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Abstract
Over the last decade, there has been a remarkable surge in interest in auto-
mated crowd monitoring within the computer vision community. Modern
deep-learning approaches have made it possible to develop fully automated
vision-based crowd-monitoring applications. However, despite the magnitude of
the issue at hand, the significant technological advancements, and the consis-
tent interest of the research community, there are still numerous challenges that
need to be overcome. In this article, we delve into six major areas of visual crowd
analysis, emphasizing the key developments in each of these areas. We outline
the crucial unresolved issues that must be tackled in future works, in order to
ensure that the field of automated crowd monitoring continues to progress and
thrive. Several surveys related to this topic have been conducted in the past.
Nonetheless, this article thoroughly examines and presents a more intuitive cat-
egorization of works, while also depicting the latest breakthroughs within the
field, incorporating more recent studies carried out within the last few years in
a concise manner. By carefully choosing prominent works with significant con-
tributions in terms of novelty or performance gains, this paper presents a more
comprehensive exposition of advancements in the current state-of-the-art.

INTRODUCTION

The increasing population in urban areas often leads to
crowded situations in densely populated areas which pose
several challenges and threats to public safety. To ensure
the safety of the people, crowd management strategies
require efficient crowd analysis. While manual analysis of
the crowd is a tedious task, automatic crowd analysis is
desired in many situations.
Automatic crowd monitoring using visual analysis is a

hot topic in computer vision research (Khan, Menouar,
and Hamila 2023c) with many interesting applications in
city surveillance, social distancing, transportation, sports,
wildlife monitoring, and so forth (Thirumalaisamy et al.
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2022; Zhang et al. 2022). Over the last decade, advances
in deep learning have brought new possibilities to achieve
state-of-the-art performances in various visual crowd anal-
ysis problems such as crowd counting, object detection,
activity recognition, anomaly detection, motion analysis,
and so forth. Although numerous research efforts have
achieved remarkable performance in visual crowd anal-
ysis, there remain several challenges and problems yet
to address. The reason for many of the unsolved prob-
lems lies in the underlying complexity and challenges
related to crowd scenes as compared to other computer
vision tasks, for example, severe occlusions, clutters, scale
variations, unpredictable motion patterns, complex crown
behaviors, the unknown context of crowd activities, and
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F IGURE 1 Six areas or applications of crowd visual analysis.

so forth. Thus, crowd analysis is often considered more
challenging than other computer vision tasks. The com-
plex nature of the problem impacts the development of the
crowd visual analysis system and requires more sophis-
ticated algorithms and models, collection of diverse and
large-scale datasets, hardware resources for real-time per-
formance, and system-level integration of such algorithms
with cameras, sensors, and data storage systems. Algo-
rithmic innovation and data availability are particularly of
paramount importance for computer vision researchers.
To understand these challenges, we thoroughly inves-

tigated the literature on crowd analysis using computer
vision and mostly using deep learning. We also studied
different traditional approaches, to understand how the
innovations progressed over time and how they created an
impact. We greatly focused on research works published
in major scientific venues and chose those works that
have significantly contributed to the body of knowledge in
terms of identifying a real problem, innovation in method-
ology, or claiming significant performance gains against
previous methods. We found existing surveys categoriz-
ing works in different ways, however, when studying the
common trends and distinct approaches in these works,
we found a more intuitive and meaningful categorization
of crowd analysis. Our approach is to categorize these
works into different types of analysis tasks where each task
is completely different and requires different methods to
accomplish the task objective. As illustrated in Figure 1,
these works on visual crowd analysis are categorized into
six major areas, that is, crowd counting, object detec-
tion and tracking, motion analysis, behavior recognition,
anomaly detection, and crowd prediction.
Crowd counting is to estimate the density of people or

the total count in a particular geographical area. Objection
detection aims to detect and localize particular objects of
interest in the crowd, for example, detecting women only,
detecting people holding banners or sticks, and so forth.
Motion analysis refers to the collective mobility state of

the crowd, for example, if the crowd is stationary/moving
along with other motion statistics such as direction,
speed, flux analysis, and so forth. Behavior analysis
determines the collective attribute of the crowd focusing
on the activities performed by crowd members to extract
contextual behavior information, for example, if the crowd
is calm, violent, and so forth. Anomaly detection focuses
on finding unusual and abnormal events and activities at
both individual and group levels. Crowd prediction refers
to the prediction of proactive accumulation (assembly)
or influx and efflux of people in/from a particular region
that can lead to a crowd. Generally, there is a logical
sequence in the implementation of these applications.
For instance, the first information which might interest a
user or agency monitoring a crowd is the estimated crowd
density, followed by other aspects of crowd members such
as age, gender, and so forth, and any detecting objects
such as banners, posters, and sticks held by the members.
The next information one might be interested in is con-
tinuously following up on the crowd movement to know
whether the crowd is stationary or moving in a specific
direction. The aforementioned aspects are covered in the
first three areas of crowd analysis. Then, a sophisticated
system may provide a more detailed analysis such as
crowd behavior (mood, specific activities performed by
crowd members), and detecting specific abnormal events
or objects. Lastly, the prediction about crowd formation or
dispersion in a specific region or area at a specific time can
be a piece of very useful information that one would desire
to obtain.
While traditionally, many semi-automated computer

vision methods have been proposed (Davies, Yin, and
Velastín 1995; Silveira Jacques Junior, Musse, and Jung
2010), the recent advancements in modern deep learning
have revolutionized the development of fully automated
vision-based crowd-monitoring applications. By leverag-
ing the power of deep neural networks, the accuracy,
efficiency, and overall performance of such applications
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have been significantly improved. Deep learning methods
automatically learn and extract meaningful patterns and
features from large-scale crowd visual data such as images
and videos, thus enabling better crowd analysis. Also, the
use of transfer learning allows deploying models trained
on one dataset in a different scenario after fine-tuning,
speeding up the training process.

