
Received July 8, 2021, accepted July 30, 2021, date of publication August 11, 2021, date of current version August 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3104184

A Fast Convergent Homotopy Perturbation
Method for Solving Selective Harmonics
Elimination PWM Problem in Multi Level Inverter
SALMAN AHMAD 1, (Member, IEEE), ATIF IQBAL 2, (Senior Member, IEEE),
MOHAMMAD ALI 3, (Member, IEEE), KHALIQUR RAHMAN 3,
AND ABDELLAHI SIDI AHMED 2, (Member, IEEE)
1Department of Electrical Engineering, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
2Department of Electrical Engineering, Qatar University, Doha, Qatar
3Department of Electrical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202001, India

Corresponding author: Abdellahi Sidi Ahmed (as095223@qu.edu.qa)

This publication was made possible by Qatar University-Marubeni Concept to Prototype Development Research grant
#[M-CTPCENG-2020-2] from the Qatar University. The statements made herein are solely the responsibility of the authors. The APC of
the paper is funded by the Qatar National Library, Doha, Qatar.

ABSTRACT Pulse width modulation (PWM) control for power converters have been vastly investigated
and used in many industrial application. For medium voltage and high power applications, low switching
frequency PWM techniques are preferred over high switching frequency-based PWM techniques. The
preprogrammed low switching frequency-based PWM technique known as selective harmonics elimina-
tion (SHE) gives the better quality waveform at a lower switching frequency. The main difficulty in
applying SHE PWM is in solving of non-linear transcendental equations for obtaining switching angles.
Several methods have been proposed for computation of switching angles that include numerical techniques,
optimization techniques, and algebraic techniques. However, the computation of switching angles is still
a challenging task in the application of SHE PWM. In this paper, a novel fast convergent homotopy
perturbation method (HPM) is proposed to compute switching angles for a multilevel inverter at a faster
rate. The solutions obtained by the proposed technique is as accurate as obtained by the algebraic methods
with no dependency on the initial guess. The proposed technique can compute the higher number of switching
angles with multiple solutions in some modulation index range. A prototype is developed and the computed
switching angles have been verified using field-programmable gate arrays (FPGA) controller to validate the
results for practical applications.

INDEX TERMS Multilevel inverter, modulation index, selective harmonics elimination, pulse width
modulation, homotopy perturbation method, FPGA.

I. INTRODUCTION
Pulse width Modulation (PWM) techniques have been exten-
sively investigated and used for the efficient operation of
power electronics converter in the past. It produces desired
fundamental component at the output with minimum unde-
sired harmonics components [1]. However, the main focus
was on high switching frequency-based PWM techniques,
such as carrier-based modulation (SPWM) and space vector-
based modulation (SVPWM). In SPWM, a high-frequency
carrier is continuously compared with a fundamental com-
ponent (desired component), and at the intersection points,
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the pulses are generated. In space vector PWM, the distinct
switching states are first identified, and then these vectors
are applied to obtain the desired output. The main advantage
of high switching frequency (in kHz) techniques includes
having the desired output components along with shifting
of harmonics component at switching frequency as sideband
and thus higher switching frequency will result in the min-
imum filtering [1]–[3] requirement. In the past, two-level
voltage source inverters (VSI’s) have been mainly used, and
various PWM techniques have been implemented for two-
level VSI’s. However, higher power processing requirement
creates the opportunity to develop new converter topologies
to meet the increasing power demands with limited semicon-
ductor device voltage and current ratings.
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The main multilevel topologies such as cascaded H-bridge
(CHB), neutral point clamped (NPC), flying capacitor (FC),
active neutral point clamped (ANPC), modular multilevel
converter (MMC), and various reduced device count emerg-
ing topologies have been investigated and developed in the
recent years [4], [5]. The essential features of these topologies
include better quality output waveforms (Stepped) and thus
lower total harmonics distortion (THD), lower devise switch-
ing frequency, use of low voltage and current rating semicon-
ductor switches, and production of small dv/dt at switches [5].
Since the output waveform’s quality is kept as per IEEE
591 standard, the high switching frequency-based PWM tech-
niques are preferred for the operation and control of these
multilevel inverter topologies [2]. However, in high-power
application ofmultilevel converter, switching losses also need
to be considered, affecting efficiency considerably. In this
context, the low switching frequency based PWM techniques
such as selective harmonics elimination (SHE), selective
harmonics mitigation (SHM), optimum pulse width mod-
ulation techniques (OPWM), synchronous optimum pulse
width modulation (SOPWM), pulse width amplitude mod-
ulation and THD minimization PWM techniques [6]–[12].
These methods are referred to as the pre-programmed PWM
techniques as it is optimized as per requirement, such as
eliminating particular harmonics, minimizing specific har-
monics to particular level, and controlling overall harmonics
content in the output waveform [13]–[15]. In SHE-PWM,
the lower order harmonics are considered for complete elimi-
nation while maintaining the required fundamental compo-
nent simultaneously [16]. The number of switching angles
considered in quarter-wave will decide the number of har-
monics that can be eliminated from the output waveform.
More the number of switching angles is considered, more
harmonics are eliminated from the output waveform but
at the cost of higher switching losses [17]. Thus, it is a
trade-off between switching loss and output power qual-
ity. The non-transcendental SHE equations, obtained after
Fourier series analysis, provide different solutions as a mod-
ulation index function: a unique solution, multiple solutions,
and no solution [18]. The multiple solutions in some mod-
ulation index range give different THD, and the following
non eliminated harmonics in the output waveform. Thus it
is essential to find all the solutions from the derived system
of non-linear non-transcendental equations [19].

