 ✓  ✓   S55 ✓     

S19 ✓ ✓ ✓   S56 – – – – – 

S20  ✓  ✓  S57 ✓ ✓    

S21 ✓  ✓   S58 ✓  ✓   

S22 ✓ ✓ ✓   S59 ✓     

S23 ✓ ✓    S60 ✓  ✓   

S24 ✓ ✓  ✓  S61 ✓ ✓  ✓  

S25 ✓     S62 ✓     

S26 ✓ ✓ ✓   S63 ✓ ✓    

S27 ✓ ✓ ✓   S64 ✓ ✓ ✓   

S28 ✓  ✓ ✓  S65 ✓   ✓  

S29 ✓ ✓ ✓   S66 ✓ ✓ ✓   

S30 ✓ ✓  ✓  S67  ✓ ✓   

S31 ✓ ✓ ✓   S68 ✓     

S32 ✓   ✓  S69 ✓  ✓   

S33 ✓   ✓  S70 ✓ ✓    

S34 ✓     Sum 63 38 33 13 10  
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external validation, (iv) studies using only discrete metrics. 
Q3a identifies 12 studies which make use of inappropriate validation schemes. This includes five studies which use in-sample 

validation [S5; S14; S23; S45; S59], four studies which use different validation techniques for different models being tested [S7.2; 
S9; S58; S70], and three which do not state the validation method being used [S16; S42; S50]. 

In-sample validation uses the same data to fit and validate the model and can be interpreted as using the train-error to estimate 
model performance. As such, it presents only the explanatory power of the model, i.e. the ability of the model to replicate the training 
data, and not the predictive performance. This is discussed in detail by Shmueli (2010). If a model has high variance, it can overfit to 
noise in the data during model fitting, without generalising to valid correlations between the input and output. This will result in 
in-sample validation overestimating the predictive performance. Without testing the model on out-of-sample data, there is no way to 
assess whether overfitting has occurred. Additionally, due to the nature of the bias-variance tradeoff (Hastie et al., 2008, Chapter 2), a 
classifier will tend to fit partially to noise in the data, even if it does not overfit. As such, the train-error will tend to overestimate 
predictive performance, even for well specified models which do not overfit. 

Formal validation of a model on data separate training data is essential to ensure ML models have generalised to the training data 
without overfitting. As such, in-sample validation is an inappropriate validation scheme. Furthermore, in order to make valid com
parisons between performance estimates of different models, the same validation method must be used for all models. Otherwise, any 
apparent differences in performance may be due to differences in the respective validation schemes. 

Q2g identifies 29 studies which make use of hierarchical data, and a further 16 which makes use of data which may be hierarchical. 
As identified by Q3b, none of these studies sample validation sets or folds grouped by individual or household. As such, trips from the 
same group (household/person/tour) will occur in both test and training data. These trips inherit correlated features from these 
groupings, which can allow for data-leakage and overfitting. 

There are valid hierarchies in datasets which can be relevant to the modelling scenario. For example, a modeller would be 
interested if students (socio-economic group) show a tendency towards cycling (correlation), or if trips made at the weekend (temporal 
grouping) were less likely to be made by public transport (correlation). In both these cases, the hierarchies (groups) are general, and 
described by information in the feature vector. As such, these correlations are likely to be constant across the training data and future 
unknown trips, and so are relevant to the modelling scenario. 

Conversely, the hierarchies identified by Q2g are not representative of the population (and instead are a feature of our data 
sampling). As such, these hierarchies are not relevant to the modelling scenario, and will boost the apparent performance of the model, 
whilst in reality causing it to perform worse on true unseen data. 

This is particularly problematic for the 13 studies which use complete trip diary data [S16; S30; S32; S35; S40; S42; S44; S47; S48; 
S60; S61; S63; S65; S69]. Many of these trip diaries are multi-day, compounding the issue. Notably, S48 uses a six-day trip diary 
(average 3.3 trips per person), S47 uses sets of GPS trips logged over four months (average 58.4 trips per person), and S63 uses a six- 
week travel diary (average 144.8 trips per person). This problem is not unique to mode choice modelling applications. Saeb et al. 
(2017) conduct a review of sampling methods in studies using ML to make clinical predictions from smartphone or wearable tech
nology data. They review studies which use hierarchical data, where there are multiple records for each individual subject. They find 
that of the 62 of the studies included in the meta-analysis, 28 (45%) use inappropriate record-wise sampling, instead of subject-wise 
sampling. 