Similar and related studies

Several studies have been conducted in the past, which
typically focus on individual areas of crowd analysis. For
example, Sindagi and Patel (2018), Cenggoro (2019), Ilyas,
Shahzad, and Kim (2020), Gao et al. (2020), Luo, Lu, and
Zhang (2020), Gouiaa, Akhloufi, and Shahbazi (2021), Fan
et al. (2022), and Khan, Menouar, and Hamila (2023c)
cover crowd counting research and mainly discuss the
advancements in model architectures, benchmarking, and
datasets. Hu et al. (2004b), Luca et al. (2020), and Kumar
(2021) focus on crowd motion analysis, discussing crowd
motion predictions, flow classification, and behavior anal-
ysis using motion patterns. Joshi and Patel (2021), Modi
and Parikh (2022), and Sharif, Jiao, andOmlin (2022) study
anomaly detection with a focus on methods, datasets, and
comparisons of results. Unlike the aforementioned stud-
ies, few studies also cover the multiple aspects of crowd
analysis. For instance, Li et al. (2015) cover motion analy-
sis, behavior recognition, and anomaly detection but does
not cover counting, density estimation, object detection,
crowd prediction, and so forth. Swathi, Shivakumar, and
Mohana (2017) cover density estimation,motion detection,
and behavior recognition, but do not cover object detec-
tion, and anomaly detection. Similarly, Zhang, Yu, and
Yu (2018) cover only physics-inspired methods for crowd
analysis and focuses on motion analysis in videos. Table 1
presents a list of recent survey articles on the topic.
Although the studies discussed earlier provide a thor-

ough review of the literature with useful taxonomy of
works, our study presents a more comprehensive review
consisting of the six intuitive areas of crowd analysis. Our
survey is unique from the previous surveys as it does
not provide a thorough review covering each and every
relatedwork published, but focuses on themost prominent
works in each application area. Thus, this review is more
concise, allowing even nonexperts and novice researchers
in the area of crowd analysis to quickly understand the
state-of-the-art in research on the respective topic. Due to
the fast-paced research in computer vision, several related
works published a few years before may not serve the pur-
pose and yet another new studywith fresh perspectives and
insights is highly commendable.

Contribution and paper organization

Although several studies exist as stated in the previous
section, discussing individual areas of crowd-monitoring
applications, we aim to provide a concise study on the
topic targeted to a broader audience from various disci-
plines.We intentionally omittedmore technical details and
focusedmore on the crux of the problem for a smooth flow
for the reader. For instance, there have been more than a
hundred crowd-counting models published in the litera-
ture, we chose only those with significant contributions in
terms of novelty inmodel architecture, performance gains,
or other aspects of design and evaluation. Similarly, we
carefully chose original research works with major contri-
butions (despite if the work is overlooked previously) in
each application domain and included them in our sur-
vey to summarize the SOTA in each of the six areas of
crowd analysis.
This article discusses the six intuitive areas of crowd

visual analysis with a concise description of each, pro-
vides a brief overview of the state-of-the-art methods,
and highlights the open problems in each domain. Each
subsequent section describes one of the six areas. The
last section draws the conclusion and presents future
insights and research directions to advance the SOTA in
the respective area.

COUNTING AND DENSITY ESTIMATION

One of the first aspects of crowd monitoring is to esti-
mate the headcount (a scalar value for the whole image)
or density across different parts of the scene. As people in
the crowd are usually clumped together into groups, den-
sity estimates provide more information than just the total
count. Headcount or density estimation can provide good
situational awareness for the monitoring entities like law
enforcement agencies and event managers.

Methods and state-of-the-art

The de facto method for counting people in an image or
video frame is density estimation. A convolution neural net-
work (CNN) based model is trained to estimate the crowd
density. In the density estimation method, each head is
detected using a Gaussian blob around the center of the
head. This is a pixel-level regression problem and the com-
monly used Euclidean loss function (or mean squared
error MSE) is used to train the model. Figure 2 presents
the ground truth density map for a crowd image used by
the CNN model.
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TABLE 1 Related studies on crowd visual analysis.

Ref. Topic Brief scope
Sindagi and Patel (2018) Crowd counting Methods, model architectures, datasets, future insights.
Ilyas, Shahzad, and Kim (2020) Crowd counting Methods, model architectures, performance evaluation.
Gao et al. (2020) Crowd counting Model architectures and categorization, datasets, evaluation

metrics, challenges, and insights.
Gouiaa, Akhloufi, and
Shahbazi (2021)

Crowd counting Methods, the taxonomy of CNN models, datasets, and
applications.

Fan et al. (2022) Crowd counting Methods, applications, and models.
Khan, Menouar, and Hamila
(2023c)

Crowd counting Datasets, model architecture, loss functions, evaluation
metrics, insights.

