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ABSTRACT This paper presents an effective solution to manage the power flows exchanges in a campus
integrated microgrid for peak reduction/shaving purposes. The campus integrated microgrid is composed
of photovoltaic parking shades, an energy storage system, electric vehicles and bikes, loads, an advanced
metering infrastructure, and a smart control unit. The latter is based on Model Predictive Control (MPC)
whose objective is to reduce/shave the peak load of the campus while satisfying the Energy Storage System
ESS, electrical Vehicles (EVs) and Electrical Bikes (EBs) state of charge. The proposed strategy aims to
take the advantage of combining storage and photovoltaic (PV) systems to Vehicle to Campus (V2C) and
Bike to Campus (B2C) concepts to support the microgrid to pay the minimum billing power while ensuring
a good service quality to the EVs and EBs users. For that, the integration of the renewable energy sources
and the different storage systems into the microgrid is modeled, and theMPC-based optimization framework
is formulated. Besides, the results related to the application of the MPC to real case studies are presented,
integrating the effects of static and dynamic weighting factors on the microgrid operation.

INDEX TERMS Campus integrated microgrid, model predictive control, demand response, peak reduction,
electric vehicles, electric bikes, renewable energy.

I. NOMENCLATURE
A. ACRONYMS
MPC Model Predictive Control.
DSM Demand Side Management.
DNO Distributed Network Operator.
PV Photovoltaic.
DR Demand Response.
EV Electric Vehicle.
EB Electric Bike.
V2C Vehicle to Campus.
B2C Bike to Campus.
CMS Campus Management System.
ESS Energy Storage System.
RES Renewable Energy Sources.
RMSE Root Mean Square Error.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Alshabi .

B. PARAMETERS
1t Time interval [h] 1.
Isc PV module short circuit current [A] 9.98.
Imp PV module maximum power current [A] 9.5.
Vmp PV module maximum power voltage [V] 33.16.
Voc PV module open circuit voltage [V] 40.53.
Ist Standard light intensity 1000.
µ PVmodule voltage temperature coefficient [V/◦C]

-0.3.
γ PV module current temperature coefficient [A/◦C]

0.06.
ηpv,s Serial connection number of PV modules 156.
ηpv,p Parallel connection number of PV module

strings 1.
ηloss PV connection loss 0.9.
η
ev,i
char The ith EV charging efficiency 0.9.
η
ev,i
dis The ith EV discharging efficiency 0.9.

η
eb,i
char The ith EB charging efficiency 0.9.
η
eb,i
dis The ith EB discharging efficiency 0.9.
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ηesschar ESS charging efficiency 0.9.
ηessdis ESS discharging efficiency 0.9.
upv,min PV power output lower bound [kW] 0.
upv,max PV power output upper bound [kW]

49.14.
uess,min ESS state of charge lower bound [kWh]

10.
uess,max ESS state of charge upper bound [kWh]

96.
ulim Subscribed power limit [kW] 100.
uev,min(i, t) The ith EV state of charge lower bound

[kWh] 1.45.
uev,max(i, t) The ith EV state of charge upper bound

[kWh] 14.5.
ueb,min(i, t) The ith EB state of charge lower bound

[kWh] 0.046.
ueb,max(i, t) The ith EB state of charge upper bound

[kWh] 0.468.
uevchar,min(i, t) The ith EV minimum charging rate [kW]

0.
uevchar,max(i, t) The ith EV maximum charging rate [kW]

3.7.
uevdis,min(i, t) The ith EV minimum discharging rate

[kW] 0.
uevdis,max(i, t) The ith EV maximum discharging rate

[kW] 3.7.
uebchar,min(i, t) The ith EB minimum charging rate [kW]

0.
uebchar,max(i, t) The ith EB maximum charging rate [kW]

0.1.
uebdis,min(i, t) The ith EB minimum discharging rate

[kW] 0.
uebdis,max(i, t) The ith EB maximum discharging rate

[kW] 0.1.
uesschar,min ESS minimum charging rate [kW] 0.
uesschar,max ESS maximum charging rate [kW] 4.
uessdis,min ESS minimum discharging rate [kW] 0.
uessdis,max ESS maximum discharging rate [kW]

6.85.
¯ucampus Dynamic reference of the campus loads

[kW] See Results section.
¯uev(i, t) Desired stored energy state in the ith EV

[kWh] See Results section.
¯ueb(i, t) Desired stored energy state in the ith EB

[kWh] See Results section.
¯uess Desired stored energy state in the battery

[kWh] 96.