Q3b identifies that only two of the studies reviewed use external validation, where the model is validated on data collected sepa
rately from, or after, the training data [S3; S64]. External validation using future data is the only possible method of directly simulating 
the use case for a mode choice model, of predicting future, unknown trips. External validation can also identify issues with data- 
leakage, overfitting, and incorrect validation schemes, e.g. the incorrect sampling methods for hierarchical data, as highlighted by 
Q2g. 

Finally, Q3c identifies that the vast majority of studies (60/73) use only discrete metrics to assess model performance, where each 
trip is assigned to the mode with the highest predicted probability. This includes 35 studies which assess LR using only discrete 
classification metrics, despite LR being a statistical technique intended to generate probability distributions. In total, only six studies 
make use of strictly proper continuous scoring metrics, log-likelihood [S52; S53] and MSE [S4; S8.1; S8.2; S46] (Gneiting and Raftery, 
2007). Note that the log-likelihood (also known as logarithmic score and Cross-Entropy Loss (CEL)) can be normalised by dividing by 
the sample size. This can allow for comparison between samples of different sizes. 

There are a number of issues with using only discrete metrics to assess choice prediction. Firstly, discretising the classification by 
assigning each observation to the highest probability class is not a proper use of output choice probabilities, and will likely result in 
non-representative mode-shares in imbalanced data. Mode choice data is inherently imbalanced, i.e. there are likely more trips made 
by some modes (e.g. car, walking) than others (e.g. cycling). By assigning each prediction to the class with highest probability, the less 
frequent classes will be under-represented in the predicted outcomes, and the more frequent classes will be over-represented. For 
example, consider a biased random coin flip, where heads is 60% likely to occur, and tails occurs with 40% probability. The best 
possible predictive classification model will predict these outcomes at their respective probabilities for each coin flip event. However, 
assigning the highest probability class for the prediction will result in heads always being predicted (and never tails) as heads is always 
more likely than tails. This clearly results in non-representative class shares. Non-representative mode-shares are unacceptable for 
mode choice models, where the mode-shares are a crucial model output. Where discrete predictions are needed from a probabilistic 
model, the assignment should be simulated by drawing the predicted labels from the output probability distributions. This results in 
representative mode shares. 

Similarly, by generating a discrete class for each observation, mode choice is treated as a deterministic instead of a stochastic 
process. As such, it is assumed that mode choice is constant under the same set of conditions and socio-economic characteristics. In 
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reality, the model does not contain all information describing the choice, and passengers have a degree of intra-heterogeneity. As such, 
a passenger’s choice can be considered as being drawn randomly from a probability distribution given the observed features in the 
model (as with the coin-flip example). We define this distribution as the true model, which we aim to replicate with the classification 
model. In order to account for this stochastic heterogeneity in simulation, the predicted mode choice should be drawn from a prob
ability distribution. The metric used to assess model performance should therefore represent how well the predicted probability 
distributions fit the data. 

Additionally, discrete metrics do not assess how right or wrong model predictions are. For example, when using discrete metrics, 
the contribution to the model’s score for a trip where a binary classifier predicts the selected mode at 1% probability is the same as that 
for a trip where the classifier predicts the selected mode at 49% probability. Analysing the probability distributions presents infor
mation on where the model performs well or poorly. 

Finally, by taking the maximum of the class probabilities, discrete predictions and the associated metrics are discontinuous. This 
results in discrete metrics having an expected score which is not differentiable or strictly convex. Additionally, accuracy and other 
discrete metrics are not strictly proper scoring rules, and as such do not have unique maximums (Gneiting and Raftery, 2007). This 
makes discrete metrics poor metrics to use during model fitting, particularly where a continuous gradient is required (e.g. gradient 
descent). 

Note that the use of discrete metrics alongside strictly proper scoring rules as an easily interpretable indication of performance to be 
compared between studies is not considered as a limitation in this study. Instead, it is only considered as a limitation if a paper uses only 
discrete metrics, with no probabilistic metrics. 

Of the four technical limitations related to model performance estimation, three represent pitfalls (using inappropriate validation 
schemes, using incorrect sampling for hierarchical data, and using only discrete metrics), and one represents an area for improvement 
(not performing external validation). 