Hu et al. (2004b) Motion analysis Motion analysis, behavior analysis, moving object
classification, and identification.

Luca et al. (2020) Motion analysis Flow prediction, next-location prediction, flow generation, and
trajectory generation.

Kumar (2021) Behavior analysis Methodologies for the organized crowd and nonorganized
crowd, datasets.

Modi and Parikh (2022) Anomaly detection Methods for anomaly detection with merits and demerits.
Sharif, Jiao, and Omlin (2022) Anomaly detection Methods, algorithms, datasets, and metrics with details

analysis and comparisons.
Li et al. (2015) Crowd analysis Models, datasets, algorithms, and evaluation of crowd motion

analysis, behavior recognition, and anomaly detection.
Swathi, Shivakumar, and
Mohana (2017)

Crowd analysis Density estimation, motion detection and tracking, and
behavior recognition.

Zhang, Yu, and Yu (2018) Crowd analysis Physics-inspired methods for crowd video analysis.

F IGURE 2 Crowd counting using density estimation. The
predicted density map shows crowd density across the image scene.
The sum of all pixel values of the density map equals the predicted
count in the image.

The first CNN-based crowd density estimation model
was CrowdCNN (Zhang et al. 2015). The CrowdCNN is a
single-column CNN architecture that outperforms tradi-
tional non-CNNmethods however, still lacks the capability
to adapt to the scale variations in head sizes. Scale variation
can arise from several reasons such as distance from the
camera, camera perspective effects, image resolution, and
so forth. To overcome scale variations, multicolumn CNN
networks were proposed (Zhang et al. 2016; Sindagi and
Patel 2017). Multicolumn models can capture scale vari-
ations to some extent (i.e., more columns are needed for
images with larger scale variations, which may increase

the model size significantly.). However, more efficient
architectures were proposed to replacemulticolumn archi-
tectures, for example, encoder–decoder networks (Jiang
et al. 2019; Song et al. 2021; Gao, Wang, and Gao 2019),
networks with multiscale modules (Zeng et al. 2017; Wang
and Breckon 2022), and so forth. Encoder–decoder mod-
els allow hierarchical feature extraction and aggregation
at multiple stages in the encoder and decoder modules,
respectively. These models are good at preserving the
spatial resolution of the predicted density maps using
downsampling and upsampling operations, however, take
longer times to train and converge. Recently, non-CNN
models using vision transformers are also proposed (Liang
et al. 2022; Tian, Chu, andWang 2021). Transformer-based
models apply self-attention mechanisms to model global
context and capture long-range dependencies. Their disad-
vantage is that these models require more computational
resources compared to CNNs due to the larger number of
parameters and self-attention operations.
Crowd counting is the relatively most rigorously inves-

tigated area after object detection with the availability of a
large number of datasets (Mall, Chen et al. (2012); Shang-
haiTech, Zhang et al. (2016); UCF-QNRF, Idrees et al.
(2018); JHU-Crowd, Sindagi, Yasarla, and Patel (2020);
NWPU-Crowd, Wang et al. (2021); DroneRGBT, Peng,
Li, and Zhu (2020); etc.) and a large variety of models
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TABLE 2 A summary of research efforts in crowd counting, categorized in distinct categories, that is, model architecture, loss functions,
metrics, and training methods.

Research area Summary of the SOTA
Model architectures Single-column, Zhang et al. (2015); multicolumn, Zeng et al. (2017); Encoder–decoder, Jiang

et al. (2019); pyramid, Vision transformers, Liang et al. (2022).
Loss functions Euclidean loss, Zhang et al. (2016); combination loss, Zhang et al. (2015); curriculum loss,

Wang and Breckon (2022); composite loss, Idrees et al. (2018); AP loss, Jiang et al. (2020);
PRA loss, Jiang et al. (2020); SCL loss, Jiang et al. (2019); OT, Wang et al. (2020).

Evaluation metrics MAE, MSE, GAME, Guerrero-Gómez-Olmedo et al. (2015); SSIM, Li, Zhang, and Chen
(2018); PSNR, Li, Zhang, and Chen (2018); PAME, PMSE, MPAE.

Training methods Supervised/weakly supervised, Yang et al. (2020); Liang et al. (2022); Lei et al. (2021);
curriculum learning, Khan, Menouar, and Hamila (2023b).

F IGURE 3 Performance of well-known crowd counting
models over years.

with reasonably good performance. The performance
gains in the counting accuracy have been high initially
when single-column shallow models have been replaced
bymulticolumnCNN, and thenpyramids structuremodels
using transfer learning and multiscale modules. However,
over the last 1–2 years, the gain in accuracy has been
incremental despitemajor architectural changes and novel
loss function. Figure 3 compared some well-known crowd
counting models showing the mean absolute error (MAE)
over a benchmark dataset and the size of themodel param-
eters. Furthermore, a summary of model architectures,
the learning (loss) functions, evaluation metrics, and the
training methods (supervised/weakly supervised, etc.) is
presented in Table 2.

