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Instrumentation of infrastructure is changing the way engineers design, construct, monitor and maintain structures
such as roads, bridges and underground structures. Data gathered from these instruments have changed the hands-
on assessment of infrastructure behaviour to include data processing and statistical analysis procedures. Engineers
wish to understand the behaviour of the infrastructure and detect changes – for example, degradation – but are
now using high-frequency data acquired from a sensor network. Presented in this paper is a case study that models
and analyses in real time the dynamic strain data gathered from a railway bridge which has been instrumented with
fibre-optic sensor networks. The high frequency of the data combined with the large number of sensors requires
methods that efficiently analyse the data. First, automated methods are developed to extract train passage events
from the background signal and underlying trends due to environmental effects. Second, a streaming statistical
model which can be updated efficiently is introduced that predicts strain measurements forward in time. This tool is
enhanced to provide anomaly detection capabilities in individual sensors and the entire sensor network. These
methods allow for the practical processing and analysis of large data sets. The implementation of these
contributions will be essential for demonstrating the value of self-sensing structures.
Notation
Cb scaled and centred observation for strain records
k moving window half-width
l batch window half-width
Ms statistical model for sensor s
mt Î ℝ (weighted) sum of xt values at time instance t
N(m, s2) normal distribution with mean m Î ℝ and variance

s 2 > 0
nt (weighted) number of xt values observed at time

instance t
ps p-value from one-step-ahead prediction of Y ðsÞ

t

R2 coefficient of determination
S total number of sensors
s sensor
T final time index
t time index
Us train passage event times of sensor s
v number of datapoints in batches
w number of datapoints used in a sliding window
X2 Fisher’s X2 statistic
xt Î ℝ generic values at time instance t
xt (weighted) average of x1,…,xt
Y ðsÞ
t random variable of the strain record for sensor s at

time tbY ðsÞ
t one-step-ahead prediction for sensor s at time t − 1

Zb moving average of strain records
a p-value threshold, below which an anomaly is

signalled
bj unknown linear parameters in model Ms for j = 0, 1,

…,s
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g microstrain threshold
et strain at time instance t
z X2 threshold, above which an anomaly is signalled
lf forgetting factor
lt wavelength at time instance t: nm
r photoelastic coefficient
sj jth standard deviation for centred observations
c2
2S chi-squared distribution with 2S degrees of freedom

wf t-th noise term in model Ms

1. Introduction
The potential of smart infrastructure to make more efficient use of
existing and new assets has been estimated to be worth between
£2 and £4·8 trillion globally (Bowers et al., 2016). At the centre of
this shift towards making assets smarter is the advance and
maturity of sensor development and deployment. However, the
introduction of vast sensor networks within infrastructure has
already begun to inundate owners, engineers and maintainers with
large volumes and varied quality, velocity and variety of data.
From a civil engineering perspective, instrumentation of structures
such as bridges has the potential to transform the design,
construction, assessment and maintenance life cycle phases. One of
the main challenges lies in the development of innovative methods
for managing, processing, analysing and interpreting the data
obtained from smart infrastructure assets. A collaboration between
engineers at the Centre for Smart Infrastructure and Construction
(CSIC) at the University of Cambridge and data scientists at the
Lloyd’s Register Foundation-funded Programme on Data-centric
Engineering (DCE) at the Alan Turing Institute is focused on
addressing this challenge. DCE is a synthesis of approaches to
studying physical engineering assets which leverages physics-
based models which are updated based on measured data from the
actual physical asset in operation and statistical (data-driven)
models. This approach combines physical prior knowledge with
empirical data, providing for the physical asset a ‘digital twin’
(Lau et al., 2018). The current study focuses on development of
the statistical models. Statistical techniques offer a means of
monitoring structural health which does not require knowledge of
the structure’s behaviour. Instead, such models can be used to
characterise the baseline (undamaged) state of a structure.

From the sensor network, there are long sequences of data which
can be regarded as existing in one of two main states: when the
bridge is under load (train passage events) and under no load. In
reasoning about deterioration, one might be interested in how
quickly the bridge recovers after a train passage event. A tool is
provided for extracting the train passage events from such data (see
later in Section 3.2). To monitor the bridges’ instantaneous health,
models that handle the high frequency of the data are needed. These
models can then be deployed for anomaly detection to identify
departures from the recent historical behaviour, as illustrated in
Section 3.6. Identifying the timing and frequency of such anomalies
will provide another mechanism for reasoning about degradation.
This long-term degradation through the sensor system is monitored.
The data are the response of the sensor system to stimulus (in this
4
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case the passage of a train over the bridge) and not the response of
the bridge itself. Thus, through the data, one is reasoning about the
recovery of the sensor network and indirectly the bridge.