To solve the system of simultaneous SHE equations,
several methods have been proposed in literature over the
years [9], [20]. These can be broadly classified as numeri-
cal techniques-based iterative methods, metaheuristic-based
optimizations methods, and algebraic methods [21]. The
numerical-based iterative techniques are fast convergent, and
solutions up to the desired accuracy are obtained. However,
the main challenge in utilizing these techniques involves
the proper selection of initial guesses and computation of
derivatives in every iteration, which results in divergence in
the solution and singularity problems [22], [23]. In meta-
heuristic techniques, a single objective function is solvedwith

different constraints on the harmonics levels. The objective
function is optimized withmodern techniques such as particle
swarm optimization (PSO), modified PSO, genetic algorithm
(GA), differential evolution (DE), ant colony optimization
(ACO), artificial bee colony (ABC), teaching-learning (TL)
optimization, hybrid PSO and GA optimization, grey wolf
optimization etc. [24]–[29]. The main challenge in utilizing a
metaheuristic-based optimization technique includes a slow
convergence rate, proper selection of algorithm parameters,
initial guess, and more computational time for the entire
modulation index range [24], [25], [30]–[33]. In algebraic
methods, the SHE equations are transformed into algebraic
equations using the trigonometric formulas and then solved
using theWalshmethod, symmetric polynomial methods, and
Groebner bases [20]. The algebraic methods are capable of
giving all the solutions from the SHE equation with exact
values. However, the polynomial degree increases many folds
with an increase in the number of switching angles, and
thus these methods are used only for computation of few
switching angles [22]. The capacitor voltage balancing using
SHE-PWM for low device count multilevel topologies have
been addressed in [34]. The real application of SHE-PWM
have been successfully implemented using artificial neu-
ral network (ANN), Data fitting, hopfield neural network,
etc. [35]–[39]. The switching angles first computed using any
of the method discussed above and then real time implemen-
tation for various application is applied.

This paper proposes a novel homotopy perturbation
method (HPM) for the computation of switching angles
in SHE-PWM. The proposed method is accurate, robust,
fast convergent, and capable of computing all the switch-
ing angles with any random initial guess. Various multilevel
waveforms such as three-level waveforms, multilevel stepped
waveforms have been considered, and the switching angles
have been computed. The accurate multiple solutions with a
faster computational algorithm confirm the robust operation
of the proposed HPM technique. The obtained solutions are
as exact as obtained by the algebraic methods but can solve
for more number of switching angles as compared to alge-
braic methods. The harmonics profile for various modulation
indexes is given to confirm the accuracy of the computational
results. The sensitivity analyses of the computed solutions
are also given with comparative analysis of different meth-
ods. The Computational results are verified by the hardware
results using field-programmable gate arrays (FPGA) for var-
ious cases. The dynamic load change results for resistive and
resistive-inductive load have been given for 11-level stepped
waveform with variation in load from no-load to half-load to
full load.