Challenges and open problems

The accuracy performance (measured using MAE metric)
of crowd counting models has significantly improved over
time on benchmark datasets. For instance, the MAE over
ShanghaiTech Part A dataset forMCNN (Zhang et al. 2016)

was 110.2, which is reduced to 66.1 by TransCrowd (Liang
et al. 2022). A similar improvement has been achieved
on other benchmarking datasets (Khan, Menouar, and
Hamila 2023c) as well. Despite the significant improve-
ments in counting accuracy, there still remain several
challenges. The problem of scale variations caused due
to perspective effects have been overcome by multiscale
architectures, other issues such as occlusions and complex
backgrounds are still a major challenge in many complex
scenes. Although some methods propose background seg-
mentation as a preprocessing step, that can increase the
complexity of the task. Second, there is still more room for
further improvement in counting accuracy on new bench-
mark datasets such as UCF-QNRF, JHUCrowd++, and
NWPUCrowd datasets due tomore challenging scenes, for
example, extremely dense crowds, extreme weather and
low light conditions, camera blur effects, and so forth.
These conditions are common in the real world and the
results typically achieved over previous datasets would
not be attainable on these new datasets and thus in the
real world. Third, the commonly used metric in almost all
studies isMAE provides an average performance of crowd-
counting models. In practice, a model may produce less
accurate predictions on difficult examples (e.g., extremely
dense and blurry images), but the MAE (being an aver-
age over the entire test set) is compensated to be low
due to better predictions on easy examples posing a low
value of MAE (e.g., less dense and clear images). Fourth,
as the benchmark datasets become larger and more chal-
lenging over time, the resulting models to achieve better
performance over these benchmarks become deeper. This
means more complexity to run these models in real-time,
especially on resource-limited edge devices. This will cre-
ate potential bottlenecks in edge-based crowd-monitoring
solutions. Lightweight models are being developed (Khan,
Menouar, and Hamila 2023a, 2023b), but these provide
limited accuracy in very dense crowds.
We urge the requirement of more scenario-specific

datasets to build reliable models for production. Models
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trained on generic datasets typically require a long training
time and yet lack generalization capabilities.

OBJECT DETECTION AND TRACKING

There are many situations in which one is interested to
detect an object of interest in a video frame and then track
it over time in consecutive frames. Detecting a particular
object class (e.g., pedestrians, vehicles, men, women, etc.)
in a single image or video frame is called object detection,
whereas identifying an individual object or a set of objects
in consecutive video frames from a single camera or frames
from multiple cameras is called object tracking.

Methods and state-of-the-art

Object detection is a well-researched problem that gained
significant attention in computer vision, and several
prominent models are developed over time that achieved
state-of-the-art performance. These models are typically
divided into two categories, that is, anchor-based meth-
ods and anchor-free models. Anchor-based methods use
a predefined set of anchor boxes placed over the entire
image and predict the final set of boxes around the
detected objects. Thesemodels provide better accuracy and
are widely deployed, for example, Faster-RCNN, Girshick
(2015); SSD, Liu et al. (2015); and YOLO (v3), Redmon
and Farhadi (2018). Anchor-based methods adapt well to
various scales and aspect ratios and work well in com-
plex scenes. However, their performance is greatly affected
by various factors such as sizes, aspect ratios, the num-
ber of anchor boxes, and shape variations (Tian et al.
2019). The predefined anchor boxes require manual design
and careful calibration, which can be time-consuming
and computationally expensive. However, anchor-based
methods have been widely adopted.
Anchor-free methods are relatively new and more effi-

cient than anchor-based methods. They use the keypoint
detection approach. For example, in CornerNet Law and
Deng (2018), the model predicts the top-left and bottom-
right corners around objects to draw the final bounding
box. In CenterNet (Duan et al. 2019), a single point at the
center of the object is detected to draw the bounding box.
A fully convolutional one-stage (FCOS) detector is

another single-stage anchor-free method proposed in Tian
et al. (2019) that detects objects using per-pixel predic-
tion that achieve comparable performance to anchor-based
methods (Faster-RCNN, YOLOv2, etc.) and outperforms
previous anchor-free methods (CornerNet, etc.). Anchor-
free methods are simpler in design and implementation,
and computationally efficient. However, these models per-

F IGURE 4 Object detection sample from EuroCity Persons
dataset (Braun et al. 2019).

TABLE 3 A summary of object detection models.

Model Category Examples
Anchor-based FasterRCNN, Girshick (2015);

SSD, Liu et al. (2015);
YOLO.

Anchor-free CornerNet, Law and Deng
(2018); CenterNet, Duan
et al. (2019); FCOS, Tian
et al. (2019).

Transformer models Vision transformers (ViT),
Chen et al. (2022).

formpoorly in accurately localizing small objects or objects
with complex shapes, especially in dense and overlap-
ping instances. They also require more training data to
sufficiently train.
More recently, non-CNN methods are getting atten-

tion in detection tasks. The vision transformer (ViT)
model is proposed in Chen et al. (2022) as an alterna-
tive to CNN-based models. The original ViT and other
transformer-based models have shown comparative per-
formance in many tasks compared to several CNN-based
models. However, CNNs are still considered as de facto
methods for detection tasks due to their fast learning
capabilities (training and fine-tuning) as compared to the
transformer models. Figure 4 depicts a sample output of
an object detectionmodel showing bounding boxes around
the detected objects (i.e., persons). Table 3 shows a list of
objection detection models in the three categories.
There have been several publicly available datasets for

object detection tasks; however, the most popular datasets
used for benchmarking are Pascal VOC (Everingham et al.
2012) and MS-COCO (Lin et al. 2014). All mainstream
object detectionmodels (e.g., YOLO family, FCOS, Corner-
Net, etc.) are evaluated over these datasets, making the fair
benchmarking of model accuracy.
Figure 5 shows a performance comparison of various

object detection models discussed in this section.
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F IGURE 5 Average precision (AP50) of well-known object
detection models on MS COCO dataset (except YOLO, which is
evaluated on Pascal VOC dataset).