C. VARIABLES
uevchar (i, t) The ith EV charging power [kW].
uevdis (i, t) The ith EV discharging power [kW].
uebchar (i, t) The ith EB charging power [kW].
uebdis (i, t) The ith EB discharging power [kW].
ti,av The ith EV arrival time.
ti,dv The ith EV departure time.

σi,av The ith EV standard deviation of the
arrival time.

σi,dv The ith EV standard deviation of the
departure time.

µi,av The ith EV distribution mean of the
arrival time.

µi,dv The ith EV distribution mean of the
departure time.

ti,ab The ith EB arrival time.
ti,db The ith EB departure time.
σi,ab The ith EB standard deviation of the

arrival time.
σi,db The ith EB standard deviation of the

departure time.
µi,ab The ith EB distribution mean of the

arrival time.
µi,db The ith EB distribution mean of the

departure time.
uesschar ESS charging power [kW].
uessdis ESS discharging power [kW].
χ Campus load weighting factor.
ψ EV weighting factor.
λ EB weighting factor.
θ ESS weighting factor.
upv PV power [kW].
uev EV state of charge [kWh].
ueb EB state of charge [kWh].
uess ESS state of charge [kWh].
ucampus Campus total power loads [kW].
upv,ess Power charged to ESS coming from PV

[kW].
upv,dno Power sold to DNO coming from PV

[kW].
upv,campus Power sent from PV to satisfy the cam-

pus loads.
upv,ev(i, t) Power charged to the ith EV coming

from PV [kW].
upv,eb(i, t) Power charged to the ith EB coming

from PV [kW].
uess,campus Power discharged from ESS to satisfy

the campus loads [kW].
udno,campus Power sent from DNO to satisfy the

campus loads [kW].
uevdis,campus(i, t) Power discharged from the ith EV to

satisfy the campus loads [kW].
uebdis,campus(i, t) Power discharged from the ith EB to

satisfy the campus loads [kW].
uess,ev Power charged to EV coming fromESS

[kW].
uess,eb Power charged to EB coming from ESS

[kW].

II. INTRODUCTION
Recently, peak load has increased at a rapid rate due to
changing demographics and economic growth. Peak load is
defined as the periods when electricity consumption becomes
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very high and can occur in daily, monthly, seasonal or annual
cycles. Its continuous increase over the next few years max-
imizes the chances of microgrids breakdowns, elevates the
possibilities of their stability and sustainability reduction, and
increases the marginal cost of supply [1]. Thus, peak load
control becomes a major concern of utilities and a promising
area of research. It is a process that consists of smoothing
the load curve by reducing the electrical power consumption
and shifting it to times of lower load [2]. Therefore, it offers
interesting benefits for the utility provider such as improving
the reliability and power quality [3], avoiding voltage fluctu-
ations and devastating blackouts, and it also reaps financial
benefits to end users by shifting the peak load to periods of
low cost electricity [4].

Peak load reduction/shaving can be done using a variety
of methods and techniques. The two most used strategies are
the integration of external storage and the demand side man-
agement (DSM) [5]. The first strategy consists of implement-
ing backup suppliers such as energy storage systems (ESS)
and electric vehicles (EVs). These storage-based peak load
shaving systems can be used in residential and commercial
buildings, institutional campuses, industries, and grids. They
provide economic benefits as they act as an additional inde-
pendent energy source during peak demand and thus attenuate
the need to use high-priced electricity generation. Therefore,
many studies aiming to reduce the peak demand with the help
of ESS have been developed [6], [7] [8].More others concern-
ing the ESS optimal sizing that minimizes the operating cost
of the microgrid have been proposed [9], [10]. Also, others
regarding the use of EVs batteries for peak shaving purposes
have been considered [11]–[13].

However, the second strategy remains the most potential
for peak shaving. DSM encourages to adjust power con-
sumption to significantly reduce energy waste, peak load
demand, and monetary cost of energy [14]. It is structured
in two strategies: energy efficiency and demand response
(DR). Energy efficiency tends to facilitate minimal energy
consumption [5], while DR modifies the pattern of usual
consumption in response to price fluctuations [15]. DR pro-
grams offer a significant amount of price reduction to the end
users [16]. It is an important peak shaving strategy that should
be part of the system operations in the future network [17].
An example of DR-based peak shaving has been proposed for
a home-to-grid system and has achieved good results in terms
of cost reduction through load shifting [18]. It has been also
applied in the agricultural sector to reduce the peak demand
of responsive farms [19]. More, various studies aiming to
achievemaximum peak shaving throughDR have been devel-
oped using different algorithms [20]–[22]. In this context,
special attention was paid to model predictive control, where
its application to an existing grid connected household with
PV battery allowed to reduce peaks in PV energy and load
demands [23]. This strategy has also been designed to max-
imize the use of battery by prioritizing the load demand for
a single electricity price scenario [24]. It has allowed annual
energy savings of 13.5% as well, when it was used to find