While there have been advances in recent years which have studied
the application of statistical techniques in structural health
monitoring (SHM), there is still significant scope for improvement
and for introducing new concepts. Studies by Gul and Catbas (2009)
investigated the use of autoregressive (AR) models in conjunction
with an outlier detection algorithm based on the Mahalanobis
distance. They validated their techniques based on two simplified
laboratory steel beam and steel grid test specimens and under
controlled ambient conditions. Rosales and Liyanapathirana (2017)
investigated data obtained for a wireless sensor network attached to
an experimental test frame. They employed both AR models and
AR models with exogenous inputs (ARX) after the paper of Lei et
al. (2003). Based on a comparison between the two techniques, they
concluded that the ARX model, while being more computationally
costly, provided significant improvement over the AR model in its
potential to localise and quantify damage better. A study conducted
by Noman et al. (2012) also utilised AR but applied the technique
to a real structure, the Portage Creek Bridge in Victoria, Canada.
They were able to use such techniques to conclude that little
evidence of long-term deterioration was occurring within the
structure. Another approach based on generalised Bayesian dynamic
linear models (BDLMs) was proposed by Goulet (2017). Based on
simulations, this study developed a framework for constructing,
learning and estimating BDLMs whereby hidden effects such as
daily and seasonal temperature variations and missing or outlier data
could be incorporated.

While several previous studies have investigated various methods
for modelling and interpreting data gathered from SHM systems,
few have considered this challenge in the context of big data sets
obtained from real structures and operating in real time. ‘Self-
sensing’ or ‘sensory’ structures are those which contain an
integrated sensor system for determining the state of the structure
itself (Measures et al., 1992). Based on operational data gathered
from a recently constructed self-sensing railway bridge, this study
proposes several solutions for batch and real-time processing of
the data. In particular, the primary research contributions from this
paper include

■ development of a statistical method based on adaptive linear
models for analysing and interpreting large and continuously
updated data sets in real time

■ introduction of a real-time anomaly detection scheme based
on individual and network sensor data.
2. Self-sensing railway bridge

2.1 Sensor system
Completed in March 2016, a 26·8 m composite steel-concrete
half-through railway bridge located in Staffordshire, UK, was
instrumented during its construction with a network of 134 fibre-
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optic strain sensors (FOSSs) (see Figure 1). The FOSS used in
this study are based on Bragg gratings (fibre Bragg gratings or
FBGs) which represent periodic changes in the index of refraction
which can be inscribed at discrete points along the length of an
optical fibre. As the FOSS cable and inscribed FBG are strained,
the initially inscribed Bragg wavelength shifts and can be
converted to an equivalent strain through a photoelastic
coefficient. In addition to strain from mechanical effects (i.e.
weight of passing trains etc.), FBGs are sensitive to changes in
temperature particularly in how it affects their index of refraction
and due to the thermal expansion of the optical fibre itself.
Therefore, when evaluating measurements taken by FBGs over
periods of time whereby significant temperature changes occur,
appropriate temperature compensation techniques must be
 [] on [05/08/24]. Copyright © ICE Publishing, all rights reserved.
applied. The use of FBGs in the sensing system was chosen for
their improved accuracy, reliability and resistance to corrosion-
based deterioration. In addition, up to 20 individual FBG sensors
can be inscribed along a single optical fibre, thereby greatly
reducing wiring lengths and the number of interrogation channels.
The FBGs installed as part of the SHM system were
manufactured in low-bend-loss fibre with an additional glass-
fibre-reinforced polymer coating for added robustness during
installation and operation. The FBGs along the optical fibre had
inscribed Bragg wavelengths between 1510 and 1586 nm with an
approximate strain accuracy of ±4 microstrain.

FBGs were installed and measurements were recorded throughout
the construction phase. Critical superstructure elements including
the two main I-girders, the midspan cross-beams, the midspan
section of the reinforced-concrete deck and the midspan vertical
web stiffeners on the east main girder were instrumented. In
addition, three pre-stressed concrete sleepers were manufactured
with several FBGs installed along the top and bottom pre-
stressing strands at the rail seat locations and at their midspan.
These self-sensing sleepers were installed at the midspan of the
bridge to correspond to the location of the instrumented cross-
beams. An overview of the monitoring system is presented in
Figure 2.