Challenges and open problems

Both anchor-based and anchor-free methods have
achieved significant performance gains (in production)
in the past few years, but both methods still face some
intrinsic limitations in the context of crowd scenes. While
some of these challenges are generic to any computer
vision tasks, some are more severe in crowded scenes
given as follows: Viewpoint variation–when an object
looks different when captured from different angles.
Object deformation—when an object appears in different
shapes in the same frame or in consequent frames of a
video (e.g., a person bending down). Severe occlusions—
when one or more objects are partially not visible in an
image due to overlapping with other objects in front of
them. Illuminations—when there are large variations of
brightness values of pixels in images. Clutters—when an
image contains many or large objects other than objects of
interest. The aforementioned issues are very likely to be
encountered in many real-world scenarios. Although aug-
mentation techniques play a role to improve the models’
performance in learning such challenging environments,
there is still no standard method that solves these prob-
lems in all scenarios. It is worthy noting that the existing
models for object detection are not well-suited for crowd
environments and hence despite finetuning produce poor
results. This is a serious concern that hinders the adoption
of serious surveillance applications (e.g., that can be used
by law enforcement agencies).

MOTION ANALYSIS

Understanding crowd dynamics can provide more useful
information in addition to the crowd count and density

estimates. For instance, one may be interested to know
whether the crowd is stationary or moving. For a mov-
ing crowd, it will be interesting to understand the crowd
flux and other patterns related to the crowd movement
including trajectory, direction, velocity, and so forth. It
also includes detecting stationary groups in the crowd.
Motion analysis has many interesting applications, for
example, access control, human identification, conges-
tion analysis, and multicamera interactive surveillance
(Hu, Tan, Wang, and Maybank 2004a). Motion analysis
may refer to recognizing the movement of body parts
of a person (e.g., gestures, actions, etc.), but in the con-
text of the crowd, it is often referred to as the coherent
motion of a group of individuals. Crowd motion analy-
sis is of great interest in understanding crowd behavior
analysis and scene understanding, for example, catego-
rizing a crowd as a stationary or moving crowd, crowd
trajectory predictions, crowd flux analysis, and crowd
motion patterns analysis.Motion analysismay also include
studying abnormal motion behavior (Gupta, Nunavath,
and Roy 2019).

Methods and state-of-the-art

Crowd motion analysis methods aim to detect, track, and
analyze motion patterns (e.g., in Figure 6) to infer impor-
tant insights about the dynamic behavior of a crowd. Tech-
nically, motion analysis includes tempo-spatial analysis of
the crowd. There have been severalmanual and end-to-end
automated methods and mathematical models for crowd
movement statistics. Traditionally, motion analysis used
methods such as motion segmentation (pixel-wise sepa-
ration of moving objects from the background), temporal
differencing (pixel-wise differences consecutive frames),
and optical flow (using flow vectors of moving objects
over time) (Hu et al. 2004b). For instance, a running
count of people’s trajectories passing through user-defined
lines in a scene is used to measure crowd flows. Sev-
eral flows can be further integrated over multiple spatial
and temporal windows. Crowd motion is represented in
different ways, for example, optical flow (movement of
each pixel from one frame to another), particle flow (mov-
ing grid of particles with optical flow through numerical
integration), streaklines flows (traces left as line upon
injection of colored material in the flow), spatiotempo-
ral features, tracklets (a fragment of trajectory obtains
by a tracker with a short period of time), and so forth
(Saqib 2019).
Motion segmentation-based methods can be easily

implemented using background subtraction or may use
methods such as clustering or graph-based approaches.
These methods are more sensitive to noise and variations
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F IGURE 6 Crowd motion patterns in Crowd 11 dataset (Dupont, Tobías, and Luvison 2017).

in lighting conditions and poorly perform in the presence
of occlusions and recognizing complex motion patterns.
Optical flow-based methods capture the motion of every
pixel. The algorithms are computationally efficient allow-
ing real-time performance. However, these methods suf-
fer from inaccuracies to capture small motions between
frames, frames with repetitive patterns, and significant
scale variation.
Authors in Rabaud and Belongie (2006) focus on count-

ing moving objects in a crowd by detecting independent
motions. Similarly, Lin, Grimson, and Fisher (2009) and
Gupta, Nunavath, and Roy (2019) study the global motion
patterns in crowds. Ali and Shah (2008) study the segmen-
tation of crowd flowswhereasHu, Ali, and Shah (2008) use
optical flows to learn the crowd motion patterns.

Challenges and open problems

Most research on crowd motion analysis is based on the
representation of pictorial information such as color, tex-
ture, and so forth. However, these methods only provide
some very basic analysis of motion patterns and do not suf-
ficiently provide semantic information on crowd motion.
Automated motion analysis not only requires large-scale
video datasets but also efficient methods to extract both
micro and macro statistics of crowd motion. The exist-
ing methods seriously lack the sophistication required for
real-world implementations. To extract more high-level
and intuitive motion information, models need to learn
automatic semantic features and relationships between
low-level pictorial features and high-level semantic fea-
tures.