4.5. How are optimal model hyper-parameters selected? 

Hyper-parameters are parameters of classification algorithms which are used to regularise the model during model training. The 
selected hyper-parameters impact the bias and variance of the fitted model. This section discusses the techniques used to optimise 
model specifications and hyper-parameters for conventional ML classification algorithms (ANNs, DTs, EL, SVMs). The 14 studies which 
do not use at least one these algorithms are therefore omitted from this section of the review [S9; S10; S12; S14; S18; S19; S25; S28; 
S30; S33; S39; S40; S42; S52]. 

The following sections review the remaining 49 studies, focusing in turn on the hyper-parameter search method, the hyper- 
parameter validation method, and the hyper-parameter validation data. 

Q4a: Hyper-parameter search method 

Of the 59 studies which use at least one conventional ML algorithm, 11 do not mention hyper-parameter values at all within the 
paper [S7.1; S7.2; S7.3; S23; S27; S32; S35; S45; S46; S50; S58]. A further 10 studies either state hyper-parameter values without 
explanation [S2; S13; S34; S36; S43; S61; S67; S69], or state that they use default values [S24; S51]. 

This leaves 38 studies which use some form of hyper-parameter optimisation. Fifteen studies [S1; S3; S4; S5; S11; S16; S21; S37; 
S54; S56; S57; S60; S62; S64; S68] perform a manual search, or trial and error, in order to identify model parameters. Of these, S16 
searches only for the kernel function in an SVM and uses default values for all other parameters and models, and S1 searches for the 
number of neurons in a single test layer, again using default values for other parameters. 

Eleven studies [S15; S17; S20; S22; S26; S29; S31; S41; S44; S49; S59; S66] specify an MLP with a single hidden layer and perform a 
linear search on the number of neurons in that layer. With the exception of S15, which performs a grid search for the SVM parameters 
(γ and C), default values are used for all other parameters of all models. 

One study [S44] uses a repeated linear search, firstly on the loss-weight ratio of the two classes in each model, and secondly on the 
number of features used. 

Seven studies [S6; S8.1; S8.2; S48; S53; S63; S65; S70] make use of a grid search to find optimal hyper-parameters. This includes 
S65, which optimises the RF model using a grid-search, but uses default values for all other parameters. 

One study [S38], tests two different search strategies in order to find optimal SVM parameters (γ and C): grid search and genetic 
algorithms. The study finds that whilst the two methods find optimal solutions with similar accuracies, the genetic algorithm finds the 
solution with the lower penalty parameter (C), and so is preferred. 

One study [S55] uses the early stopping method of GBDTs, where DTs are sequentially added to the ensemble until the out-of-sample 
predictive performance stops improving. 

Finally, one study [S47] states that cross-validation is used to select model parameters but does not state the search method used. 

Q4b: Hyper-parameter validation method 

Of the 38 studies which use some form of hyper-parameter optimisation, 13 do not state the validation method used to determine 
optimal values [S1; S11; S16; S20; S22; S26; S31; S37; S54; S57; S62; S64; S70]. 

Eleven studies [S3; S4; S6; S15; S29; S49; S53; S56; S59; S66; S68] use holdout validation. Nine studies [S5; S21; S38; S44; S47; S48; 
S57; S60; S63] use k-fold cross-validation. One study [S41] uses repeated holdout validation. One study [S17] uses in-sample 
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validation. One study [S65] uses the OOB error of the DTs in the RF. 
Finally, two studies [S8.1, S8.2] use a complex multi-criteria assessment, involving relative performance on both the calibration 

and validation data. 

Q4c: Hyper-parameter validation data 

Of the 38 studies which use some form of hyper-parameter optimisation, 19 do not state the data used for hyper-parameter 
validation [S1; S3; S11; S16; S20; S22; S26; S29; S31; S37; S38; S47; S54; S57; S62; S63; S64; S66; S70]. 

Of the nine studies which use k-fold cross-validation to test hyper-parameter performance, two use only the training data [S15; 
S21], one uses a random subset of 43% of the data [S48], three use all of the data [S5; S55; S60], and three do not state the data used 
(included above). The study which uses repeated validation also uses all of the data [S41]. 

Of the 11 studies which use holdout validation, three use the data reserved for model testing [S4; S53; S56], two use only the train 
data, dividing it into a new test and train fold [S6; S21], three uses a separate validation sample which is not used for model testing or 
training [S49; S59; S68], and three do not state the data used (included above). 

Finally, the two studies which use the multi-criteria assessment [S8.1; S8.2] use both the train and test data. 