2.2 Monitoring programme
The monitoring programme has been divided into two phases: one
during construction and the other during operation. Originally,
the primary monitoring objectives included (a) evaluating
the robustness of the sensor network during construction,
(b) establishing a comprehensive pre-operational performance
Figure 1. Installation of fibre-optic sensors on a bridge
28 FBG sensors on middle cross-
beams and within concrete deck

North

Four FBG sensors on
midspan stiffener

80 FBG sensors along top
and bottom on main girders

Control station
and cable access

22 FBG sensors in
midspan concrete sleepers
on northbound track

Figure 2. Fibre-optic-based monitoring system
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baseline and (c) developing analytical tools for long-term
assessment, detection of damage (deterioration and/or anomalies)
and management of self-sensing bridges. The first two objectives
were previously addressed by Butler et al. (2016a).

Operational data on the self-sensing bridge have been recorded
since July 2016, several months after the bridge was opened to
passenger trains. Since then, strain readings for all of the 134
FBG sensors have been recorded during the passage of over 140
trains. The sensing system is capable of recording data
continuously at 250 Hz. The available data, which include 140
train passage events and a period inactivity around the event,
consist of more than 24 000 000 strain readings. Depicted in
Figure 3, two train types typically pass over the bridge, a British
Rail class 350 ‘Desiro’ (four-car formation) and a class 221 Super
Voyager (four- or five-car formation). These different types of
trains cause different responses in the sensor network.

3. Statistical analysis and modelling
This section provides a brief description of the sensor data and
presents efficient batch methods for extracting train passage
events from large data sets.

The extraction of train passage events into a database is a
necessary precursor to reasoning about degradation. Studying the
historic response of the sensor network when a train passes and its
recovery will provide a benchmark to compare against when
reasoning about degradation.

An efficient streaming procedure for modelling sensor data while
they are being collected at 250 Hz is presented. The modelling
procedure is used to address ambient (i.e. temperature) variations.
Based on this streaming model, a method for tracking long-term
deterioration (i.e. damage and anomaly detection) is introduced.
The streaming model does not directly measure long-term
deterioration but provides a way of detecting more immediate
changes in the sensor network to extract train passage events.
Later, in Section 4, it is discussed how to use these models to
reason about future damage.

The distinction between batch and streaming is as follows.
A batch procedure operates on a block of historic data which can
be stored in memory, and the procedure is able to pass repeatedly
over the data. In contrast, a streaming procedure updates when
new data arrive and, due to computational constraints, can access
6
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the datum only once. Moreover, a streaming procedure needs to
handle unknown temporal variation – that is, the phenomenon that
the future will be different from the present for unknown reasons.

3.1 Sensor data
The sensor system consists of 134 fibre-optic sensors located at
different positions on the bridge. Each fibre-optic sensor records
wavelength over time, which measures horizontal strains at
discrete locations on the bridge superstructure. As noted earlier,
each sensor collects data at a rate of 250 Hz. Figure 4 displays
data collected from a single sensor showing two distinct states:
the first is the train passage event highlighted in grey, and the
second is the unloaded state of the bridge. A distinct feature of
the data is the banding pattern which arises from the pre-
processing algorithm implemented by the fibre-optic analyser.
Figure 4 presents all the data, although it seems that fewer
than 250 datapoints are shown every second – this is a display
artefact.

The wavelength records can be converted to strain records as
follows: Denote the wavelength at time t as lt, then the strain at
t is

et ¼
1

1 − r
lt − l1

l1

� �
1.
(a)

(b)

Figure 3. Typical train types: (a) class 350 Desiro; (b) class 221 Super Voyager
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Figure 4. Data from a single sensor include a single train passage
event highlighted by the grey region
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where r = 0·22 is the photoelastic coefficient. More precisely, note
that the strain is the change in strain relative to the first reading. In
the following sections, the methods and models will use strain.

