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A B S T R A C T   

This study presents a comprehensive investigation on the synthesis and characterization of surfactant-assisted 
graphene oxide non-covalent functionalized silver nanocomposites (rGS-AgNPs) for achieving remarkable pho-
tocatalytic and anti-biofilm properties. The approach involves using an anionic surfactant (sodium lauryl sulfate 
(SLS)), silver nitrate (AgNO3), and reduced graphene oxide (rGO) as stabilizing/reducing agents, metal pre-
cursors, and supporting materials, respectively. Different composites were prepared by varying the concentration 
of AgNO3, resulting in rGS-AgNPs composites with concentrations of 0.9 × 10− 3 mM, 1.8 × 10− 3 mM, and 2.7 ×
10− 3 mM. Characterization techniques including XRD, FTIR, SEM, and TEM/EDS analysis confirmed the for-
mation of face-centered cubic AgNPs and amorphous rGO structures. The composites exhibited a firm binding of 
the surfactant and AgNPs on the surface of rGO nanosheets, resulting in efficient anti-biofilm and photocatalytic 
activity. The size of the supported AgNPs on rGO/SL was found to be 8–10 nm. The rGS-AgNPs composites 
displayed significantly improved anti-biofilm and photocatalytic performance, attributed to the increased surface 
area of AgNPs. Moreover, the photocatalytic efficiency of the rGS-AgNPs composites reached 96.48 % within 60 
min, outperforming pure AgNPs. The synthetic procedure and practical applications will be utilized for bio-
sensors, food packing technology, biomedical and pharmaceutically valuable reactions.   

1. Introduction 

Environmental crises caused by the depletion of natural resources, 
greenhouse gases, and the increasing pollution resulting from urbani-
zation and industrialization are global concerns. The unchecked and 
untreated discharge processes have serious effects on both the biotic and 
abiotic components of the environment [1,2]. Various industries, 
including leather, textile, paints, cosmetics, plastics, and pharmaceutical 
companies, release common pollutants such as organic dyes, pigments, 
gasoline, heavy metals, and highly volatile organic hydrocarbons [3,4]. 

These pollutants have had a significant impact on humans, animals, and 
marine life. Specifically, organic dyes are causing substantial pollution 
in the environment [5]. Industries involved in dyeing, such as those 
related to paper, cotton, silk, and wood, typically generate significant 
adverse effects on people. Notably, the presence of Methylene blue (MB) 
dye in wastewater has been found to be particularly toxic due to the 
thiazine cationic stain groups [6,7]. Therefore, it is crucial to employ 
effective methods to remove MB dye from wastewater and continue the 
ongoing challenge of addressing this issue [8]. Various techniques, 
including filtration, coagulation, irradiation, chemical oxidation, 
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ozonation, ion exchange, osmosis, electrochemical treatment, adsorp-
tion, and precipitation, are recommended for the eradication and 
removal of dyes from water [9–12]. Additionally, biological processes 
such as microbial degradation and algae decolorization can be utilized. 
Among these techniques, the use of nanomaterials-based photocatalytic 
processes has proven to be particularly effective in this field, with 
carbon-based nanocomposites receiving significant attention for the 
degradation of organic dyes. 