4.5.1. Model optimisation - limitations 
Four limitations are identified in relation the model optimisation techniques used in the studies. Three limitations are technical: (i) 

studies not performing any type of hyper-parameter optimisation, (ii) studies not using rigorous hyper-parameter search schemes, (iii) 
studies optimising hyper-parameters on validation data; and one is general: not presenting model hyper-parameters used within the 
study. 

Three technical limitations are identified by the attributes related to hyper-parameter optimisation collected in the systematic 
review. Of the 59 studies which use one or more conventional ML models to investigate mode choice, Q4a identifies 21 studies which 
do not perform any type of hyper-parameter optimisation. This includes 11 which do not state hyper-parameter values at all, and 10 
which use default values or provide values without explanation. Model performance is highly dependent on chosen hyper-parameter 
values. Additionally, optimal hyper-parameter values are highly task dependent, and will vary for different datasets, metrics, sce
narios, etc. Using default hyper-parameter values, or values from previous studies with different modelling scenarios or data, is 
therefore likely to result in sub-optimal hyper-parameters being used, and the resultant model will perform worse than the optimised 
model. If the hyper-parameters of each classifier have not been optimised, it is not possible to make valid comparisons between the 
respective algorithms, as any difference in model performance may be due to better hyper-parameter values selected for one algorithm 
than another. 

Q4a also identifies that no studies use a fully rigorous hyper-parameter search method. Many studies use inconsistent search 
methods, only searching over one parameter within one model (e.g. number of neurons in a hidden layer), whilst leaving all others 
with default values. Optimising only the parameters for only a subset of classifiers being compared will tend to improve the perfor
mance of those classifiers over those which have not been optimised. Additionally, the search space should cover all dimensions of the 
hyper-parameter space, otherwise optimal values are unlikely to be found. Whilst certain hyper-parameters may have little/no effect 
on model performance, there is no way to determine this unless they are tested. 

Additionally, search schemes should be used which maximise the probability of finding optimal hyper-parameters in an unbiased 
manner. Only one study uses an automated sequential search (genetic algorithm in S38) to optimise model hyper-parameters, the rest 
either using a pre-specified search space (linear search/grid search) or manual search/trial and error. 

The primary advantages of manual search are its simplicity and the ability to use the modeller’s intuition (from previous trials and 
similar classification tasks) to influence subsequent guesses. However, manual search presents both high potential for the introduction 
of bias, and difficulty in reproducing results. Additionally, as the search is manual and cannot be parallelised, it practically limits the 
modeller to a small number of trials in S. 

Grid-search predefines a set of candidate values for each hyper-parameter and use them to define a search space S containing each 
unique combination of values. Grid-search can be both automated and parallelised, and therefore enables a greater set of candidate 
values to be searched than with a manual search. However, grid-search is unable to learn from previous evaluations, and so spends a lot 
of time evaluating candidate values which are unlikely to perform well. Additionally, the same values for each hyper-parameter are 
repeated for each dimension of the search, limiting the likelihood of evaluating the optimal value for each hyper-parameter. As such, 
grid-search is highly inefficient for hyper-parameter selection and has been shown to perform poorly in practice at finding optimal 
hyper-parameter values compared to other search schemes, including random search (Bergstra and Bengio, 2012). 

Finally, Q4c identifies eight studies which include the validation data in the hyper-parameter search [S4; S5; S8.1; S8.2; S41; S53; 
S56; S60], as well as 19 which do not state the data used [S1; S3; S11; S16; S20; S22; S26; S29; S31; S37; S38; S47; S54; S57; S62; S63; 
S64; S66; S70]. Fitting hyper-parameters to the holdout validation data allows the model to select optimal hyper-parameters spe
cifically for that data. In other words, this presents the potential for the model to fit to the validation data using the hyper-parameters 
(data leakage). This will upward bias the performance estimate over that which would be achieved with previously unseen data. This is 
explored by Varma and Simon (2006), who show that cross-validation provides an upward biased estimate of true performance if it is 
used for model optimisation. 

As discussed, validating a model on previously unseen data is an essential step in predictive modelling. Holdout validation data 
should not be seen by the model at any time during model development (including hyper-parameter optimisation) until the testing of 
the finished model. 
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Of the three technical limitations related to model optimisation, one represents a pitfall (optimising hyper-parameters on validation 
data), and two represent areas for improvement (not performing hyper-parameter optimisation, and studies not using rigorous hyper- 
parameter search schemes). 

The discussion of Q4c also highlights one general limitation, that studies do not report the model hyper-parameters and hyper- 
parameter selection schemes with sufficient detail. As with the details of methodologies in Q2, this is problematic for repeatability 
of the mode choice experiments implemented in these studies. Hyper-parameter values and selection schemes should be recorded in 
detail in order to ensure repeatability of the studies. 