The paper is organized as follows: In section II, mathemat-
ical modeling and problem formulation for three-level and
the multilevel stepped waveform is discussed, in section III,
HPM computational procedure is discussed, in section IV,
the selected computational results of switching angle trajec-
tories for various cases by the proposed HPM technique is
given, in SectionV, sensitivity analysis is given, in section VI,
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FIGURE 1. (a) Power circuit of a single-phase cascaded H-bridge inverter,
(b) Stepped output phase voltage.

laboratory setup of multilevel inverter and digital control
is discussed. Also, selected hardware results are given for
resistive resistive-inductive loads, and finally, in section VII
conclusion of the work is given.

II. PROBLEM FORMULATION
The main objective in SHE PWM is to obtain switching
angles so that the desired fundamental frequency component
is achieved and the elimination of specific low order harmon-
ics components from the output waveform. The set of simul-
taneous mathematical equations are obtained after applying
the Fourier series decomposition of the output waveform,
and then homotopy perturbation is implemented to calculate
the switching angles. The generalized cascaded H-bridge
multilevel inverter circuit and a quarter-wave generalized
symmetrical output voltage waveform are shown in Fig.1(a)
and Fig.1(b). Three voltage levels such as +Vdc, 0, or -Vdc

are obtained from proper switching of the semiconductor
switches from individual H-cells. The number of positive and
negative pulses in a cycle determines the possible number
of harmonics for elimination. Fourier series expansion is uti-
lized to analyze the output waveform shown in Fig. 1 (b). The
general Fourier series expansion of the stepped waveform
shown in Fig.1 (b) is given by (1).

f (t) = a0+
∞∑
n=1

(an cos(nωt)+bn sin(nωt)) (1)

For simplicity, the waveforms are considered to have
odd quarter-wave symmetry. In such a scenario, the Fourier
coefficients a0 and an, are zero, and the even harmonics
components will be zero. The Fourier coefficient bn, after
simplification, is given by (2), where n represents harmonic
order and N total number of switching transitions in quarter
periods.

bn =


4Vdc
nπ

∑N

k=1
(−1)k+1 cos (nαk) , for odd n

0, for even n
(2)

And for staircase waveform, from cascaded H bridge
inverter it will be given by (3).

bn =


4Vdc
nπ

∑N

k=1
cos (nαk) , for odd n

0, for even n
(3)

The triplen harmonics for a balanced three-phase system
automatically will get canceled. So the output waveform can
be considered as having the desired fundamental component
and several nontriplen odd-order harmonics components and
can be expressed by (4) and (5) for three-level waveform and
multilevel waveforms.

Vout =
∞∑
n=1

4Vdc
nπ

N∑
k=1,5,7...

(−1)k+1 cos (nαk)

 sin(nωt) (4)

Vout =
∞∑
n=1

4Vdc
nπ

N∑
k=1,5,7...

cos (nαk)

 sin(nωt) (5)

The N-1 harmonics can be eliminated from the output
waveform (usually the lower order) if N number of switching
transitions are considered quarterly. One degree of freedom
is reserved for obtaining the desired fundamental component
magnitude. The generalized expression for having desired
fundamental component and elimination of specific low order
harmonics components eliminated from the output waveform
in three-level and multilevel stepped waveforms are given in
(6) and (7), respectively.∑N

k=1
(−1)k+1 cosαk−M = 0∑N

k=1
(−1)k+1 cos (5αk) = 0

· · ·∑N

k=1
(−1)k+1 cos (nαk) = 0


(6)
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∑N

k=1
cosαk−S×M = 0∑N

k=1
cos (5αk) = 0

· · ·∑N

k=1
cos (nαk) = 0


(7)

S is the number of steps, and M represents the modula-
tion index. The ratio between the fundamental component’s
magnitude and the maximum achievable magnitude is given
by (8).

M =
V1

V1max
(8)

The above equations must satisfy the minimum, maximum
and non-equality constraints, expressed in (9).

0 < α1 < α2 < α3 · · · · · ·αN <
π

2
(9)

The equations in (6) and (7) are considered simultane-
ous, highly non-linear, and transcendental. Their solution
may give multiple solutions, unique solution or no solution
at different modulation index values and is therefore not
straightforward.