the optimal schedule of battery avoiding unnecessary peak
reduction [25]. On the whole, the use of DR algorithms has
become popular under the smart microgrid paradigm, espe-
cially with the integration of bidirectional communication
capabilities that enabled utilities to collect/provide real time
information from/to consumers. DR has activated the change
of microgrid status to an active contributor that enable end
users to participate actively in managing their consumptions.
Its main aim is to support power systems to increase energy
security and reliability [26].

In this paper, an innovativeDR scheme for peak load reduc-
tion in an institutional campus integrated microgrid including
PV systems, ESS, EBs and EVs is developed. The proposed
strategy is based on model predictive control and can be
implemented as a supervisory real-time control in the utility
systems to effectively manage the microgrid power flows
while coping with renewable energy sources uncertainties
and while satisfying the complicated operating constraints.
The microgrid is used to equilibrize the fluctuations of the
campus load and to achieve energy balances in a way to
import its energy needs from the DNO when the demand is
below the subscribed power, and in the opposite case, the
CMS will be responsible to dispatch the available micro-
grid local energy according to the MPC-based strategy. All
in all, the contributions of this paper can be summarized
in developing a practical control framework expressed as
a constrained optimization problem embedded in a model
predictive control scheme to optimally control the operation
of a campus integrated microgrid to shave/reduce peak load
in case of occurrence, optimize the ESS state of charge and
ensure the EVs and EBs desired departure state of charge. The
developed predictive algorithm could represent an attractive
field for engineers and researchers. The power flows control
in a campus integrated microgrid is introduced to improve
the satisfaction of the quality of service, here defined as the
reduction of peak loads and the EVs/ EBs charging pref-
erences. In the proposed framework, the microgrid is used
to reduce the peak load, and to compensate the variabilities
of the campus’s load and well as decreasing its energy bill.
Especially, when the power load is under an agreed bilateral
power limit, the campus purchases its requirements from the
electric grid; while when the power load is over this fixed
power limit, the energy management system is responsible of
generating the optimal control of power flows at the micro-
grid level to fulfill as possible the peak load. To test the
MPC strategy through several case studies, where the effects
of different priorities on the tracking references and on the
optimal solution is analyzed via numerical results. The case
studies are adopted and discussed to demonstrate the benefits
and feasibility of the proposed optimization approach.

The rest of this paper is organized as follows. In Section II,
the campus integrated microgrid architecture and mathemati-
cal modeling is presented. In Section III, theMPC-based opti-
mal operation if formulated. In Section IV, the performance of
the proposed scheme is demonstrated through a concrete case
study. And finally, a brief conclusion is given in Section V.
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III. MICROGRID MODELING
A. MICROGRID ARCHITECTURE
The campus microgrid consists of several institutional build-
ings electrically connected to the DNO through the cam-
pus network, and equipped with a local energy production,
a storage system, and a smart management system. As it
can be seen in Fig. 1, the university campus microgrid inte-
grates several units: 1) A set of photovoltaic modules forming
car parking shades; 2) An ESS improving the stability and
the reliability of the supply; 3) Electric vehicles and bikes
improving the microgrid energy dispatch flexibility; 4) Loads
representing the campus buildings; and 5)ACMS responsible
for delivering the optimal power control strategy.

FIGURE 1. Microgrid architecture.

In fact, the CMS is in charge to control the operation of
the university campus microgrid to mitigate the peak load
demand. Its communication infrastructure relies on central-
ized communication where a single MPC-based main con-
troller collects the required data from the different microgrid
components and performs the necessary actions. The CMS
ensures the electric supply of the campus buildings directly
from theDNO following an established bilateral contract with
the electricity supplier and on the basis of invoicing according
to the consumption brackets. However, if the campus load
exceeds the power subscribed, the CMS should efficiently
harness the different microgrid energy sources to reduce the
peak, namely: the energy produced by the PV and the energy
stored in ESS, EV and EB. The microgrid PV generators are
used mainly to meet the varying loads of EV and EB, and the
surplus generated should be routed to ESS and/or exchanged
with the DNO after satisfying the campus load in peak peri-
ods, following an optimal control strategy implemented in the
CMS.