BEHAVIOR, ACTIVITY, AND CONTEXT
RECOGNITION

Behavior analysis refers to the analysis of the crowd as a
whole or a portion of the crowd on a longer time scale
(i.e., minutes to hours). It may involve simpler tasks such
as identifying the state of the crowd’s behavior, for exam-
ple, calm, active, violent crowd, or may involve complex
activity recognition. Activity recognition refers to detect-
ing various grouped activities of crowd members such as
protesting, dancing, fighting, and so forth usually on a
shorter time scale (i.e., seconds to minutes). It can also
refer to actions of an individual object, for example, pose
estimation. Some examples of group activities are depicted
in Figure 7.
The individuals in a crowdmay interact with each other

and engage with each other in different activities. While
activity recognition detects crowd activities using shape,
pose, ormotion features, context analysis studies the social
interaction among group members using time, location,
and other contextual information and their relation to the
crowd. Context analysis of crowd activity is a more com-
plex problem than activity recognition due to many other
factors, for example, environment and other factors related
to psychology and sociology.

Methods and state-of-the-art

Activity recognition involves a framework for defining
individual and grouped activities and then assigning
unique descriptors to each activity. The next step is then
to accurately learn the spatial and temporal profiles of
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F IGURE 7 Activity recognition with several crowd activities (Wang et al. 2022).

each activity either using traditional methods such as
mathematical models or machine learning or to apply
end-to-end learning using deep learning models. Behav-
ior analysis is typically considered as a macroscopic
crowd analysis, whereas activity recognition may refer to
as microscopic crowd analysis. In Kok, Lim, and Chan
(2016), the authors present common attributes of a crowd
(i.e., decentralized, collective motion, emergency behav-
ior) and map these attributes to biological and physical
entities.
The research on contextual analysis of crowd activities

analysis is still very limited due to the inherited com-
plexity of the problem. Authors in Benetka, Krumm, and
Bennett (2019) present a qualitative analysis of the con-
text in human activity recognition using several attributes
such as time and location to establish a spatiotemporal
context in the human activity prediction system. Several
works propose the use of low-level feature-based meth-
ods such as optical flow. In Tran et al. (2015), authors
studied various aspects of the crowd context analysis.
First, discovering meaningful groups in a crowd is mod-
eled as a dominant set clustering algorithm. Second, it
uses group context activity (GCA) descriptors of a target
person and its semantic neighbors and applies condi-
tional random field (CRF) and support vector machines
(SVM). The authors use two datasets (i) the Collective
Activity dataset that involves simple activities, that is,
crossing, waiting, queuing, walking, and talking (with
two additional activities, i.e., dancing and jogging), and
(ii) UCLA Courtyard dataset having 10 human activ-
ities (Riding, Skateboard, Riding Bike, Riding Scooter,
Driving Car, Walking, Talking, Waiting, Reading, Eating,
and Sitting).

Challenges and open problems

Activity recognition and behavior analysis are generally
more complex due to the semantic relationships between
the detected activities to the human habits. A single
behavior can be generally mapped to multiple semantic
concepts. Thus, to infer a meaningful semantic behavior,
an accurate relationship between the low-level features
and the semantic behavior must be established apriori. It
is generally very hard to detect and track individual per-
sons in different crowded scenes (Shao, Loy, and Wang
2017). Some key problems in behavior analysis include
applying background knowledge and reasoning theory to
correctly define natural language descriptors to seman-
tic behaviors and then learning these behaviors from the
transformations of the object in a scene at different lev-
els. It is generally desired to usemultiple cameras in crowd
surveillance. However, it is also more challenging to apply
data fusion from multiple sources (e.g., cameras or other
sensors), which involves automatically inferring human
activities and behaviors from multiple features (rather
than images or frames). Feature extraction and fusion from
multiple camera sources also require significant hardware
resources and large-scale adoption of such systems can be
slower. Context recognition in crowd analysis is of major
importance in a fully automatic crowd surveillance appli-
cation. It mostly involves multimodal data from several
sources including camera outputs (images or videos) as
well as data from sources such as social media (tweets,
Facebook posts, comments, etc.), and real-time check-
in/checkout records from venues such as airports, metro
stations, event venues, and so forth. The rich informa-
tion obtained from these diverse sources can provide
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F IGURE 8 Anomaly examples in pedestrian spaces, for
example, wheelchair, skater, biker, and cart. Mahadevan et al.
(2010b).

more accurate contextual information on crowd activi-
ties and more accurate semantic descriptors. However, the
research in this area is still very limited, and existingworks
only touch the surface of this broad and deep area in
crowd analysis.

ANOMALY DETECTION

Anomaly detection refers to finding anomalous (aka
abnormal) events and has many significant applications,
for example, crime detection, traffic violations, abandoned
objects detection, weapons detection, and so forth. In the
context of crowd monitoring, anomalies are found using
spatiotemporal feature analysis of the video frames as well
as in a single image. Figure 8 shows example anomalies in
an outdoor scene.