Another significant environmental crisis is the occurrence of poultry 
diseases caused by numerous pathogens, which compromise animal 
health and welfare while reducing production efficiencies. This, in turn, 
leads to decreased profitability and heightened levels of antimicrobial 
usage [13,14]. The contamination of poultry food products with various 
zoonotic pathogens also poses concerns for food safety and public 
health, particularly with the increasing consumer awareness and de-
mand for organic poultry products. Pathogens such as Salmonellas and 
Campylobacter spp. have the ability to form biofilms, which further 
worsen poultry diseases and contribute to antimicrobial resistance [15]. 
Biofilms are intricate biological structures composed of multiple bacte-
rial cells enveloped by layers of substances produced by them, creating a 
barrier that impedes the eradication of these organisms Sevaral methods 
have been developed to control anti-biofilm activity, with carbon-based 
nanocomposites receiving significant attention due to their effectiveness 
in both photocatalytic and anti-biofilm functions [16]. Carbon-based 
nanomaterials have emerged as promising candidates for a wide range 
of applications in energy, environment, and biomedicine applications 
[9,17,18]. Biomedical, energy and environmental fields are interesting 
and challenging tasks in the current scenario [19,20]. Particularly, the 
development of toxic-free, cost-effective, and efficient materials is of 
utmost importance in these fields [21,22]. Carbon-supported materials 
are plays an important role in biomedical and photocatalytic applica-
tions[22,23]. Carbon materials, including graphene, reduced graphene 
oxide, carbon nanotubes, fullerene and activated carbon have been 
widely explored as scaffolds for the fabricating nanocomposites [24,25]. 
Daniel et al. reported the endohedral functionalization of SWCNT’s to 
enhance visible light photocatalysis of organic dyes [26]. Among them, 
graphene and graphene oxides are good candidates to enhance the sta-
bility and activity of the nanocomposites [27,28]. However, the leaching 
of metals from graphene nanocomposites poses a significant challenge in 
terms of efficiency and recyclability [29]. To address this, functionali-
zation of graphene has been extensively investigated to enhance sta-
bility and activity [30–32]. Various types of methods including chemical 
vapour deposition, mechanical or thermal exfoliation and epitaxial 
growth are capable of producing economically favourable rGO on a 
large scale as compared to other methods[33–35]. Further, improve the 
metal loading and enhance the activity to attach some stabilizing agent 
viz., polymers, surfactant and enzymes [36,37]. Surfactants have 
garnered attention as effective agents for the functionalization of gra-
phene, as they strongly attach to graphene, control nanoparticle size, 
and prevent aggregation. Jing et al investigated the various types of 
surfactants functionalized rGO for enhance the solubility properties 
[38]. Normally, two types of methods that have to be used for the 
functionalized with rGO, the methods such as covalent functionalization 
and non-covalent functionalization. Non-covalent functionalization 
methods, rather than covalent methods, are preferred due to their ability 
to modify the surface without introducing structural changes or defects 
[30,39]. Vasilos et al. reviews briefly discussed the non-covalent func-
tionalization of graphene and graphene oxide utilized for energy storage 
devices, catalysts, bio-sensing and biomedical field [40]. To improve the 
active surface/activity metal nanoparticles have been considered the 
greater attention [41]. Ag and AuNPs have been greater antibacterial 
and photocatalytic properties. On comparing Ag and Au, the AgNPs are 
economically highly active against the anti-biofilm and photocatalytic 
applications. Yugal et al. reported the Indian medicinal plant’s extract 
stabilized AgNPs utilized as anti-biofilm and antibacterial agent [42]. 
The surfactant and reduced graphene oxide are used to prevent the 

agglomeration and oxidation of the photocatalysts, thus aiding in the 
catalysts’ reusability [43,44]. To overcome this problem, a suitable 
surfactant is coated onto the rGO surface to prevent AgNPs aggregation. 
Further, The aim of this study was to investigate the preparation of eco- 
friendly non-covalent functionalized surfactant-coated graphene oxide 
supported AgNPs. The resulting composites, known as rGS-AgNPs, were 
utilized for both the photodegradation of methylene blue and anti- 
biofilm activity. The non-covalent functionalization method helps pre-
vent structural defects on the surface of the rGO. The current synthesis 
process may face challenges when scaled up for industrial applications. 
Further research is needed to optimize production methods for larger 
quantities. In the future, we plan to prepare various types of surfactant- 
coated materials, including cationic, anionic, and non-ionic surfactants, 
applied onto graphene oxide and other related carbon materials. These 
modified materials will find applications in biosensors, food packaging 
technology, as well as in valuable reactions within the biomedical and 
pharmaceutical fields. 

2. Experimental methods 

2.1. Materials 

Graphite and silver nitrate (AgNO3) was purchased from Sigma 
Aldrich chemicals Pvd. Ltd., Mumbai, India. Sodium lauryl sulfate (SLS) 
was purchased from Loba cheme. Pvt. Ltd. 