B. PHOTOVOLTAIC PARKING SHADES MODELING
Photovoltaic production depends mainly on the solar radia-
tion of the site on which the panels are installed, in addition to

the technical characteristics of the panel itself. The optimum
voltage Vpv and current Ipv generated are [27]:

Ipv(t) = Isc

{
1− α

[
exp

(
Vmp
βVoc

)
− 1

]}
+1I (t) (1)

Vpv(t) = Vmp

[
1+ 0.0539log

(
I (t)
Ist

)]
+ µ1T (t) (2)

where,

α =

(
1−

Imp
Isc

)
exp

[
−
Vmp
βVoc

]
(3)

β =

Vmp
Voc−1

ln
(
1− Imp

Isc

) (4)

1I (t) = γ
(
I(t)
Ist

)
1T (t)+

(
I(t)
Ist
− 1

)
Isc (5)

1T (t) = Tamb+0.02I (t) (6)

The PV power generation is

upv (t) = ηpv,sηpv,pVpv(t)Ipv(t)ηloss (7)

C. ELECTRIC VEHICLES MODELING
The evolution of the energy stored in the electric vehi-
cles available in the microgrid can be expressed as
follows [20] [28]:

uev (i, t+1t) = uev (i, t)+ η
ev,i
charu

ev
char (i, t)1t

−η
ev,i
dis u

ev
dis (i, t)1t (8)

where t ∈
[
ti,av ti,dv] is the scheduling time horizon, ti,av and

ti,dv are respectively, the arrival and departure time vectors of
the ith EV available in the campus. They are modeled using
the Gaussian distributions as follows:

ti,av(x) =
1

σi,av
√
2π

exp

(
−

(x−µi,av)
2

2σ2i,av

)
(9)

ti,dv(x) =
1

σi,dv
√
2π

exp

(
−

(x−µi,dv)
2

2σ2i,dv

)
(10)

D. ELECTRIC BIKES MODELING
The evolution of the energy stored in the electric bikes avail-
able in the microgrid can be expressed as follows [20] [28]:

ueb (j, t+1t) = ueb (j, t)+ η
eb,j
charu

eb
char (j, t)1t

−η
eb,j
dis u

eb
dis (j, t)1t (11)

where t ∈
[
tj,ab tj,db] is the scheduling time horizon, tj,ab and

tj,db are respectively, the arrival and departure time vectors of
the ith EB available in the campus. They are modeled using
the Gaussian distributions as follows:

tj,ab(x) =
1

σj,ab
√
2π

exp

(
−

(x−µj,ab)
2

2σ2j,ab

)
(12)

tj,db(x) =
1

σj,db
√
2π

exp

(
−

(x−µj,db)
2

2σ2j,db

)
(13)
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E. ENERGY STORAGE SYSTEM
The energy storage system dynamics is expressed as [29]:

uess (t+1t) = uess (t)+ ηesscharu
ess
char (t)1t − η

ess
disu

ess
dis (t)1t

(14)

IV. MPC-BASED OPTIMAL OPERATION FORMULATION
A. DEMAND RESPONSE STRATEGY
In Morocco, university campuses are subject to electricity
tariffs which vary according to consumption brackets. Gen-
erally, the tariff option consists of a kWh price which fluc-
tuates according to the exceeding of the subscribed power
set at 100 kW, from which the price per kWh becomes
higher [30]. For this, and in order to minimize energy bills,
a demand response consisting of implementing the microgrid
load management strategy is proposed to change the campus
power consumption profile during price peaks. This strategy
is implemented in the CMS and is based on the MPC in order
to optimally provide the peak load of the campus. Its objective
is to keep the power demand of the electrical network below
the subscribed power, through the proper exploitation of the
energy produced locally and the energy stored in the ESS,
EV and EB.

B. MPC-BASED OPERATION SCHEDULING
The MPC strategy relies on dynamic models and available
measurements to predict the future behavior of a process,
and thus calculate its optimal control sequence. This involves
optimizing an objective function over a control horizon (Nc)
submitted to the process model, with respect to future pre-
dictions, while coping with constraints on inputs and out-
puts. In fact, at each time t, the predictions of the controlled
variables are computed up to a time horizon (Np), to deter-
mine the future control sequence for each power flow of
the microgrid. However, only the first step of the calculated
control law is implemented at the next clock stroke. All these
steps are then repeated according to the receding horizon
principle, allowing to compute the new control sequence.
The main advantage of MPC is the fact that it allows to
optimize the current time interval, while considering future
intervals. In addition, its main strength is its ability to handle
multiple inputs and outputs, as well as equal and inequal
constraints.