III. HPM SOLVING PROCEDURE
An advanced technique is proposed here to obtain all the
possible solutions from the expressions (6) and (7) which are
further rewritten in matrix form as:

f (α1, α2, α3 · · · , αn) =


f1 (α1, α2, α3 · · · , αn)
f2 (α1, α2, α3 · · · , αn)
...

fn (α1, α2, α3 · · · , αn)

 (10)

where, fk : Rn → R. Also let the switching angles, α ∈ Rn.
In vector form α is expressed as (11), where αk ∈ R and
k = 1, 2 . . . n.

α =


α1
α2
...

αn

 (11)

Then in the homotopy perturbation method, the systems of
equations (let us say two functions in two variables) which are
considered to be solved can be rearranged as given in (12):

F(α) =

{
f1(α) = 0;
f2(α) = 0;

α = (α1, α2)
T
∈ R2 (12)

where, f1, f2 : R2 → R, and let α∗ = (α1, α2)
T makes ()

to zero, that is, it is the solution of the problem. Let γ =
(γ1, γ2)

T , be the initial guess which is very close to the actual
solution α∗. The Taylor series expansion of (1) near γ will
result in (13).

F(α) =


f1(γ )+(α1−γ1) f1,α1 (γ )+(α2−γ2) f1,α2 (γ )
+F1(α) = 0

f2(γ )+(α1−γ1) f2,α1 (γ )+(α2−γ2) f2,α2 (γ )
+F2(α) = 0

(13)

where, F1(α) = f1(α)−f1(γ )−(α1−γ1) f1,α1 (γ )+(α2−γ2)
f1,α2 (γ ) and F2(α) = f2(α)−f2(γ )−(α1−γ1) f2,α1 (γ )+
(α2−γ2) f2,α2 (γ ). The expression in (13) can be written in the
following form as:

α1f1,α1 (γ )+α2f1,α2 (γ )
= γ1f1,α1 (γ )+γ2f1,α1 (γ )−f1(γ )−F1(α)

α1f2,α1 (γ )+α2f2,α2 (γ )
= γ1f2,α1 (γ )+γ2f2,α1 (γ )−f2(γ )−F2(α)

(14)

After solving (14), (15) is obtained, which represents the
solution for the switching angles.[

α1
α2

]
= γ−J−1 (f1, f2) (γ )

([
f1(γ )
f2(γ )

]
+

[
F1(α)
F2(α)

])
(15)

where, inverse Jacobian is:

J−1 (f1, f2) (γ ) =
[
f1, α1(γ ) f1, α2(γ )
f2, α1(γ ) f2, α2(γ )

]
(16)

In homotopy perturbation method, the construction of
Homotopy function for (14) is H (ᾱ, λ) : R2×[0, 1] → R2

and it should satisfy (11) and thus (17) is obtained as:

H (ᾱ, λ)

=

[
ᾱ1
ᾱ2

]
−γ−J−1 (f1, f2) (γ )

([
f1(γ )
f2(γ )

]
+λ

[
F1(ᾱ)
F2(ᾱ)

])
= 0

(17)

where, λ is the embedding parameter and after substituting
(18) is obtained as:

H (ᾱ, 0) =
[
ᾱ1
ᾱ2

]
−γ−J−1 (f1, f2) (γ )

([
f1(γ )
f2(γ )

])
= 0

(18)

H (ᾱ, 1) =
[
α1
ᾱ2

]
−γ−J−1

× (f1, f2) (γ )
([

f1(γ )
f2(γ )

]
+

[
F1(ᾱ)
F2(ᾱ)

])
= 0 (19)

Here the embedding parameter λ increases monotonically
from 0 to 1 as trivial problem and H (ᾱ, 0) is continuously
deformed to main formulation H (ᾱ, 1) = F(ᾱ) = 0. The λ is
used as expanding parameter to get (20) in HPM.

ᾱ =

[
α1,0
α2,0

]
+λ

[
α1,1
α2,1

]
+λ2

[
α1,2
α2,2

]
(20)

The approximate solution of (3) is then obtained as in (21).