4.6. How are the final models analysed? 

This section discusses how the finalised models (i.e. after training, optimisation, and validation) are analysed, focusing in turn on 
statistical testing; and the extraction of behavioural indicators. 

Q5a: Statistical testing 

Across all 73 studies, only four [S26; S48; S53; S60] conduct any analysis of the uncertainty or distribution of model performance. 
S48 uses 10-fold cross validation to estimate the accuracy of seven different classifiers. Firstly, the study uses a Kruskal-Wallis test at a 
5% significance level to test the null hypothesis that the performance estimates of all classifiers tested are not significantly different 
from one-another. Secondly, a two-sided Wilcoxon rank-sum test is applied pairwise between the classifiers to test whether different 
pairs of classifiers are significantly different from each other. 

Three studies [S26; S53; S60] estimate the standard deviation of the metrics (accuracy in S26 and S53, and accuracy and recall in 
S60) across each run of k-fold cross-validation/repeated holdout validation. These estimates of standard deviations are not used to 
form any formal significance tests in these studies. 

Q5b: Extraction of behavioural indicators 

As ML classifiers do not have an underlying behavioural model, it is not straightforward to extract behavioural indicators (e.g. VoT 
and choice elasticities). Several papers include details of the ML models’ structural information, including DT structure, feature im
portances, decision rules from Rough Set Models (RSMs), etc. However, this is not equivalent to the behavioural indicators that can be 
obtained from RUMs. 

Overall, only four papers [S2; S9; S55; S68] attempt to extract standard behavioural indicators from the ML classifiers. These four 
papers all perform elasticity or sensitivity analysis: S2 calculates aggregate point elasticities by modifying the variable of interest for all 
observations in the dataset and rerunning the model, whilst the remaining three papers conduct disaggregate analysis at the mean 
values for the other variables (sensitivities in S9 and S57 and probability derivatives in S68). S68 additionally calculates VoT estimates 
from the probability derivatives for travel time and cost. 

Five further papers [S12; S28; S30; S39; S57] calculate aggregate mode-share changes for different policy options, by modifying the 
variables of interest across the dataset, and rerunning the model. 

4.6.1. Model selection - limitations 
Two limitations are identified in relation to analysis of the final models in the studies in the review. One limitation is technical: 

studies not analysing uncertainty in performance estimates; and one is general: a limited understanding of how to use ML classifiers to 
inform policy decisions. 

Q5a identifies that 69 out of the 73 studies do not analyse the expected distribution of the performance estimates. Each evaluation 
of model performance on a validation sample (whether through holdout validation or repeated cross-validation) is a random variable. 
If the distributions of the performance estimates are not accounted for, any apparent differences between different classifiers’ per
formance estimates may be due to noise in this variable. Whilst several papers discuss the relative performance of classifiers for the 
mode choice prediction task, only one [S48] applies any formal test to investigate the statistical significance of differences between the 
classifiers. Additionally, as a discontinuous scoring metric (accuracy) is used and the number evaluations is low (10 folds of cross- 
validation) the direct distribution of the metric cannot be analysed, and instead non-parametric pairwise testing is used. This limi
tation represents an area for improvement. 

Q5b identifies that there is currently a limited understanding in the literature of how to use ML classifiers to inform policy de
cisions. Few papers in the review attempt to extract behavioural indicators from ML classifiers, beyond the model’s structural in
formation. These are key outputs from RUMs that are used to inform policy making decisions. There is therefore a need to investigate 
further how these models can be used aside from prediction, for example to inform policy changes. 

5. Conclusions 

This paper conducts a systematic review of ML methodologies for modelling passenger mode choice. The review investigates five 
research questions covering classification techniques, datasets, performance estimation, model optimisation, and model selection. 

A comprehensive search methodology across the three largest online publication databases is designed and used to identify 574 
unique records. The record titles, abstracts, and publication details are screened for relevance, leaving 116 articles. The technical 
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content of the full-text of these articles is assessed according to the eligibility criteria. In total, following the two screening processes, 
70 full text peer-reviewed articles containing 73 primary studies are used for data extraction. 

The studies are each reviewed in detail to extract 17 attributes covering the five research questions. Through this process, 16 
limitations are identified: 10 technical limitations, and six general limitations. The limitations are summarised in Table 13. As shown in 
the Table 13, each technical limitation belongs to one of the classification stages out of classification techniques, datasets, performance 
estimation, model optimisation, and model selection. 