3.2 Batch processing of large data sets
This section presents a procedure that extracts the train passage
events from large data sets consisting of many sensor records.
Figure 5 presents the strain records from a single sensor from
the top of the east main girder. Although the record length is
only (approximately) 40 min, there are 611 108 datapoints for
this single sensor. Considering the entire network of 134
simultaneously recording sensors, this corresponds to over
81 million datapoints – which certainly represent a big data
problem. The four pronounced spike features, highlighted by the
grey dashed boxes in Figure 5, are train passage events. A method
that automatically extracts these events, using the data in Figure 5
as a running example, is now introduced. The pseudocode for this
procedure is presented in the Appendix.

As a first step, the main temporal variation in the data, which is
likely due to variations in temperature during the data collection
period, is removed. This temporal variation is estimated using the
average of the data in a sliding window using w = 25 000
datapoints (100 s). The moving average is represented by the grey
solid line in Figure 5. This moving average is subtracted from the
strain data, which are then rescaled (see the Appendix for details) –
the result is presented in Figure 6. The train passage event times
can now be identified by their large variation in comparison with
the background data. To quantify the variation, the standard
deviation of the detrended data is computed in a batch fashion. This
is accomplished by dividing the data into non-overlapping batches
of length v = 500 datapoints. Then, the standard deviation for each
batch is computed. A threshold of g = 1·5 microstrain is selected,
such that a batch standard deviation above this threshold flags a
train passage event. This procedure is repeated over all sensors. An
 [] on [05/08/24]. Copyright © ICE Publishing, all rights reserved.
alternative approach could be to treat the measurements across all
sensors as a multivariate observation. The advantage of the
procedure outlined earlier is its computational speed.

The outcome of this sensor-based procedure is a table of flagged
events from each sensor with the number of sensors which suggested
it (see Table 1). Notice that some of the train passage events times
are within several seconds of each other. This is due to the delayed
train response over the distributed sensor network or the peaks
produced by the individual axles. This set of times is reduced using
the following procedure. Any times that are within 2 s of each other
are merged (see Table 2 for the result) since it is known that two
train passage events cannot occur within this period. This knowledge
is based on the average train speed, train lengths and bridge length.
These times are then used to isolate the individual train passage
events. For instance, the event at time 321 can be extracted by
cutting around the event time from time 321 ± 5 s.

This is a computationally efficient procedure for extracting train
passage events from batch data. An example of an extracted event
is presented in Figure 7. In Section 4 the choice of control
parameter values, w, v and g, is discussed.

3.3 Statistical modelling
This section discusses how to monitor sequentially the sensor strain
readings individually and collectively using a statistical model. In
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Figure 5. Data (black points) from a single sensor converted to
strain. Moving average (grey solid line) captures the global trend
of the data. The train passage events are highlighted in the grey
dashed boxes
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Figure 6. Detrended sensor data for removing temporal variation
Table 1. Train passage event times across 134 sensors using
extraction method
Time: s
 320
 322
 622
 624
 1060
 1062
 2244
 2246
 2248

Count
 121
 115
 117
 95
 100
 103
 123
 111
 98
Table 2. Merged train passage event times across 134 sensors
using the extraction method
Time: s
 321
 623
 1061
 2246

Count
 236
 212
 203
 332
7
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constructing such a streaming model, considerations need to be
taken that address issues of computational efficiency, to handle data
arriving at 250Hz; adaptation over time, to account for the
temporal variation (i.e. due to temperature effects) and data storage.

Denote the strain record for sensor s at time t as Y ðsÞ
t . Further, denote

the number of sensors as S. For sensor s, the strain is modelled as

Ms : Y
sð Þ

t

¼ b0 þ
X

uÎ 1,…,Sð Þ\ s
buY

uð Þ
t−1 þ wt wt ~ N 0, s2� �

2.

for t = 2, 3, … and where N(m, s2) denotes a normal distribution
with mean m and variance s2. The model Ms is a linear model that
describes the strain measurements from sensor s at time t as a
linear combination of all other sensor measurements at time t − 1.
Notice that this model is a one-step-ahead forecast for sensor s,
without using sensor s information. Models of the form of Ms are
used for each sensor, primarily for computational speed in
sequential updating settings. It is shown later that this model
describes strain measurements from sensor s without using sensor
s data, providing surprisingly accurate predictions.

The unknown parameters of Ms are bj and s2. In batch settings,
these parameters are typically estimated using maximum
likelihood or equivalently a least-squares method. Fortunately, the
linear structure of these models admits efficient sequential
updating and allows the inclusion of a parameter called a
forgetting factor which provides temporal adaptation.