α∗ = lim
λ→1

ᾱ =

[
α1,0
α2,0

]
+

[
α1,1
α2,1

]
+

[
α1,2
α2,2

]
(21)

The convergence of series in (20) is given in (III). The
application of HPM for (21) can be obtained from the
above expression as (23), shown at the bottom of the next
page:

α∗ = lim
λ→1

ᾱ =

[
α1,0
α2,0

]
+

[
α1,1
α2,1

]
+

[
α1,2
α2,2

]
(22)
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By equating the terms of identical power of λ, the following
expressions are obtained in (26)–(28):

λ0 :

[
α1,0
α2,0

]
= λ−J−1 (f1, f2) (γ )

([
f1(γ )
f2(γ )

])
(26)

λ1 :

[
α1,1
α2,1

]
= −J−1 (f1, f2) (γ )

([
F1 (α0)
F2 (α0)

])
(27)

λ2 :

[
α1,2
α2,2

]
= −J−1 (f1, f2) (γ )

×

([
α1,1F1,α1 (α0)+α2,1F1,α2 (α0)
α11F2,a1 (α0)+α2,1F2a2 (α0)

])
(28)

After substituting the above expressions in (20), it will
result in (24), as shown at the bottom of the page, and
simplification will result in (25), as shown at the bottom of
the page. The above formulation allows the following two
iterative methods to solve the system of non-linear equations
given as:

i. For a given θn =
[
pn
qn

]
calculate the approximate

solution θn+1 =
[
pn+1
qn+1

]
:

θn+1 = θn−J−1 (f1, f2) (θn)F (θn)

ii. or a given θn =
[
pn
qn

]
calculate the approximate solution

θn+1 =

[
pn+1
qn+1

]
: θn+1 = θn−J−1 (f1, f2) (θn) (F (θn)

+

[
F1
(
θn−J−1 (f1, f2) (θn)F (θn)

F2
(
θn−J−1 (f1, f2) (θn)F (θn)

])
The flowchart for computing switching angles, storing
results and computing total harmonics distortion for
each solution set is shown in Fig. (2). The software code
is developed and run for each cases to obtain the accurate
switching angles for any voltage source converter topol-
ogy. The scheme can also be implemented for reduce
device count topologies.

FIGURE 2. HPM flowchart in solving system of nonlinear simultaneous
harmonics equations.

IV. COMPUTATIONAL RESULTS BY HPM
The proposed HPM technique discussed in the previous
section is used to compute the switching angles. Various
cases of stepped waveform of multilevel inverter have been
considered, and the selected results have been given to con-
firm the capability of the proposed techniques to compute

[
α1,0+λα1,1+λ

2α1,2+· · ·

α1,0+λα1,1+λ
2α1,2+· · ·

]
−γ−J−1 (f1, f2) (γ )

[
f1(γ )
f2(γ )

]
−λJ−1 (f1, f2) (γ )

×


F1 (α0)+

(
λα1,1+λ

2α1,2+· · ·
)
F1,α1 (α0)+(

λα2,1+λ
2α2,2+· · ·

)
F1,α2 (α0)+· · ·

F2 (α0)+
(
λα1,1+λ

2α1,2+· · ·
)
F2,α1 (α0)+(

λα2,1+λ
2α2,2+· · ·

)
F2,α2 (α0)+· · ·

 = 0 (23)

α∗ =

[
α1,0
α2,0

]
+

[
α1,1
α2,1

]
+

[
α1,2
α2,2

]
+· · · = γ−J−1 (f1, f2) (γ )

[
f1(γ )
f2(γ )

]
−J−1 (f1, f2) (γ )

[
F1 (α0)
F2 (α0)

]
−J−1 (f1, f2) (γ )

([
α1,1F1,α1 (α0)+α2,1F1,α2 (α0)
α1,1F2,α1 (α0)+α2,1F2,α2 (α0)

])
−· · · (24)

α∗ = γ−J−1 (f1, f2) (γ )
[
f1(γ )
f2(γ )

]
−J−1 (f1, f2)


F1

(
γ−J−1 (f1, f2) (γ )

[
f1(γ )
f2(γ )

]
F2

(
γ−J−1 (f1, f2) (γ )

[
f1(γ )

f2(γ )

]
+· · · (25)
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FIGURE 3. Switching angles as function of modulation index for stepped
waveform at N = 3, 5, 7, 9, 11, 13.