2.2. Synthesis of rGS-AgNPs 

Graphene oxide (GO) was prepared by modified Hummer’s method 
[45]. The reduced graphene oxide was prepared in earlier literature 
[46]. The rGO/SL was prepared as follows: initially, 100 mg of rGO was 
dispersed in 50 mL of water for 8 h under ultra-sonication. Add 50 mg of 
SLS surfactant into the above rGO solution and stirred magnetically for 
5 h. Then, 0.9 mM of AgNO3 (15 mg) was added to the above reaction 
mixture and thus obtained rGSL-Ag+. The Ag+ ion was reduced by 
Ag0 by the addition of NaBH4 The After addition of NaBH4, the colour of 
the solution turned colourless into yellow, thus confirming the forma-
tion of AgNPs. The rGS-AgNPs were purified and collected through a 
centrifugation process. The resulting rGS-AgNPs composites were ob-
tained by freeze-drying at − 51 ◦C for 36 h. Furthermore, three different 
rGS-AgNPs composites were prepared by changing the concentration of 
Ag+ ions using a simple synthetic procedure. The composites obtained 
were named rGS-Ag-1, rGS-Ag-2, and rGS-Ag-3, respectively. 

2.3. Photocatalytic activity 

The photocatalytic efficiency of the as-prepared rGO, rGO/SL, rGS- 
Ag-1, rGS-Ag-2 and rGS-Ag-3 were examined through photo-
degradation of MB under visible light irradiation. Briefly, 5 mg of the 
photocatalysts were suspended in 40 mL of MB (10 mg/L) solution. The 
suspension was stirred for 30 min in the dark condition to achieve the 
adsorption–desorption equilibrium over the catalyst and dye solution. 
After 30 min, the solution was stimulated with 150 W Xe lamb as a light 
source. At a particular interval of time, 5 mL of the sample was with-
drawn to remove the catalyst particles from the solution using a cen-
trifugal process. The concentration of the MB during the degradation 
process was monitored using a UV–Visible spectrophotometer. The 
stability of the photocatalysts was done by recyclability test under 
similar reaction conditions. 

2.4. Bio-film activity 

To appraise the potency of the nanocomposites in intruding the 
biofilm formation using microtiter plate (MTP) assay. The wells were 
packed with 180 µL brain heart infusion (BHI) broth and inoculated with 
10 µL of pathogenic bacterial culture for 24 h. To this 10 µL 
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nanocomposites were added in various concentrations (500, 250, 125, 
62.5, and 31.25 µg/mL) and were incubated at 37 ◦C for 24 h. Subse-
quently after incubation, the contents in the wells were removed, and 
washed with phosphate buffer saline to remove free-unreacted species. 
The adherence of sessile bacteria was further interpreted by the addition 
of sodium acetate (2 %) and stained with crystal violet (0.1 % w/v.). 
Further, dried plates were decanted and optical density was evaluated 
using a microtiter plate reader (Thermo) at 600 nm. The percentage of 
biofilm inhibition was calculated using the below formula 

% Biofilm inhibition =
(Control OD − Test OD)

Control OD
X 100 (1)  

3. Results and discussion 

The XRD spectra of the as-prepared rGO, rGO/SL, rGS-Ag-1, rGS-Ag- 
2, and rGS-Ag-3 composites were shown in Fig. 1a. The XRD analysis 
confirmed the crystallinity and phase purity of the nature of rGO and 
AgNPs. The XRD pattern of the rGO shows a high index, strong broad 
peak and small peak at 2θ = 23.86◦ and 43.01◦ for (002) and (101) 
planes, respectively, thus diffraction peaks support the formation of 
hexagonal graphene structure [47,48]. In rGO/SL composites, similar 
rGO peaks appeared and both graphene oxide and SL functionalized GO 
shows an amorphous patten. But the rGO peak intensity is slightly 
reduced on rGO/SL composites, due to the non-covalent functionaliza-
tion of surfactant onto rGO surface. Haixin et al reported the similar XRD 
pattern for the surfactant coated graphene oxiede using non-covalent 
spin coating method [49]. XRD diffraction pattern of rGO/SL-AgNPs 
(rGS-Ag) composites, major diffraction peaks appeared at 2θ = 38.08◦, 
44.01◦, 64.19◦ and 74.03◦, which corresponded to (111), (200), (220) 
and (311) planes, respectively. The obtained diffraction peaks are in 
good agreement with the pure phase-centered cubic structure of AgNPs 
(JCPDS card no. 96-110-0137) [50,51]. The peak intensities of AgNPs 
are increased with increasing the metal loading of Ag+ ions (0.9 mM to 
2.7 mM). Further, the average crystalline size was calculated by the -
Debye Scherrer equation, D = Kλ/βCosθ and an average crystalline size 
of 8–10 nm was calculated for rGO/SL-Ag-3 based on the most intense 
(111) peak [9]. 