3.4 Updating the model
At a particular time t, only certain information has been revealed,
namely, fY ðsÞ

t : t ¼ 1,…, t; s ¼ 1,…,Sg. Refitting model Ms when
new measurements are received is impractical due to the high data
acquisition rate (250 measurements per second). Moreover, it
would be undesirable to have a growing window of data due to
temporal variation (see Figure 5), and using a sliding window is
8
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to be avoided. Therefore, a recursive method to update the model
parameters is used. This updating of linear models is called
recursive least squares (see chapter 9 in the book of Haykin
(2002)). This procedure will update the model parameters faster
than the acquisition of new data (discussed later in Section 3.8).
Further, this streaming regression has fixed computation and
memory demand and requires that no data need be stored.

3.5 Forgetting factor
To account for the temporal adaptation in the data, a forgetting
factor, lf Î (0, 1), is introduced into the model Ms, which
effectively puts more weight on recent data during the updating
procedure. This approach was proposed chapter 9 of the book by
Haykin (2002) and provides both temporal adaptation and
efficient updating. For the purpose of exposition, a single fixed lf
value is used, although it is possible to tune sequentially (e.g. see
the paper of Anagnostopoulos et al. (2012)).

The concept of the forgetting factor is now illustrated using a
simple example. Consider computing the average for a sequence
of values x1, x2, … (for instance, strain measurements). The
following are the recursive equations for updating the average
value of x1, x2, … with and without a forgetting factor lf. The
average of the data at time t is denoted as xt and m0 = n0 = 0

■ without the forgetting factor
mt ¼ mt−1 þ xt

nt ¼ nt−1 þ 1

xt ¼
mt

nt3.
■ with the forgetting factor
mt ¼ lf mt−1 þ xt

nt ¼ lf nt−1 þ 1

xt ¼
mt

nt4.
Note that lf = 1 has no temporal adaptation, whereas as lf < 1
downweight the older data. The nt is a value that, loosely
speaking, describes the number of datapoints used in computing
the average, akin to the effective sample size. This simple concept
readily transfers to updating the parameter estimates of the linear
model Ms.

So far, a statistical tool that can sequentially and adaptively
predict the one-step-ahead reading for sensor s given the previous
tick of data from other sensors has been introduced. That is, the
model provides a point estimate of the strain measurement of
sensor s at time t. Figure 8 presents these point estimates and the
true measurements from a single sensor. Before turning to the
construction of an anomaly detection method, which requires a
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Figure 7. Extracted train passage event from a single sensor
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measure of the uncertainty of the estimate, a statistic used to
quantify the difference between the point estimate and the
observed data is introduced.

A modified R2 statistic, the coefficient of determination, that
monitors the goodness of fit of a model is computed. This statistic
measures how much variation in the data from sensor s is
explained by the regression model. This version of the R2

statistics slightly differs from the coefficient of determination
commonly used with linear models, as it incorporates the
forgetting factor. The modified R2 statistic for model Ms is

R2 ¼
X

t
ln−t
f Y sð Þ

t − bY sð Þ
t

� �2

X
t
ln−t
f Y sð Þ

t − 1=tð Þ
Xt

k¼1
Y sð Þ
k

h i25.

where bYt is the prediction of Yt.

Figure 9 presents the modified R2 statistic computed for the
streaming model using lf = 0·99. Two features are notable in
Figure 9. First, the model provides a reasonably good fit throughout
the observation period, indicated by the high R2 values. Second,
during the time of the train passage event, the model becomes
increasingly accurate at predicting the sensor measurements
(represented by R2 values close to 1), indicating that the sensor
readings move to a state of an even higher correlation.

In Figure 9, the R2 values after the train passage event do not return
to the values prior to the event. There are two plausible explanations
for this. First, it takes the sensor network and bridge longer to
recover than the observation period. Second, the choice of a fixed
forgetting factor, lf = 0·99, is suboptimal in respect to the estimation
between different regimes. As noted earlier, this can be alleviated by
using sequential methods for tuning of the forgetting factor.
 [] on [05/08/24]. Copyright © ICE Publishing, all rights reserved.
3.6 Individual sensor changes
Based on the developed statistical model, an anomaly detection
method is constructed through characterisation of the models’
predictive uncertainty. This involves computing a p-value (or
constructing a prediction interval) for the next datapoint and
flagging the datapoint as unusual if falls below a given threshold.
This procedure is first applied to a single sensor and then
extended to the collective sensor network.