TABLE 1. Convergence rate for various modulation index and maximum
error in SHE function.

the exact solutions at a fast convergent rate with negligi-
ble dependence on the initial guess. The lower order, non-
triplen harmonics are considered for elimination from the
output waveform since the triplen harmonics will automat-
ically get canceled from the line voltage in a three-phase bal-
anced system. The modulation index represents the desired
fundamental component of the output voltage. For stepped
waveforms of 7, 11, 15, 19, 23, 27 levels, the switching
angles trajectories as a modulation index function are shown
in Fig. 3. The solution trajectories confirm the multiple solu-
tions, no solution and unique solution in a wide modulation
index range with accuracy in solutions as close to as obtained
in algebraic methods. Similarly, the solution trajectories for
three-level waveforms for 3, 5, 7, 11, and 13 switching
angles in a quarter period are shown in Fig. 4. For three
level three phase inverter the switching angles lies in the
range of [0, 0.9323], [0, 0.9187], [0, 0.9137], [0, 0.9113],
[0, 0.90910], [0, 0.9088] for N = 3, 5, 7, 9, 11, 13 respec-
tively.While for three phase stepped waveform, the switching
angles ranges as [0.5853, 0.9229], [0.3759, 0.8464], [0.4660,
0.8594], [0.4865, 0.8303], [0.4909, 0.8116], [0.5228, 0.7948]
for N= 3, 5, 7, 9, 11, 13 respectively. The solution trajectory
shows various numbers of solutions as a function of

FIGURE 4. Switching angles as function of modulation index for
three-level waveform at N = 3, 5, 7, 9, 11, 13.

FIGURE 5. Normalized harmonics profile at (a) N = 3, M = 0.8323.

the modulation index. It again confirms the proposed tech-
nique’s capability to compute all the possible switching angle
solutions from the output waveform. The multiple switching
angles for stepped waveforms to accommodate more har-
monics can also be evaluated using the proposed technique.
However, it will increase the switching frequency of the
system. Similarly for asymmetrical multilevel inverter cases
that are different dc-link voltages can also be computed by the
proposed technique. The proposed technique can also com-
pute a higher number of switching angles. The Normalized
harmonics profile for the stepped waveform of the 11-level
stepped waveform, that is, N = 5 at M1 = 0.680, M2 =

0.728, M3 = 0.797, M4 = 0.836, M5 = 0.8460, is shown
in Fig. 5. The lower order targeted harmonics, i.e., 5th, 7th,
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FIGURE 6. % Line voltage THD for 11-level CHB inverter.

FIGURE 7. Convergence of various methods and proposed method.

11th, and 13th, are entirely removed from the output wave-
form. Themaximum error in the harmonics equations defined
in (7) has values of 1.02×10−7, 2.97×10−14, 1.41×10−7,
1.77×10−10, and 4.50×10−7, respectively. The convergence
rate or the number of iterations for the HPM algorithm to
achieve this accuracy is 8, 9, 9, 8, and 14, respectively. The
convergent rates, maximum error and time of computation
for various modulation indexes are shown in Table 1. The
total harmonics distortion (%THD) in line voltage for 11-
level cascaded H-bridge inverter is shown in Fig. (6), which
has been computed using (29), and it indicates that different
solutions for a particular modulation index have different val-
ues. Therefore the optimum solution may be selected based
on the minimum %THD value of the solution.

THD =

√√√√√
 200∑
n=s,7

(
Hn
H1

)2
×100 (29)

V. SENSITIVITY ANALYSIS OF THE SOLUTIONS
For sensitivity analysis, the derivatives of the objective func-
tion are considered. Then the effect of one or multiple param-
eter’s variations on the system performance can easily be

FIGURE 8. (a) Schematic and (b) Actual experimental setup.

assessed using the following expression:

f (α1+1α1, . . . αn+1αn)

≈ f (α1, . . . αn)+
∂f
∂α1

1α1+. . .+
∂f
∂α1

1αn (30)

Here the objective function is continuous and differentiable
at all points in the defined space, which is a crucial hypothesis
in the sensitivity analysis. The SHE PWM techniques’ per-
formance under variation in switching angle values from the
computed values is essential. The harmonics distortion’s sen-
sitivity is determined by having a slight variation in switching
angles from the optimum solution obtained from the differ-
ential evolution-based optimization technique in a broader
range of solutions.