Surface functional groups, the interaction between rGO with SL and 
immobilization of AgNPs onto the rGO/SL surface were characterized by 
FTIR spectroscopy, as shown in Fig. 1b. FTIR spectrum of rGO, the 
characteristic peaks appeared at 3432.85 cm− 1 and 1638 cm− 1 related 
to stretching vibrations of –OH and C––O, respectively. Further, the 

carboxylic moieties and other peaks at 1182.27 cm− 1, and 1058.53 cm− 1 

are due to C-H and C-O stretching vibrations (alkoxy groups), respec-
tively. Based on this peak evidence the rGO contains have an abundant 
number of hydroxyl and oxygen functional groups on the surface [52]. 
After functionalization of SL onto the surface of rGO, the additional 
peaks appeared at 1212.31 cm− 1 and 1045.21 cm− 1 due to asymmetric 
and symmetric stretch of the SO2 functional group, thus evidence con-
firming the SL surfactant successfully coated onto the surface of rGO. 
Further, the SL stabilized AgNPs loaded onto the surface of rGO using a 
simple chemical reduction method. After functionalization with AgNPs 
in the concentration range of 15 mg to 45 mg, there were observable 
shifts in the –OH and –C––O peaks. These shifts were attributed to the 
loading of AgNPs [53]. When comparing the spectra of rGS-Ag-1 and 
rGS-Ag-2, more significant changes were observed compared to rGS-Ag- 
3. This suggests that rGS-Ag-3 may have experienced aggregation. 

The SEM is one of the most important powerful tools to find out the 
structural morphological change in prepared composites. The SEM im-
ages of the GO, rGO, rGO/SL, rGS-Ag-1, rGS-Ag-2 and rGS-Ag-3 com-
posites were shown in Fig. 2a–f. Fig. 2a shows the SEM images of GO 
sheets that have smooth surfaces, folded regimes and wrinkle structures 
[50]. Fig. 2b show the SEM images of rGO showing that slight changes 
occurred at homogeneous to heterogeneous surface. In Fig. 2c, shows 
SEM images of rGO/SL, after functionalization of SL with rGO, the 
heterogeneous block and white layer appeared on the surface of rGO. 
This evidence predicted that surfactants are tightly packed on the GO 
surfaces for maximizing the surface charge in the graphitic layers [54]. 
Yang et al. conducted a study similar SEM images to involving a 
surfactant-modified graphene oxide complex coating, aiming to func-
tionalize the material for separating water/oil emulsions [55]. In a 
similar vein, Bárbara et al. reported on various types of surfactants and 
polymers grafted onto carbon nanotubes using a non-covalent func-
tionalization method. Following the functionalization with surfactants 
and polymers, the dispersion ability was significantly enhanced, albeit 
with some occurrence of surface defects [56]. Furthermore, the non- 
covalent functionalization method does not alter the sufface 
morphology of the rGO [57]. Further, Fig. 2d–f, shows that the AgNPs 
are evenly distributed onto the surface of rGO/SL, thus evidence sup-
ports the successful loading of AgNPs. Additionally, the intensities of the 
metal loading increased with increasing the metal ion concentration 
[50]. 

Further, the size and surface morphology of the non-covalent func-
tionalized surfactant assisted rGO supported AgNPs composites were 
studied by HRTEM/EDS and shown in Fig. 3a-g. TEM images reveal a 

Fig. 1. (a). X-ray diffraction and (b). FTIR spectrum of rGO, rGO/SL, rGS-Ag-1a, rGS-Ag-2, and rGS-Ag-3 composites.  
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homogenous dispersion, smooth surface and spherical-like AgNPs 
decorating onto the rGO sheets. Fig. 3a-b showed typical sheet-like 
waves, and wrinkly and clumped structures with a size of 15–150 nm. 
Further, spherical AgNPs are uniformly loaded onto the surface of rGO 
with the size of 8–10 nm [58]. The elemental composition of the pre-
pared rGO/SL-AgNPs composites was analyzed EDS as shown in Fig. 3c. 
The obtained peaks corresponded to C, O, S and Ag elements, confirming 
the existence of metallic AgNPs onto the surface of rGO/SL. The pres-
ence of O indicates the oxygen-containing groups generated during rGO 
synthesis. The sulphur (S) elements denote the sulfur-containing surface 
successfully non-covalent bonded onto the surface of rGO. 