The theory of linear models is used to construct a p-value which
extends to the context of the developed streaming regression,
provided that the forgetting factor lf does not depend on the data.
The core result is

Y sð Þ
t ~ N bY sð Þ

t , var bY sð Þ
t

� �h i
6.

where bY ðsÞ
t is the one-step-ahead prediction for sensor s at time

t − 1. From this result, a p-value, ps, can be computed. This is a
measure of how surprising the new datapoint is with respect to the
model. Figure 10 shows the sequence of p-values for a specific
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Figure 8. Predicted strain values for sensor 1 using model M1 with
lf = 0·99. Black points represent the observed measurements, and
grey cross points represent the predicted point estimated values
from the model
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Figure 9. Modified R2 statistic for model Ms with lf = 0·99
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Figure 10. Sequence of p-values from Ms using l = 0·99
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sensor. The far left side, highlighted by the grey area in Figure 10,
relates to the initialisation of the model, after which reasonable
parameter estimates are obtained. Further, the decrease in
p-values, highlighted by the central grey area in Figure 10,
indicates the response of the sensor to a passing train.

To construct an anomaly detection method, the p-value, ps, is
compared with a threshold a, such that if ps < a, an anomaly is
flagged. The choice of a is determined by the required detection
sensitivity of the system. Any such statistical procedure will make
mistakes by chance, and a is set to balance this false positive rate
with the amount of detections that are of practical interest. Since
hundreds of tests per second are being performed, the threshold a
should be selected to be very small. Performing multiple tests will
inevitably lead to a high false signal rate.

A flagged anomaly is the departure from the new observation
from the postulated model Ms, which is based on the sensor
measurements. This flagged anomaly could relate to the failure of
the sensor – that is, debonding of the sensor from the structure
and/or damage of the bridge at the sensor location. Therefore, this
anomaly detection method can be used to indicate locations on
the superstructure where individual sensors may be faulty and/or
elements of the structure are damaged.

3.7 Sensor network changes
In Section 3.6, an anomaly detection method for individual
sensors was introduced, where a sequence of p-values for each
sensor was produced. This anomaly detection method is capable
only of flagging anomalies in individual sensors. From each
individual sensor model, the p-values can be efficiently computed,
and, indeed, models for all sensors can be computed at the same
rate (or faster) as the data acquisition rate (i.e. 250 Hz). To
monitor the global response of the bridge, the p-values from all
sensors are combined to provide an overall view of the collective
sensor system response. Combination of p-values is well studied
in statistics and Fisher’s (1925) method is a popular approach.
Under the null hypothesis that each model Ms is the true data
generating model, Fisher’s method uses the statistic

X 2 ¼ −2
XS
s¼1

log psð Þ
7.

This X2 follows a c2
2S distribution under the null hypothesis.

Fisher’s method is motivated to combine independent p-values.
While this is not true in this sensor network setting, the
modifications required for dependent p-values requires knowledge
of the dependence structure.

Figure 11 shows the X2 scores for the 80 FBG sensors installed
along the top and bottom flanges of the east and west main
girders, for the data extracted in Section 3.2. These scores would
10
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again require comparison with a threshold to flag anomalies. In
examining the X2 values in Figure 11, the train passage event is
seen (highlighted by the central grey box). As discussed in
Section 3.6 for the individual sensor p-values, the far left side
relates to the initialisation of the model. The unloaded periods of
the data are c2

2S distributed as indicated by Fisher’s method. This
X2 statistic provides a collective summary of the response from
the entire sensor network. As with the individual p-values, an
anomaly detection method would require the X2 score to be
compared with a threshold, z, such that if X2 > z, an anomaly
would be flagged. A flagged anomaly in this case would suggest a
collective change in all the sensors. Such an anomaly detection
method can used to indicate problems with the entire sensor
network and/or the whole bridge.

3.8 Speed of computation
The previous sections introduced a streaming linear model which
sequentially and adaptively updates its parameter estimates,
enhanced with a detection framework to flag changes in
individual sensors and the entire sensor network.