Of the 10 limitations, five represent pitfalls in the methodologies which are likely to result in unreliable estimates of model per
formance and impact the results of an investigation, and five are identified as areas for improvement which are not strictly incorrect but 
could be addressed in order to improve the reliability of the results and/or predictive performance of the models. 

A full summary of the technical limitations present in each study is given in Table 14. All studies have at least three technical 
limitations within their methodology, and only one study does not have any of the pitfalls [S49]. 

The prevalence of the limitations identified in this review highlights the need for a deeper understanding of the methodologies used 
for ML modelling of choice behaviour. Whilst experimental assessment of the implications of these limitations is left to further work, it 
is clear that several of the pitfalls violate the central holdout validation principle of ML classification. In particular, TL4 (Studies using 
incorrect sampling methods for hierarchical data), which is present in all studies which use unsampled trip-diary data, has serious data 
leakage implications, as the model is essentially validated on data it has observed during model training. 

5.1. Recommendations and further work 

As this paper shows, there is increasing research focus on ML as an alternative to RUMs for modelling passenger mode choice. This 
approach has the potential to provide valuable new insights into mode choice modelling research questions when used correctly. 
However, from the analysis in the systematic review, it is clear that the methodologies used are highly fragmented, and there needs to 
be further work to establish good standard methodological practice for the use of ML for choice modelling. In particular, almost all of 
the studies identified in the review show at least one of five methodological pitfalls identified, which will result in biased estimates of 
model performance. This review has not performed any quantitative analysis of the impacts of these pitfalls, or of the relative per
formance of the classifiers considered. 

As identified by the general limitations, there is inconsistent representation of RUMs within papers that compare ML and RUMs. 
Furthermore, there is a limited understanding of how to use ML classifiers to inform policy decisions. 

This leaves four key directions for further work: (i) establish a standardised methodology which can be used for both ML and 
random utility approaches which addresses the limitations raised in this review, (ii) use the methodology to investigate the impacts of 
the identified pitfalls on modelling results, (iii) use the methodology evaluate ML and RUM approaches to quantify fairly the trade-off 
in terms of predictive ability, and (iv) investigate how ML approaches can be used to inform policy changes and/or assist in speci
fication of RUMs. 

5.2. Limitations of systematic review 

This section analyses the limitations of the review with respect to the recommended PRISMA guidelines (Moher et al., 2009). 
This review focuses on ML classification methodologies for modelling passenger mode choice. It therefore does not cover 

Table 13 
Limitations identified within systematic review.  

No. Classification stage Description Type  

Technical limitations   

TL1 Datasets Studies not including any attributes of the mode-alternatives Area for improvement 
TL2 Datasets Studies using input features which are dependent on output choice Pitfall 
TL3 Model validation Studies using inappropriate validation schemes Pitfall 
TL4 Model validation Studies using incorrect sampling methods for hierarchical data Pitfall 
TL5 Model validation Studies not performing external validation Area for improvement 
TL6 Model validation Studies using only discrete metrics Pitfall 
TL7 Model optimisation Studies not performing any type of hyper-parameter optimisation Area for improvement 
TL8 Model optimisation Studies not using rigorous hyper-parameter search schemes Area for improvement 
TL9 Model optimisation Studies optimising hyper-parameters on test data Pitfall 
TL10 Model analysis Studies not analysing uncertainty in performance estimates Area for improvement  

General limitations   

GL1 Classification algorithms Inconsistent representation of logit models in ML studies 
GL2 Datasets Not describing the dataset and modelling process in sufficient detail 
GL3 Datasets Lack of relevant, openly available datasets including mode-alternative attributes 
GL4 Datasets Not considering sampling of the data from the population 
GL5 Model optimisation Not presenting specific model hyper-parameters 
GL6 Model analysis Limited understanding of how to use ML classifiers to inform policy decisions  
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Table 14 
Summary of limitations within each study in systematic review.  