3.1. Anti-biofilm activity 

In vitro reports of various concentrations of rGO, rGS-Ag-1, rGS-Ag- 
2, and rGS-Ag-3 reveal the destruction of biofilm formation against the 
susceptibilities of bacteria Enterococcus faecalis -MTCC. No. 439 and the 
corresponding graph as shown in Fig. 4 and Figs. S1–S4. The minimum 
inhibitory concentration for rGO, rGS-Ag-1, rGS-Ag-2, and rGS-Ag-3 was 
inferred at higher concentrations of 500 µg/ml-30.064, 27.61, 44.99, 
and 31.39 % respectively. The biofilms formed under nutrient-deprived 
and aerobic environment depicts clearly with obvious signs of surface 
degradation of dentine. Robert Lotha et al reported the similar types of 

Fig. 2. FESEM images of (a). graphene, (b), rGO, (c). rGO/SL, (d). rGS-Ag-1, (d). rGS-Ag-2 and (e). rGS-Ag-3.  
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Fig. 3. (a-d) HRTEM images (e). selected area diffraction pattern (SAED), (f) particle size distribution curve and (g) EDS spectra of rGS-Ag-3 composites.  

U.P.S. Prabhakar et al.                                                                                                                                                                                                                        



Materials Science for Energy Technologies 7 (2024) 205–215

210

antibio film activity using two different types of peper solution stabi-
lized AgNPs [59]. The degradation of dentine arises due to the in-
teractions prevailing between the substrate surface, bacterial cells, and 
their metabolic product in the nutrient-deprived medium. rGS-Ag-2 was 
found to have a higher percentage of inhibition of about 44.99 % in 
biofilm degradation which is given in Table 1. Furthermore, the values 
for the maximum anti-biofilm activity of the AgNPs nanoparticles 
against different pathogens are provided in Table 2, which includes 
previous experimental results for better comprehension. 

3.2. Photocatalytic activity 

The photocatalytic efficiency of the prepared catalysts viz., rGO, 
rGO/SL, rGS-Ag-1 rGS-Ag-2 rGS-Ag-3 composites were examined 
through photodegradation of methylene blue (MB) by pseudo-first-order 
reaction condition. The MB degradation under visible light irradiation 
was monitored by decreasing trends of UV–Visible characteristic peaks 
at 664 nm. In the blank test, the MB does not degrade under the light 
absence of photocatalysts, thus results reveal that MB is more stable. 
Further, mild absorption occurred in photocatalysts without light 
sources, thus revealing that MB is very stable in the presence of light. 
The photodegradation of rGO and rGO/SL was found to be an average 
activity, after 60 min irradiation. After loading of AgNPs onto the sur-
face of rGO/SL, the photodegradation efficiency increased, due to 
electron charge carrier and high electron-hole pair recombination. All 

the rGO/SL-Ag composites are excellent photocatalytic activity. Partic-
ularly, the rGS-Ag-3 composites are more efficient than rGS-Ag-1 and 
rGS-Ag-2, the active sites are increased by increasing the AgNPs metal 
loading. 

The obtained results showed that the concentration of MB dye so-
lution decreased with increasing the irradiation time. The percentage of 
degradation efficiency was calculated by the relative intensity of 
UV–Visible spectra using the below-mentioned equation. 

% degradation efficiency = 1 −
Co

Ct
X100 (2) 

Where C0 is referred to as the initial concentration of MB solution, 
and Ct means the concentration of MB at various intervals of time. the 
absorption of MB dye depicts a reducing trend with the rise in exposure 
time in the light. The rate constants (k) values of the photocatalytic 
reaction were calculated using the pseudo-first-order kinetics Eq. (2). 

− ln
(

C
Co

)

= kt (3) 

Let C represent the initial concentration of MB, and C0 represent the 
concentration of MB after a particular interval of time (t). 