To be practically useful, the model updating process and p-value
computation must take less time than the arrival between two
consecutive strain records. This study’s computations, done on an
off-site 1·7 GHz laptop computer, show that updating a single
model with a new observation and computing the p-value takes
on average 2·3 × 10−4 s (with a standard deviation of 4 × 10−6 s),
which is faster than the 250 Hz data rate. Parallelisation of the
entire updating procedures across each model is possible, and the
additional effort of computing the X2 statistic is negligible. The
statistical software R was used in this study to perform the
computations. Implementations of these methods in other
programming languages such as C++ would lead to a significant
increase in computation speed.

4. Results and discussion
The previous sections have presented a number of useful
processing methods and statistical models for extracting critical
315 320 325
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Figure 11. X2 scores from 80 sensors located in the girders



Smart Infrastructure and Construction
Volume 171 Issue SMIC1

Real-time statistical modelling of data
generated from self-sensing bridges
Lau, Butler, Adams, Elshafie and Girolami

Downloaded by
structural response information provided by a fibre-optic sensor
network installed on a newly constructed railway bridge. Based
on the developed models, a framework for tracking statistically
significant changes in the individual sensors as well as across
entire groups of sensors was presented. While the data set
considered in this study represents a relatively small sample of the
total amount of data currently being generated from the self-
sensing bridge, the statistical techniques developed are directly
applicable to any size of data set. This is important for the long-
term monitoring of structures in which many months and years of
sensor data may be required to be analysed and assessed. The
following sections discuss additional considerations for statistical
modelling, provide insight into how these techniques may be used
in long-term SHM and discuss the applicability of the developed
techniques to other structure types.

4.1 Statistical modelling
The statistical model and the anomaly detection methods provide
the basis of a monitoring system capable of providing real-time
updates on the bridges’ sensor network health. There are a
number of control parameters in the methods proposed throughout
this work. In the processing of a large data set (Section 3.2), the
parameters are the width of the sliding window, w; the length of
the non-overlapping batches, v datapoints; and the standard
deviation threshold, g. The values used in Section 3.2 lead to the
extraction of all the train passage events from big data sets. For
other applications – for example, where the event signal is not
distinct – the parameter values may need to be tuned. The
forgetting factor, lf, used in the statistical model (Section 3.3) is
another parameter which needs to be chosen. This parameter can
be tuned using past data, however, the corresponding theoretical
results, used to construct the anomaly detection method, no longer
hold. Moreover, this tuning would require further computational
effort. The anomaly detection methods outlined in Sections 3.6
and 3.7 both require a threshold to be set in some fashion. For
instance, for the collective sensor network summary discussed in
Section 3.7, a cumulative sum (cusum) chart (Page, 1954) can be
used to monitor the X2 scores and signal a change. Cusum charts
can be adapted to detect a change – for example, a shift of the
mean – in the distribution of a sequence of X2 scores. The cusum
chart methodology lends itself particularly well to this problem
since it is a sequential method with quick updates.

4.2 Long-term SHM
Traditionally, bridge condition monitoring and assessment is
performed on the basis of visual condition surveys to provide a
condition rating for the bridge. Self-sensing bridges allow for a
data-driven approach to condition monitoring where assessment
of a bridge’s health can be based on the data gathered through the
sensing system. The monitoring of the sensor network, discussed
in Section 3.7, can be used to study groups of sensors – for
example, west against east main girders – in order to assess their
long-term load sharing ratio. These types of statistical modelling
and anomaly detection methods may be used to form the basis of
an SHM system. For instance, if the X2 scores which characterise
 [] on [05/08/24]. Copyright © ICE Publishing, all rights reserved.
the response of the sensor network (see Section 3.7) deviate from
its known null distribution while the bridge is unloaded, then
some global structural change may have occurred. Another way to
monitor the structural health of the bridge is to compare similar
train passage events (extracted by the method outlined in Section
3.2) for changes. For similar trains – that is, same number of
carriages, similar mass and so on – it would be expected that the
bridge and sensor response be almost identical. Therefore,
significant changes in the bridge/sensor response may indicate
alteration in the structure.

Applying statistical techniques to long periods of data allows for
the ability to characterise the effects of environmental factors (e.g.
temperature and humidity) on the structural response of the bridge.
These characterisations will enable more accurate models to be
developed which will provide better measures of how the bridge
deteriorates with time. If real-time processing of certain sensor data
sets is not critical, implementation of other statistical techniques
which are capable of damage identification and localisation is also
possible. Ideas for addressing these issues, from a statistical
standpoint, are discussed in the paper of Lau et al. (2018) and form
the basis of the authors’ future work in this area.