Methods and state-of-the-art

Crowd anomaly detection is a challenging task mainly
due to the rare occurrence of such events and thus lack
of sufficient data on anomalous events. The definition of
anomaly is subjective and the same event can be clas-
sified as normal and abnormal at different times and
places. Anomalies can be segregated into (i) point anomaly
(when a single entity or person looks or behaves dif-
ferently than other entities in the scene), (ii) contextual
anomaly (when an entity or object is treated as abnor-
mal in a specific contextual situation or environment),
and (iii) collective anomalies (when a group of instances
behaves abnormally than the rest of the entities in the
scene). Anomaly detection is also classified as a global
anomaly (does the scene/frame has anomaly) versus local

anomaly (the localization of the anomaly in the frame or
video).
The most basic and commonly used approach to detect

anomalies is to train a one-class classifier (OCC) trained
with data containing normal examples. The OCC model
trained with a sufficiently large number of normal train-
ing instances can predict abnormal events. However, even
collecting data with all normal events is not easy.
Anomaly detection in crowded scenes has been

addressed in numerous ways using a variety of algorithms
including classical machine learning schemes, for exam-
ple, k-means and SVMs (Yang et al. 2019), GMM, and
so forth, as well as deep learning methods, for example,
CNNs (Joshi and Patel 2021; Pang et al. 2020; Wu et al.
2020), LSTM (Esan, Owolawi, and Tu 2020), GANs (Luo,
Liu, and Gao 2017a; Chen et al. 2021), and autoencoders
(AEs) (Simonyan and Zisserman 2014; Pawar and Attar
2021), bag-of-words (BOW) method, and physics-inspired
approaches (Wu, Moore, and Shah 2010), and so forth.
These methods are often inter-related and the exact
taxonomy is difficult. In BOW method, spatiotemporal
visual features are extracted to detect abnormal events
(Javan Roshtkhari and Levine 2013). BOW method for
anomaly detection may not capture complex anomalies
and can be used to train on specific anomalies. Datasets
for anomaly detection include UCSD (Mahadevan et al.
2010a), PETS2009, UMN (Bird et al. 2006), CUHK-Avenue
(Lu, Shi, and Jia 2013), and ShanghatTech Campus (Luo,
Liu, and Gao 2017b).

Challenges and open problems

Anomaly detection is very challenging due to several rea-
sons including data availability, compute power require-
ment, fairness, and generalization. Some of the open
problems and challenges are listed as follows: First, there
is no universal definition of an abnormal event, that is,
an event that is considered abnormal may be considered
abnormal in a different context. For example, a person
carrying a gun is abnormal but becomes normal when
the person carrying the gun is a police constable. Thus,
the context is always significant in anomaly detection,
which makes the anomaly detection problem very chal-
lenging. This is a serious challenge that must be tackled
first to enhance the outcomes of research on anomaly
detection. Contribution from government and private law
enforcement agencies can play significant in data acquisi-
tion and annotation. Without sufficient data and standard
definitions of crowd anomalies, the research outcomes
will be significantly limited. Second, there is a lack of
good datasets for anomaly detection. The existing datasets
cover only a small number of anomalies. The methods to
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label data in these datasets also vary (frame-level anoma-
lies, video-level anomalies, segment-level anomalies, etc.).
Third, it is not easy to create large datasets with diverse
anomalies because several abnormal events can not be
obtained beforehand. Video datasets for anomalies are
sparse, and not typically accessible publicly. The publicly
available datasets are mostly captured in the same location
and capture very few anomalies. Fourth, most real-world
anomalies can be better captured in video sequences, thus
the anomaly detection datasets are typically of very huge
size (as compared to other computer vision tasks such as
object classification or detection). As a result, huge com-
putational resources are required to train deep-learning
models over tons of videos.

CROWD PREDICTION

Crowd prediction refers to predicting in advance crowd
accumulation in a particular region. Predicting crowds
ahead of time has key significance in various scenarios and
applications such as events, detecting incidents, tourism
attractions, and so forth. Crowd prediction typically is
complex and often leverages multimodal data from vari-
ous sources, such as surveillance cameras, social media,
mobile phone signals, sensors, and so forth. Machine
learning and statistical modeling techniques are employed
to learn and make predictions about future crowds. The
process may relate to specific crowd events or gatherings,
to estimate the duration of the event, forecast peak crowd
hours, or anticipate the popularity of certain areas or
attractions within the event. A crowd in specified admin-
istrative areas can emerge typically in different ways, for
example, Fountainhead: crowd emerges from a single
direction and spread over different directions just like
a fountain, Bottleneck: crowd emerges from different
directions and assembles at a single point, and Lane:
crowd emerges at a uniform rate and moves in a sin-
gle direction. Crowd prediction involves forecasting the
aggregated flows (incoming and outgoing) in a specified
region. Further information such as the origin and desti-
nation of crowd flows are also studied as part of the crowd
prediction problem.

Methods and state-of-the-art

Crowd prediction can be simply modeled as a time series
forecasting problem to regress an increase in crowd den-
sity over time starting from a no-crowd condition or can
also use spatial statistics of crowds to predict crowds in
spatial regions. Traditionally, it uses moving averaging
methods such as autoregressive integrated moving aver-
age (ARIMA) (Liu et al. 2021). However, these methods

fail to capture the complex temporal and spatial depen-
dencies despite several feature engineering techniques. To
cope with complex dependencies, deep learning methods
includingCNN (Song et al. 2020), LSTM (Li et al. 2019), and
graph neural networks (GNNs) (Li et al. 2022) have been
proposed. Although multimodal data can be used for pre-
dicting crowds, a sufficient quantity of such datasets does
not exist. The use of LSTM and CNNs together has been
a more promising method to predict crowds over shorter
time periods. However, over longer time spans, forecasting
methods (e.g., ARIMA) are applied.