Fig. 5a shows that the photodegradation of (C/C0) vs time explains 
the degradation of MB. Further, Fig. 5b shows that the line slope values 

Fig. 4. Correlation graph of Anti Biofilm Activity.  

Table 1 
Anti-biofilm activities of prepared rGO, rGS-Ag-1, rGS-Ag-2 and rGS-Ag-3 
composites.  

S. 
No. 

Tested sample concentration 
(μg/mL) 

Percentage of inhibition 

rGO rGS- 
Ag-1 

rGS-Ag- 
2 

rGS-Ag- 
3 

1 Control 100 100 100 100 
2 500 30.064 27.61 44.991 31.396 
3 250 29.748 23.07 41.615 23.374 
4 125 26.843 15.55 33.883 18.642 
5 62.5 15.583 7.04 9.196 0 
6 31.25 9.679 2.25 4.828 0  

Table 2 
Comparisons of antibiofilm activity of nanoparticles with previous reports.  

Samples MIC 
(IC50) 
µg/ml 

Pathogens References 

G. lanceolarium- 
AgNPs 

68.94 ±
0.2 

P. aeruginosa, E. coli, and S. 
aureus 

[42] 

S. anacardium – 
AgNPs 

12.9 ±
0.2 

P. aeruginosa, E. coli, and S. 
aureus 

[42] 

B. retusa - AgNPs 23.48 ±
0.2 

P. aeruginosa, E. coli, and S. 
aureus 

[42] 

HWP/GBP AgNPs 50 S. aureus [59] 
rGS-Ag-1 44.99 ±

0.2 
bacteria Enterococcus faecalis 
-MTCC. No. 439 

This work  
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were used to calculate the rate constants. The maximum rate constants 
reveal the efficiency of photocatalysts. The rate constant values are 
given in Table 3. Based on the rate constant values rGO/SL-supported 
AgNPs show better catalytic activity than pure rGO and rGO/SL. 
Further, rGS-Ag-3 hows better catalytic performance than rGS-Ag-1 and 
rGS-Ag-2. It can be also concluded that the in-situ synthesized catalysts 
remarkably show the separation of photogenerated electron-hole pairs 
in rGS-Ag NPs for photodegradation. The recycling efficiency of the rGS- 
Ag-3 composites was examined through the photodegradation of MB 
using under identical conditions. The catalysts particles were recovered 
by centrifugal process and reused up to 5th cycle and a graph is drawn 
from degradation efficiency vs recycling time (Fig. 5c). The obtained 
results show that the rGS-Ag-3 composites are found to be constant 
degradation efficiency upto fifth cycle. Thus results reveal that SL and 
AgNPs are strongly bound on the surface of rGO and there is no metal 
leaching or aggregation occurring during the recycling time. Further-
more, after five consecutive cycles, the recovered rGS-Ag-3 catalyst 
composites were washed with a water–ethanol mixture, and the ob-
tained reused catalysts were analyzed by EDS analysis (as shown in 
Fig. 6). The EDS analysis results illustrate that the rGS-Ag-3 composites 
contain a reasonable amount of C, N, O, Na, S, and AgNPs. The sample 
containing 42, 1.30, 36.07, 10.34, 6.30 and 3.46 atomic wt % of C, N, O, 
Na, S and Ag, respectively. Further, the values of the maximum degra-
dation efficiency of MB are listed in Table 4 where previous 

experimental results are included for better understanding. 

3.3. The photocatalytic mechanism 

The 2-D structure of rGO enables a highly efficient transfer of charge 
carriers, ensuring excellent conductivity. The proposed mechanism en-
visions Ag nanoparticles as acting like antennae for visible light, while 
rGO plays a critical role in effectively separating electrons and holes 
[64]. When exposed to visible light, the RGO/Ag nanocomposites un-
dergo an electron transition from the valence band of silver to the 
conduction band due to a narrow band gap. The photoelectron suc-
cessfully surmounts the Schottky barrier between Ag nanoparticles and 
the graphene sheet, transferring to the graphene sheet itself [65]. This 
leads to a significant separation of electrons and holes. The subsequent 
reaction of these electrons with dissolved oxygen creates reactive oxy-
gen species, while holes on Ag interact with water molecules, producing 
hydroxyl radicals (Fig. 7). Together, they drive the degradation of 
organic pollutants. Among the synthesized RGO/Ag samples, AgNPs 
demonstrate the highest photocatalytic activity. However, an excessive 
addition of rGO may attenuate this activity. An abundance of rGO could 
hinder the light absorption of Ag nanoparticles, thus impeding electron 
generation. Furthermore, an excess of GO may cover the active sites on 
the surface of Ag nanoparticles, consequently reducing photocatalytic 
activity. This underscores the importance of striking an optimal balance 
between rGO and Ag nanoparticles to facilitate efficient electron 
transportation.  