The second and first-order performance function deriva-
tives are utilized to assess parameter variation on performance
by second-order sensitivity analysis. It increases the accuracy
in sensitivity analysis, and unlike the first-order derivative,
the optimal point does not necessarily converge to zero points.
For multivariable, the use of Taylor series expansion by con-
sidering both first and second-order terms results as:

f (α1+1α1, . . . , αn+1αn)

≈ f (α1, . . . , αn)+
∂f
∂α1

1α1
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FIGURE 9. Experimental result (a) N = 5 (b) N = 7 (c) N = 9 (d) N = 13.

+ . . .+
∂f
∂αn

1αn+
1
2
∂2f

∂α21

1α21+. . .+
1
2
∂2f
∂α2n

1α2n

+
1
2
∂2f

∂α21

1α21+
∂2f

∂α1∂α2
1α11α2+. . .+

∂2f
∂α1∂αn

1α11αn

+
∂2f

∂α2∂α3
1α21α3+. . .+

∂2f
∂αn−1∂αn

1αn−11αn (31)

The effect of slight variations in the switching angles to
the harmonic distortion is determined and compared after the
optimum swathing angles are obtained. The desired equation
for computation of desired fundamental and undesired low
order harmonics is given as:

V1 = |
4Vdc
π

(cos (α1)+cos (α2)

+ · · · + cos (αN−1)+cos (αN ))

Vn = 0 =|
4Vdc
nπ

(cos (nα1)+cos (nα2)

+ · · · + cos (nαN−1)+cos (nαN )) (32)

In (32), V1 is the fundamental voltage, which is the desired
part and, n1, n2, n3 . . . are the targeted harmonics for elimi-
nation. For a 5-variable case, the 5th, 7th, 11th, and 13th order
harmonics are chosen as these are the lowest order harmonics
in a balanced 3-phase system. The optimized solution to
(32) is considered for validating the results from both the
optimization and sensitivity analyses. The switching angles
for a harmonics minimization scheme with five switch-
ing angles considered for sensitivity analysis, the objective

function (OF) shown in (33) is used in [40].

F = min
αk

{(
100×

V ◦1−V1
V ∗1

)4

+

N∑
k=2

1
lk

(
50×

Vht
V1

)2
}
;

k = 1, 2, 3 · · · ,N (33)

The elimination of 5th, 7th, 11th, and 13th orders are con-
sidered and are given as:

R = min
α2

{
N∑
k=2

1
hk

(
Vhk
V1

)2
}
; k = 1, 2, · · · , 5 (34)

For the exact computed switching angles (α1, α2, . . . α5),
R is zero, as shown in the table. However, in the practical
implementation, a small deviation in these switching angles
will result in a deviation in R from zero. The sensitivity
analysis described is used to calculate R’s deviation with dif-
ferent %age deviations in switching angles. The incremental
error per degree of deviation in switching angles is shown
in Table 2. All first and second-order derivatives are calcu-
lated, and then R is represented by the expansion given in
(31) for the variations in the switching angles. Alternatively,
the permissible deviation in switching angle 1α to limit
the harmonics distortion within the specified range can be
evaluated. If a value HR=

√
2 (and letHR ≤ 2%) as a design

constraint. Hence the maximum permitted error in switching
angle1α can be derived from (30) and (31). At the optimum
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TABLE 2. The analytical derivatives.

point, the partial second derivative is given as:

1R =
N∑

i=1,j=1,i−j

(
Rα,αi

)
1α2

+

N∑
i=1,j=1,i6=j

[
Rα,α

]
(±1α)(±1α) (35)

where,

Rαiαj =
∂2

∂αi∂αj
R

∣∣∣∣
optimum

, i 6= j

and,

Rαiαi =
1
2
∂2

∂α2i
R

∣∣∣∣∣
optimum

, i = j

The worst-case situation from smallest variation in 1α is
assured in (36) by having the max function, which occurs
from the proper selection of + and − signs. The various
sensitivity cases are given in Table 3.