Challenges and open problems

Crowd prediction can either be logically concluded from
the analysis of crowdmotion patterns or predicted directly
using time series predictionmodels. However, the research
in this area is very limited, and very few works are found
often using deep learning methods such as CNN and
LSTM. Crowd prediction has both spatial and temporal
dependencies and generally, it is quite difficult to predict
crowd accumulation in a region over long periods. The pre-
diction in fountainhead and bottleneck is more difficult
than a lane pattern. Due to the spatial dependency, crowd
flow prediction in irregular-shaped regions can be more
challenging than in regular-shaped regions.
Last, Table 4 provides a summary of the aforementioned

six crowd analysis areas, some common examples of tasks
in each area, and open research challenges.

CONCLUSION AND FUTURE INSIGHTS

This article defines six major areas of visual crowd
analysis, which together form a full-fledged automated
crowd-monitoring system. Each of these six areas involves
a different level of complexity, and thus the state-of-the-art
greatly varies in these. For instance, crowd counting and
detection are two areas with significantly improved results
achieved recently over large benchmark datasets. Typi-
cally, existing real-world crowd-monitoring implementa-
tions cover these tasks. The benchmarking in counting
and detection is also very clear and can be easily compared.
However, there are still areas requiring significant atten-
tion. In counting and density estimation, the common
regression loss function (Euclidean loss or MSE) has been
used.However, over time, several other loss functions (e.g.,
OT loss, AP loss, PRA loss, etc.) have been proposed with
reportedly improved performance. However, these loss
functions could not be continued in the subsequent works
and many recent works consistently used the original
MSE loss function. It is encouraged to evaluate these loss
functions over different datasets and several mounting
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TABLE 4 Crowd analysis tasks and Open research problems.

Crowd Analysis Example Tasks Open Challenges
Crowd Counting Find the total headcount in a frame. crowd

localization in a large region.
Handling severe occlusions, scale variations in highly dense
crowd images, perspective distortion, multi-view
counting.

Object Detection Detect and localize objects of interest.
Track objects in a video.

Viewpoint variations, Object deformation, severe
occlusions, clutter, illumination, etc.

Motion Analysis Observe crowd collectiveness. Is the crowd
slow/fast-moving? Where is the crowd
heading? at which speed? Find
trajectories and motion patterns.

Complex semantic features, complex relationship between
low-level pictorial features with high-level semantic
features.

Behavior/Activity
Analysis

Is the crowd calm or active? Are people
protesting, dancing, fighting, etc?

Complex mapping of low-level features to activities,
semantic relationship and mapping of detected activities
to human behavior, standard activity definitions to
semantic behavior.

Anomaly Detection Detect abandoned objects. Detect any
weapons or crimes? Detect intrusion.

Lacks of a unified definition of anomalies, lack of realistic
datasets, huge size of video datasets1.

Crowd prediction Detect if a crowd is expected in a region?
How crowd accumulates over time?

Difficult to capture dual (spatial and temporal)
dependencies, complex motion patterns.

1An extensive list of challenges can be found in Sharif, Jiao, and Omlin (2022).

models to conclude their potential benefits in this domain.
We also encourage testing the potential performance gain
of using curriculum learning (CL) in crowd-counting
tasks with appropriate curriculum strategies.
Motion analysis that focuses on crowd-level mobility

statistics often uses flow-based and spatiotemporal fea-
tures. Flow-field models are relatively more studied. How-
ever, clustering models are gaining attention due to their
performance in more crowded scenes. Motion analysis
tasks vary such as detecting crowd source/sink, trajectory
finding, speed, and so forth. The benchmarking in this
application domain is less coherent due to the nature of the
task and multiple objectives being considered in existing
studies. Behavior analysis and anomaly detection, which
are sometimes overlapping, are the most complex tasks,
and the progress in these tasks is still very limited and
scattered in terms of methods, approaches, assumptions,
and objectives despite their major importance in several
use cases. The lack of definition of anomalies, activities,
and behavior causes researchers to use different objec-
tives and evaluation metrics, which makes benchmarking
unfair. We suggest that future research should focus on
developing common definitions of activities and anoma-
lies considering context and enhancing existing datasets
as well as creating larger and balanced datasets. We also
believe that in many scenarios, local anomalies would be
required rather than global anomalies, which shall make
the task easier to learn; however, the variations in envi-
ronment and context will make the cross-domain transfer-
learning challenging. Physics-inspired approaches (e.g.,
energy models) are interesting directions to implement
anomaly detection.

We envision major advances in the near future in the
under-explored areas due to the recent developments in
generative AI, which will be helpful to cope with the
need for more training data. Furthermore, crowd analysis
in real-time typically requires fast inference. In CCTV-
based surveillance, it is more convenient to perform all
processing and inference tasks on a local server due to
the high-speed wired connectivity option however, in
aerial surveillance (using drones) on-device processing
and inference may be more convenient in some cases.
Thus, lightweight crowd analysis models will be preferred.
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