4.3 Other sensor and structure types
The discussion up to this point has focused on extracting
information from and applying statistical techniques to strain data.
However, it is worth noting that the strain data themselves may be
pre-processed in order to calculate other measures important for
assessment of structural condition. These measures could include
beam curvature, stresses and neutral axis location, all of which
could be modelled, tracked over time and used as indicators of
long-term deterioration. Therefore, the techniques presented
earlier may also be directly applied to other structural
performance measures, including strain. Data collected from other
sensor types installed on a structure which continuously measure
displacement, acceleration, temperature and so on can also be
readily assessed and analysed using the proposed statistical
methods. Steel-composite bridges are not the only structures
which have been instrumented with permanent monitoring
systems; for instance, another railway bridge composed of pre-
stressed concrete girders and a composite concrete deck slab has
also been instrumented with an integrated fibre-optic sensor
network and is currently being studied by Butler et al. (2016b). In
addition, a variety of other structures reported in the literature,
including high-rise buildings (Glisic et al., 2005), tunnel linings
and reinforced-concrete foundation piles (Kechavarzi et al.,
2016), have all implemented continuously recorded sensing
systems. A variety of self-sensing structures, in which large sets
of continuously collected data are required to be processed and
analysed efficiently and expediently, can leverage the statistical
techniques presented herein.

5. Conclusion
This paper presents a big data case study involving a self-sensing
railway bridge which has been instrumented with 134 discrete
11



Data: Denote the strain measurement from sensor s at time t as     
Y (s)

t for s = 1,. . . ,S and t = 1,. . . ,T.
Input: Moving average length w; Batchlength v datapoints;

Standard deviation threshold γ.
Output: Sensor s’s train passage event times, Us, for

s =1,...,S.
for s = 1, 2,. . . ,S do

Compute moving averages

(8)

Zb = 1
2k +1

k

j = − k
Y (s)

b+j+1 for b = k, k + 1,. . . ,T – k – 1

where k = w/2 is the half-width of the sliding window ;
Detrend the series

(9) Y (s)
b = Y (s)

b − Zb for b = k, k + 1,. . . ,T – k – 1

Scale the detrended series

(10) C (s)
b = Y (s)

b
1
2l

b+l
τ = b−l (Y (s)

τ )2

where l = v/2 is the half-width of the batches;
Compute the standard deviation in batches of length v

(11) σj = 1
v − 1

jv

i=(j–1) v+1
(C (s)

i )2

Identify large σj

(12) Us = {vj : σj > γ}

end
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fibre-optic sensors which record strain simultaneously at 250 Hz.
A subset of the overall bridge monitoring data set has been used
in order to develop statistical tools which can process and analyse
the data while being continuously updated. A new processing
method for extracting useful operational information from long
periods of sensor records was first presented. This fast, batch
method extracts the individual train passage events within the
large data sets and decouples the underlying background strain
changes due to environmental effects such as temperature change.
The extraction method will be of great practical use to engineers
and operators who are tasked with quickly processing large sensor
data sets generated from self-sensing bridges.

A recursive statistical model was then introduced that is able to
update faster than the incoming recorded data, adapt to account
for the temporal variation (i.e. due to environmental effects) in the
data through implementation of a forgetting factor and accurately
describe the data over time while requiring only minimal data
storage. Based on these adaptive models, anomaly detection
methods were developed and are capable of monitoring sensors
individually (based on p-values) and across the entire sensor
network (based on X2 statistic). The X2 scores which characterise
the response of a group of sensors (and a component of the
bridge) can be tracked over time for any deviations from their
baseline distribution in order to provide an indication of
deterioration and/or damage.

The statistical tools developed as part of this study will form the
core component of a long-term SHM strategy in which
considerations such as weekly, seasonal and yearly environmental
trends can be characterised and used to update and create more
robust prediction models. In addition, techniques developed in
this study may be directly implemented in the analysis of other
measured quantities (e.g. displacement, acceleration, temperature)
and structure types (e.g. high-rise buildings, tunnels). This
combination of a real-world self-sensing bridge case study and an
innovative statistical framework for efficiently analysing the large
monitoring data sets provides a valuable demonstrator for smart
infrastructure systems.
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Appendix: Algorithm for train passage event
extraction
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