The MPC basic structure block diagram is depicted in
Fig. 2:

In this study, the main idea is to optimally manage the
microgrid power flows in a way to reduce the peak load,
by repeatedly solving online an optimal control problem,
aiming to minimize the objective function delivered by the
main controller, subject to constraints on the manipulated
parameters.

C. OPTIMIZATION PROBLEM FORMULATION
1) OBJECTIVE FUNCTION
In this paper, the objective function is composed of 4 sub-
objective ones. The first one is associated with satisfying

FIGURE 2. Model predictive control scheme.

the university campus loads. In fact, the CMS decides on
the amount of energy to be purchased from the DNO and
on the amount of energy to be drawn from the microgrid
so as to avoid exceeding the peak load. In other words, the
CMS aims to shave/reduce the campus peak load in period
of high demands taking advantages of the storage and of
the V2C and B2C concepts. The second and third ones are
related to ensure the desired departure state of the EV and
EB defined by their users. However, in order to ensure an
adequate level of energy security for their recharge in the
event of a PV energy shortage, the fourth term envisages
maximizing the energy level of the ESS to its optimal working
level.

The objective function minimizes the dual costs of
quadratic terms defined as follows:

J = χ
T∑
t=1

(ucampus (t + k)− ucampus(t + k))
2

+ψ

T∑
t=1

I∑
i=1

(uev (i, t + k)− uev(i, t + k))
2

+λ

T∑
t=1

J∑
j=1

(ueb (j, t + k)− ueb(j, t + k))
2

+θ

T∑
t=1

(uess (t + k)− uess(t + k))
2

(15)
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2) STATE EQUATIONS
The power generated by the solar parking shades is:

upv (t) = upv,ess (t)+ upv,dno (t)+ upv,campus (t)

+

I∑
1

upv,ev (i, t)+
J∑
1

upv,eb (j, t) (16)

The power balance is as follows:

ucampus (t) = uess,campus (t)+ udno,campus (t)+ upv,campus (t)

+

S≤I∑
i=s≥1

uevdis,campus (i, t)+
L≤J∑
j=l≥1

uebdis,campus (i, t)

(17)

The power used to charge the electric bikes and vehicles is
supplied by the solar parking shades and/or the energy storage
system:

uevchar (i, t) = upv,ev (i, t)+ uess,ev (i, t) (18)

uebchar (j, t) = upv,eb (j, t)+ uess,eb (j, t) (19)

The power discharged from the energy storage system is:

uessdis (t) = uess,campus (t)+
I∑
1

uess,ev (i, t)+
J∑
1

uess,eb (j, t)

(20)

The power discharged from the electrical vehicles and
bikes and not dedicated to their operation is sent to the local
grid:

uevdis (i, t) = uev,r (j, t)+ uevdis,campus (i, t) (21)

uebdis (j, t) = ueb,r (j, t)+ uebdis,campus (j, t) (22)

3) CONSTRAINTS
The photovoltaic power generation is constrained between an
upper and lower bound:

upv,min (t)< upv (t) < upv,max (t) (23)

The stored energy has also upper and lower bounds:

uess,min (t)< uess (t) < uess,max (t) (24)

The contribution of the PV modules, in addition to the
energy storage system and the electric vehicles and bikes
batteries to supply the campus load is set equal to zero below
the subscribed power limit:

upv,campus (t) = 0 if ucampus (t) < ulim (25)

uess,campus (t) = 0 if ucampus (t) < ulim (26)

uev_dis,campus (j, t) = 0 if ucampus (t) < ulim (27)

ueb_dis,campus (j, t) = 0 if ucampus (t) < ulim (28)

The energy stored in each electric bike’s and vehicle’s
batteries should satisfy the capacity limits:

uev,min (i, t) < uev (i, t) < uev,max (i, t) (29)

ueb,min (j, t) < ueb (i, t) < ueb,max (j, t) (30)

The charging and discharging rates of the energy storage
system and the electric vehicles and bikes have upper and
lower bounds:

uevchar,min (i, t) < uevchar (i, t) < uevchar,max (i, t) (31)

uevdis,min (i, t) < uevdis (i, t) < uevdis,max (i, t) (32)

uebchar,min (j, t) < uebchar (j, t) < uebchar,max (j, t) (33)

uebdis,min (j, t) < uebdis (j, t) < uebdis,max (j, t) (34)

uesschar,min (t) < uesschar (t) < uesschar,max (t) (35)

uessdis,min (t) < uessdis (t) < uessdis,max (t) (36)