|1αmax|

≤

√√√√√ Rmax

max
(∑N

i=1,j=1,i=j Rαjαj+
∑N

i=1,j=1,i6=j
(
±Rαiαj

)

(36)

VI. EXPERIMENTAL VALIDATION
The computed switching angles by HPM discussed in the
previous sections have been validated by hardware devel-
oped in the laboratory. The schematic and complete hard-
ware setup of power rating of 1.5 kW is shown in Fig. 8(a)
and Fig. 8(b), respectively. The field-programmable gate
array (FPGA) from VIRTEX-5 XC5VLX50T is used as a
digital controller as it has a sizable amount of logic compo-
nents and area unit programmable logic devices. The control

TABLE 3. Worst case HR.

FIGURE 10. Harmonics spectrum (a) N = 5 (b) N = 7 (c) N = 9 (d) N = 13.

TABLE 4. Prototype components rating.

code for switching devices is converted into very high def-
inition language (VHDL) by using the Xilinx logic blocks
compatible with Simulink library to generate gate pulses.
The individual logic elements connections are programmed
by VHDL and create a logical function, i.e., digital hard-
ware. Since at present, the available microcontrollers are
capable of providing only six pairs of PWM signals, which
is not sufficient for multilevel converter operation. However,
the FPGA may provide multiple PWM signals useful in
a multilevel converter system. Also, with the clock signal,
an FPGA may run all the operations in parallel, and hence it
updates all gate signals simultaneously, which is an advan-
tage over a digital signal processor (DSP). There are one
or more LUTs on each flip-flop of PLB. There are many
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FIGURE 11. Harmonics spectrum (a) 11-level voltage and current waveform at R load (b) 11-level voltage and current waveform at RL load (c) voltage
harmonics profile at M = 0.80 (d) voltage harmonics profile at M = 0.82.

FIGURE 12. Practical results (a) Output voltage and current waveform at high inductance RL load (b) Dynamic response for changing load.

vendors such as Xilinx, Altera, Atmel, Lattice, etc., who
provide a wide range of FPGAs. The complete hardware
setup includes the multilevel converter with gate drivers,
programmable dc supply, FPGA controller, oscilloscope, and
harmonics analyzer is shown in Fig. 8(b). The components
ratings of the prototype developed in the laboratory is given
in Table 4. For various switching angle cases and modulation
indexes, the experimental results have been obtained. The
concept is validated through selected results shown in Fig. 9
for three-level waveforms for different switching angles in
a quarter-period while considering eliminating lower-order
non-triplen harmonics for elimination. The corresponding
harmonics profiles are given in Fig. 10. The harmonics pro-
files shows that the targeted harmonic order are absent in the
output voltage waveform. The voltage and current waveform
for resistive and resistive-inductive load is shown in Fig. 11(a)
and Fig. 11(b) for M = 0.80 and M = 0.82, respectively.
The corresponding harmonics profiles for output voltage are
shown in Fig. 11(c) and Fig. 11(d), respectively. The targeted
harmonics for elimination are absent in the harmonics profile.
Thus, the experimental results exhibit that the harmonics
elimination’s hardware results are in agreement with the com-
putational results.

VII. CONCLUSION
A novel fast convergent homotopy perturbation method
was proposed in this paper to solve the selective-harmonic
elimination-based pulse width modulation problem. The gen-
eralized mathematical modeling was first established for
three-level and stepped waveforms. The proposed technique
have been implemented to solve the highly non-linear tran-
scendental system of equations. The selected computed
results for switching angle trajectories as a function of
modulation index were given for three level and stepped
waveforms for various switching angle cases. The number of
iterations and computational time have been reduced drasti-
cally in the proposed technique. Different numbers of solu-
tions were obtained as the modulation index varies and thus
offers increased degree of freedom. The obtained solutions
were as accurate as of the algebraic methods, which were
confirmed from the output waveform’s harmonic profile.
Moreover, in algebraic methods, the number of switching
angle computations is limited. A prototype was developed
in the laboratory to validate the switching angles. An FPGA
controller was used to generate the gate pulses, and the har-
monic analyzer was employed to capture the harmonics pro-
file. The dynamic performance have been shown by suddenly
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changing the load from no load to half load to full load for
highly inductive RL load. The hardware results commend the
computational results.
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