No. Paper TL1 TL2 TL3 TL4 TL5 TL6 TL7 TL8 TL9 TL10 Sum 

S1 Raju et al. (1996)    ? ✓ ✓  ✓ ? ✓ 6 

S2 Subba Rao et al. (1998)     ✓ ✓ ✓ ✓  ✓ 5 

S3 Hensher and Ton (2000      ?  ✓ ? ✓ 4 

S4 Cantarella and de Luca (2003)     ✓   ✓ ✓ ✓ 4 

S5 Van Middelkoop, Borgers, and Timmermans (2003 ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ 8 

S6 Xie et al. (2003) ✓ ✓  ? ✓ ✓  ✓  ✓ 7 

S7.1 Karlaftis (2004)  ✓   ✓ ✓ ✓ ✓  ✓ 6 

S7.2 –  ✓ ✓  ✓ ✓ ✓ ✓  ✓ 7 

S7.3 –  ✓   ✓ ✓ ✓ ✓  ✓ 6 

S8.1 Cantarella and de Luca (2005)     ✓   ✓ ✓ ✓ 4 

S8.2 –     ✓   ✓ ✓ ✓ 4 

S9 Andrade et al. (2006)   ✓  ✓ ✓ NA NA  ✓ 4 

S10 Shafahi and Nazari (2006    ? ✓ ✓ NA NA  ✓ 4 

S11 Edara, Teodorovi’c, and Baik (2007     ✓ NA  ✓ ? ✓ 4 

S12 Errampalli et al. (2007)    ? ✓ ✓ NA NA  ✓ 4 

S13 Moons et al. (2007)     ✓ ✓ ✓ ✓  ✓ 5 

S14 Wang and Namgung (2007) ✓  ✓  ✓ ✓ NA NA  ✓ 5 

S15 Zhang and Xie (2008)    ? ✓ ✓  ✓  ✓ 5 

S16 Biagioni et al. (2009)  ✓ ✓ ✓ ✓ ✓  ✓ ? ✓ 8 

S17 Chalumuri et al. (2009)    ? ✓ ✓  ✓  ✓ 5 

S18 Seetharaman et al. (2009)     ✓ ✓ NA NA  ✓ 3 

S19 Lu and Kawamura (2010)    ✓ ✓ ✓ NA NA  ✓ 4 

S20 Zhao et al. (2010)     ✓ ✓  ✓ ? ✓ 5 

S21 Xian-Yu (2011) ✓   ? ✓ ✓  ✓  ✓ 6 

S22 Yin and Guan (2011) ? ?  ? ✓ ✓  ✓ ? ✓ 8 

S23 Zenina and Borisov (2011) ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ 8 

S24 Zhou and Lu (2011) ✓   ? ✓ ✓ ✓ ✓  ✓ 7 

S25 Dell’Orco and Ottomanelli (2012)     ✓ ✓ NA NA  ✓ 3 

S26 Tang et al. (2012) ✓   ? ✓ ✓  ✓ ?  6 

S27 Gao et al. (2013) ✓   ? ✓ ✓ ✓ ✓  ✓ 7 

S28 Kumar et al. (2013)     ✓ ✓ NA NA  ✓ 3 

S29 Omrani et al. (2013)    ✓ ✓ ✓  ✓ ? ✓ 6 

S30 Pulugurta et al. (2013)    ✓ ✓ ✓ NA NA  ✓ 4 

S31 Ramanuj and Gundaliya (2013) ✓ ✓  ? ✓ ✓  ✓ ? ✓ 8 

S32 Shukla et al. (2013) ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ 8 

S33 Cheng et al., 2014 ✓   ✓ ✓ ✓ NA NA  ✓ 5 

S34 Hossein et al. (2014) ✓   ✓ ✓ ✓ ✓ ✓  ✓ 7 

S35 Rasouli and Timmermans (2014) ✓   ✓ ✓ ✓ ✓ ✓  ✓ 7 

S36 Ermagun, Rashidi, and Lari (2015)     ✓ ✓ ✓ ✓  ✓ 5 

S37 Gazder and Ratrout (2015) ✓ ✓   ✓ ✓  ✓ ? ✓ 7 

S38 Jia et al. (2015) ✓   ? ✓   ✓ ? ✓ 6 

S39 Kedia, Saw, and Katti (2015) ✓   ? ✓ ✓ NA NA  ✓ 5 

S40 Ma (2015) ✓ ✓  ✓ ✓ ✓ NA NA  ✓ 6 

S41 Omrani (2015)    ✓ ✓   ✓ ✓ ✓ 5 

(continued on next page) 
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contributions related to other ML techniques that have been used to investigate mode choice modelling, including clustering, rein
forcement learning, and generative models. Furthermore, the review does not include ML applications for other choice modelling 
applications. However, the authors believe the findings of the review are relevant to other choice modelling domains. 