Besides, charging and discharging states cannot occur
simultaneously:

uevchar (i, t) ∗ u
ev
dis (i, t) = 0 (37)

uebchar (j, t) ∗ u
eb
dis (j, t) = 0 (38)

uesschar (t) ∗ u
ess
dis (t) = 0 (39)

And the departure time is always greater than the arrival
one:

ti,d > ti,a (40)

tj,d > tj,a (41)

V. APPLICATION TO CASE STUDIES
A. SIMULATION SETUP
To demonstrate the effectiveness of the developed algorithm
in harnessing the onsite produced and stored energy to sup-
ply the peak load, the MPC-based scheduling optimization
problem was applied to a real campus integrated microgrid
located in Kenitra, Morocco. The microgrid is connected to
the DNO and consists of 49.14 kW of photovoltaic parking
shades, an ESS of 96 kWh, and a charging station for both
EVs and EBs as shown in Fig. 3 [31]. The total number of
the available EVs and EBs is 2 and 10, with a maximum
storage capacity of 14.5 kWh and 468 Wh respectively. They
are considered to be an extent of the energy storage system

FIGURE 3. Kenitra’s campus microgrid.
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TABLE 1. Information on electric vehicles and bikes.

providing an additional capacity of 33.68 kWh with the help
of V2C and B2C technologies. Their arrival and departure
times, as well as their arrival and desired departure states are
reported in Table. 1.

The optimization problem is tested through two case stud-
ies to illustrate its actual practices and to assess its perfor-
mance against different weighting factors. The first case study
concerns the resolution of the problem with static weighting
factors, while for the second, an advanced scheme using
dynamic weighting factors is proposed. The mathematical
formulation is implemented and solved using Matlab soft-
ware, where the length of the prediction and control horizon
is set at 24 h with a control and prediction interval set equal
to 15 min and 10 min respectively.

B. RESULTS AND DISCUSSION
The case studies mentioned above are considered to study
two specific cases where the weighting factors are static and
dynamic. For both cases, the optimization problem is solved
to find the microgrid optimal control using the predicted solar
data of a typical day of March 2020. The PV power generated
during this simulation day and computed using these data in
the equation (7) of the PV model is shown in Fig. 4. It should
be noted that this model was validated by comparing the
simulated data with those measured over several days. The
validation results showed a good agreement of the model
output and the experimental data, as depicted in Fig. 5.

1) CASE STUDY 1: STATIC WEIGHTING FACTORS
• Equal weighting factors (EWF) (χ = ψ = θ =

λ= 1): In this case, the proposed control strategy has
been resolved by giving equal importance to the 4 sub-
objective functions.

The results of the peak shaving strategy in the case of EWF
are depicted in Fig. 6. As it is well illustrated, the peak load
occurs from 8.45 a.m. to 12.15 p.m., where the forecast load
exceeds the subscribed power fixed at 100 kW. During this
interval of time, the CMS manages the microgrid power flow
in a way to fill the power consumption profile while reducing

FIGURE 4. PV production.

FIGURE 5. Comparison between real and measured PV production.

the energy purchased from the utility grid so as not to exceed
the maximum allowable power demand. This is achieved by
either harnessing the PV power or discharging the available
storage systems (ESS, EVs and EBs), and by drawing the
remaining energy from the utility grid. The results show
that the power profile is reduced during the peak period by
almost 11.95%. The main contributor is the PV production
system, followed by EBs and EVs respectively (Table. 2).
However, the contribution of the ESS is almost zero, due to
the fact that both tracking references (peak load shaving and
maximizing the storage energy) have the same priority and
present conflicting objectives. In fact, setting equal weighting
factors has even allowed to increase the stored energy when
the PV power becomes available. Fig. 7 depicts the results
of the MPC-based optimal behavior of the microgrid ESS.
It can be seen that the stored energy remains equal to its initial
value set to 65 kWh from 00 a.m. to 8.15 a.m. and starts to
gradually increase with the presence of the PV production
until reaching itsmaximal capacity of 96 kWh. Besides, Fig. 8
shows the optimal energy sold to the DNO as calculated using
the MPC strategy. In fact, after meeting the load demand and
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FIGURE 6. MPC-based peak power dispatch in the microgrid in the case
of EWF.

TABLE 2. Impact of weighting factors on the grid operation.

satisfying the ESS maximal capacity, the system feeds the
utility grid with the excess generated power. In this case, the
total energy sold reached a value of 1051 [kWh].