Fig. 5. Photodegradation of MB over rGO, rGO/Sl, rGS-Ag-1, rGS-Ag-2 and rGS-Ag-3.  

Table 3 
Photodegradation efficiency and rate constant of the prepared samples for MB.  

Entry rGO rGO/SL rGS-Ag-1 rGS-Ag-2 rGS-Ag-3 

Kobs S
− 1  0.00386  0.00364  0.01816  0.02347  0.05807 

R2  0.9870  0.9919  0.9718  0.9895  0.9792 
Degradation 

efficiency (%) 
(60 min.)  

10.77  19.28  71.27  78.07  96.48  
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Fig. 6. EDS spectrum of rGS-Ag-3 after photodegrdadation of MB.  

Table 4 
Comparisons of photocatalytic performance towards MB with previous reports.  

Samples Quantity of MB(mg/L) Dosage of photocatalyst(mg) Photocatalytic duration(min) Degradation efficiency References 

TiO2-rGO composite 10 1 300  98.72 [60] 
rGO/Ag/Fe doped TiO2 20 10 150  95.33 [61] 
Ag-ZnO/rGO 10 50 120  94.5 [62] 
rGO/AgNWs 20 20 90  98.36 [63] 
rGS-Ag-1 10 5 60  96.48 This work  

Fig. 7. Proposed mechanism for the Photodegration of MB over ag/rGO composites under visible-light irradiation.  
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4. Conclusions 

This work accomplished the multifunctional effects of composites 
based on non-covalent functionalized rGO/SL with AgNPs. An eco- 
friendly, facile and simple method was recognized to synthesize nano-
composite. The rGS-AgNPs composites were fabricated using a simple 
non-covalent functionalization method followed by a chemical reduc-
tion process. This non-covalent functionalization method helps prevent 
structural defects on the surface of the rGO.The crystallinity, surface 
functional groups, size, shape, surface morphology and elemental 
composition was thoroughly characterized by different types of spec-
troscopic and microscopic techniques. The surface loading of surfactant- 
stabilized AgNPs with rGO nanosheets was confirmed by HRTEM anal-
ysis. The size of the rGO/SL supported AgNPs are found to be 8–10 nm, 
the smaller-sized rGS-AgNP nanosheets examined excellent morphology 
and exhibit efficient anti-biofilm and photocatalytic activity. The ob-
tained results showed that the rGS-AgNPs composites materials are 
excellent anti-biofilm activity and photocatalytic activity. Particularly, 
the rGS-Ag-3 composites showed more outstanding activity than the rest 
of the composite materials. The rGS-Ag-3 composites achieved 96.48 % 
of degradation efficiency within 60 min. The composite materials are 
highly active due to the stabilization of anionic surfactant-stabilized 
AgNPs and reduced particle size to enhance the active surface. In the 
future, the experimental studies will be expanded to encompass the non- 
covalent functionalization various types of surfactants including 
anionic, catationc and non-ionic coated with graphene oxide supported 
metal nanocomposies. Furthermore, there will be a focus on evaluating 
their potential applications in diverse areas. One such area of interest 
will be the investigation of their biological activities against a wide 
range of pathogens, which can provide valuable insights into their 
antimicrobial properties. Additionally, the growth of nanocomposites 
will be explored as another potential application such as biosensors, 
food packaging technology, as well as biomedical and pharmaceutically 
significant reactions. By broadening the scope of the experimental 
studies, researchers aim to uncover new possibilities and applications 
for metal oxide nanoparticles, thereby contributing to the advancement 
of scientific knowledge in this field. 
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