Whilst a comprehensive and exhaustive search methodology covering the three largest online databases is used to identify relevant 
literature, there may have been relevant studies which are not included. In particular, the requirement for phrases related to mode 
choice in the title (used to pre-screen irrelevant articles) may have omitted studies which are of relevance to the review. Additionally, 
the review does not consider grey literature or unpublished material. However, in this new, research-led field, the authors are 
confident that the state-of-the-art techniques are well covered by the sample of studies assembled. 

This review focuses purely on the methodologies used in each study and makes no attempt to draw conclusions on the findings 
reported by each paper. As such, no assessment is made of the quality of each paper, nor the publication bias of the field. 

Whilst the procedure for the review is designed to be as objective as possible, the data extraction and discussion is carried out by the 
first author, under the guidance of the co-authors. This is according to available resources. All results and decisions have been double 
checked, but there may be remaining errors, which are the responsibility of the authors. 

CRediT authorship contribution statement 

Tim Hillel: Conceptualization, Investigation, Writing - original draft. Michel Bierlaire: Writing - review & editing, Supervision. 
Mohammed Z.E.B. Elshafie: Supervision. Ying Jin: Writing - review & editing, Supervision. 

Table 14 (continued ) 

No. Paper TL1 TL2 TL3 TL4 TL5 TL6 TL7 TL8 TL9 TL10 Sum 

S42 Papaiolannou and Martinez (2015)   ✓ ✓ ✓ ✓ NA NA  ✓ 5 

S43 Pitombo et al. (2015) ✓ ✓   ✓ ✓ ✓ ✓  ✓ 7 

S44 Tang et al. (2015)  ✓  ✓ ✓ ✓  ✓  ✓ 6 

S45 Li et al. (2016) ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ 8 

S46 Sekhar, Minal, and Madhu (2016) ? ?  ? ✓  ✓ ✓  ✓ 7 

S47 Semanjski et al. (2016) ✓    ✓ ✓  ✓ ? ✓ 6 

S48 Hagenauer and Helbich (2017) ✓   ✓ ✓ ✓  ✓   5 

S49 Hussain et al. (2017) ✓    ✓   ✓  ✓ 4 

S50 Juremalani (2017) ✓  ✓  ✓ ✓ ✓ ✓  ✓ 7 

S51 Lindner, Pitombo, and Cunha (2017) ✓    ✓ ✓ ✓ ✓  ✓ 6 

S52 Ma et al. (2017)  ✓   ✓  NA NA  ✓ 3 

S53 Nam et al. (2017)     ✓   ✓ ✓  3 

S54 Assi, Nahiduzzaman, et al. (2018) ✓ ✓   ✓ ✓  ✓ ? ✓ 7 

S55 Ding et al. (2018) ✓  ✓ NA ✓ NA  ✓ ✓ ✓ 6 

S56 Golshani et al. (2018)    ✓ ✓ ✓  ✓ ✓ ✓ 6 

S57 Lee et al. (2018)    ✓ ✓ ✓  ✓ ? ✓ 6 

S58 Liang et al. (2018) ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ 8 

S59 Srivastava and Ravi Sekhar (2018)   ✓  ✓ ✓  ✓  ✓ 5 

S60 Wang and Ross (2018)  ✓  ✓ ✓ ✓  ✓ ✓  6 

S61 Zhu et al. (2018)    ✓ ✓  ✓ ✓  ✓ 5 

S62 Assi and Shafiullah (2019) ✓ ✓   ✓ ✓  ✓ ? ✓ 7 

S63 Chang et al. (2019) ✓ ✓  ✓ ✓ ✓  ✓ ? ✓ 8 

S64 Chapleau et al. (2019)  ✓  ✓  ✓  ✓ ? ✓ 6 

S65 Cheng et al., 2019  ✓  ✓ ✓ ✓  ✓  ✓ 6 

S66 Minal et al. (2019) ? ?  ? ✓ ✓  ✓ ? ✓ 8 

S67 Pirra and Diana (2019) Wang and Zhao (2019) ✓   ✓ ✓ ✓ ✓ ✓  ✓ 7 

S68 Wang and Zhao (2019)    ✓ ✓ ✓  ✓  ✓ 5 

S69 Yang and Ma (2019)  ✓  ✓ ✓ ✓ ✓ ✓  ✓ 7 

S70 Zhou et al. (2019) ? ? ✓  ✓ ✓  ✓ ? ✓ 8 

Sum  34 26 13 40 71 61 21 59 28 69  

✓: Limitation present, ?: Unclear from text, NA: Not appicable. 
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