Further, the results show that the peak load was reduced by
also exploiting the storage system of the vehicles and bikes
available in the campus. Fig. 9 shows the MPC-based control
of EVs and EBs in the case of EWF. As it can be seen,
the proposed algorithm allowed to deliver a considerable
amount of the battery capacity to the microgrid during the
peak period while ensuring that the desired state of charge
was reached upon departure.More precisely, the EVs and EBs
energy balances are reported in Table. 3, where the desired
departure state, theMPC-based departure state and the RMSE
are detailed. It can be observed that most of the EVs and EBs
desired departure states of charge are satisfied with an RMSE
of 0.04. A slight deviation was noticed for EB2, EB3 and
EB8, since their departure time coincides with the end of the
peak load, and their charge rate does not allow to reach the
optimal state fast enough.

FIGURE 7. MPC-based control of the ESS in the case of EWF.

FIGURE 8. Energy sold to DNO in the case of EWF.

• Inequal weighting factors (IWFPESS) (χ = ψ = λ =
1andθ = 10−3): In this case, the proposed control strat-
egy has been resolved by penalizing the energy storage
system.

The results of the peak shaving strategy in the case of IWF-
PESS are depicted in Fig. 10. The figure shows the forecast
load curve and the contribution of the microgrid in filling
the power consumption profile. It can be seen that the peak
load is covered mainly by the PV and ESS thus achieving a
peak reduction of 15.28% (Table. 2). This can be explained
by the fact that the peak load tracking had a preponderant
priority than the ESS reference tracking. Unlike the previous
case study, the ESS presents different trends of charge and
discharge, as shown in Fig. 11. For example, from 8.00 a.m.
to 10.45 a.m., the ESS discharges from 8.00 a.m. to supply
the parked EBs and EVs, then charges from 8.15 a.m. due
to the availability of the PV energy, and discharges again
when the peak occurs at 8.45 a.m. After, from 10.45 a.m.,
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FIGURE 9. MPC-based control of EVs and EBs in the case of EWF.

TABLE 3. Impact of weighting factors on the optimal departure state of
EBs and EVs.

the battery starts charging gradually taking into account the
successive charge and discharge cycles of the available EVs
and EBs, until full capacity. Meanwhile, the excess power
generated has been fed to the grid as shown in Fig. 12. In fact,
setting unequal weighting factors and penalizing the battery
tracking allowed the ESS to provide economic benefits by
mitigating high-priced electricity consumption at peak times.
This strategy also allowed to use the storage system of the
EBs and EVs to reduce the peak while satisfying their desired
departure states, as shown in Fig. 13.
• Inequal weighting factors (IWFPS) (χ = 1andψ = λ =
θ = 10−3): In this case, the proposed control strategy
has been resolved by penalizing the whole storage.

The results of the peak shaving strategy in the case of
IWFPS are depicted in Fig. 14. Regarding this shaving case
study, the peak reduction rate reached 15.41% due to EBs
and EVs additional contributions (Table. 2). In fact, setting
high weightage to peak shaving has unfairly disadvantaged

FIGURE 10. MPC-based peak power dispatch in the microgrid in the case
of IWFPESS.

FIGURE 11. MPC-based control of the ESS in the case of IWFPESS.

the ESS and EVs/EBs as shown in Fig. 15 and Fig. 17,
respectively. First, for ESS, the evolution of the stored energy
as computed using theMPC shows a real storage penalty. The
latter is perceived when the photovoltaic energy available at
8.15 a.m. has not been stored but rather sold to the DNO
as shown in Fig. 15 and Fig. 16. The penalty is also levied
when the surplus energy has been sold and not stored until the
battery reaches its minimum allowable value from 11.00 a.m.
to 01.00 p.m. Then, for EVs and EBs, Fig. 17 and Table. 3
show that the gap between the desired departure state and the
optimal departure state has grown, even if the departure time
does not conflict with the peak period. Their low weighting
factor implied that the energy has been sold instead of having
satisfied their desired state of charge.
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FIGURE 12. Energy sold to DNO in the case of IWFPESS.

FIGURE 13. MPC-based control of EVs and EBs in the case of IWFPESS.

2) CASE STUDY 2: DYNAMIC WEIGHTING FACTORS (DWF)
Instead of using static weighting factors that reduce the
system dynamic performance to some extent, the dynamic
weighting factors adjustment is proposed in this section.
The dynamic weighting factors ensure that all sub-objective
functions will be given priority when most needed. They are
defined as follows:

• 8h->12h: priority to campus load tracking (χ = 1 and
ψ = λ = θ = 10−3)

• 12h->14h: priority to satisfy EBs state of charge
(λ = 1 and χ = ψ = θ = 10−3)

• 14->16h30: priority to satisfy the ESS state of charge
(θ = 1 and χ = ψ = λ = 10−3)

• 16h30->18h: priority to satisfy EVs state of charge
(ψ = 1 and χ = λ = θ = 10−3)

• 18h->19h: priority to satisfy the ESS state of charge(
θ = 1 and χ = ψ = λ = 10−3

)
• otherwise: equal weighting factors

FIGURE 14. MPC-based peak power dispatch in the microgrid in the case
of IWFPS.

FIGURE 15. MPC-based control of the ESS in the case of IWFPS.

The shaving results in the case of DWF are shown in
the following figures. Detailed results of the impacts of the
different weighting factors strategies on the campus operation
and on the optimal departure state of EBs and EVs are
depicted in Table. 2 and 3, respectively. Table. 2 reports the
predicted peak load, the contribution of each component of
the microgrid, the peak reduction and the amount of energy
sold to DNO, while Table. 3 reports the MPC-based optimal
departure states of EBs and EVs. As it can be seen, the
DWF scenario presents the best performances compared to
the previous case studies in term of peak reduction (411.59
kWh ∼ 15.59%) and satisfaction of EVs and EBs desired
state (RMSE = 0.08). DWF allows high priority to be given
to tracking a sub-objective function when necessary, so that
the discharge of ESS, EBs and EVs is promoted to cover the
charge deficit during peak periods, the charge of EBs and EVs
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FIGURE 16. Energy sold to DNO in the case of IWFPS.

FIGURE 17. MPC-based control of EVs and EBs in the case of IWFPS.

is favored just before their departure time, and the charge of
the ESS is boosted before proceeding with the sale.

The scheduling optimization problem has been solved
considering perfect predictions (deterministic) for the whole
horizon. The aim is to assess the influences of forecast errors
of the solar irradiation on the optimal operation scheduling
of the microgrid. Fig. 21 shows a comparison among the
optimal energy sold to the DNO as determined by the MPC
strategy and the deterministic method. The analysis of the
figure proves that the MPC-based algorithm handles well the
stochastic behavior of the inputs and significantly improves
the performance of the optimal operation of the microgrid.

The optimization problem has been solved over the whole-
time horizon considering that the expected solar production

FIGURE 18. MPC-based peak power dispatch in the microgrid in the case
of DWF.

FIGURE 19. MPC-based control of the ESS in the case of DWF.

is determined as the sum of a deterministic part calcu-
lated considering measured data and a noise defining the
intermittent behavior of the solar irradiation represented by
the inverse normal distribution. The aim is to assess the effects
of the variabilities of the energy production on the optimal
schedule of the microgrid. A comparison among the optimal
scheduling of the energy storage state under presence of a
noise and as calculated by the receding horizon based MPC
scheme is reported in Fig. 22. It can be observed that the
energy storage state shows some deviations among the two
methods.

Fig. 23 reports the time varying state of the optimal opera-
tion of the ESS considering The MPC and Minmax methods.
It can be observed the optimal control based MPC provides
the ESS with more charging capacities, which enhance the
quality of service of the microgrid.
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FIGURE 20. Energy sold to DNO in the case of DWF.

FIGURE 21. MPC-based control of EVs and EBs in the case of DWF.

FIGURE 22. Deterministic vs. MPC.

The figures demonstrate the choice of adopting the MPC-
based algorithm that is applied over the prediction time hori-
zon based on feedback correction. This means that, at each

FIGURE 23. The optimal control of the ESS considering the two
approaches.

FIGURE 24. Comparison among MPC and Minmax approaches.

interval, the feedback correction strategy is applied to adjust
the control signals of various components of the microgrid.

VI. CONCLUSION
The primary objective of this paper is to illustrate the benefits
of model predictive control strategy implementation to an
existing campus integrated microgrid with photovoltaic park-
ing shades, electric vehicles and bikes, and an energy storage
system, in terms of peak demand reduction. For that, the paper
describes this novel and effective MPC-based strategy that
aims to exploit the onsite generated and stored energy to sup-
ply the exceeding peak. The MPC strategy is formulated to
track simultaneously the campus load, the ESS reference and
the EBs and EVs desired departure states. It is implemented
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through two different case scenarios where the weighting
factors are static and dynamic. In both cases, the proposed
control strategy demonstrated its capability to successfully
reduce the peak demand. However, the use of static weighting
values leads to a suboptimal accuracy compared to the use
of dynamic weighting factors. In DWF, the results illustrated
that using energy storage systems with V2C and B2C capa-
bilities and PV generation is able of reducing the peak load
under realistic operating conditions by up to 15%.
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