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a b s t r a c t

This paper considers a variant of the classical capacitated vehicle routing problem called clustered
vehicle routing problem (CluVRP). In CluVRP, customers are grouped into different clusters. A vehicle
visiting a cluster cannot leave the cluster until all customers in the same cluster have been served.
Each cluster and customer have to be served only once. A new hybrid metaheuristic, combining the
particle swarm optimization (PSO) and variable neighborhood search (VNS) for the specific problem, is
proposed to solve the CluVRP. In the hybrid PSO, the basic PSO principle ensures the solution diversity
and VNS ensures solution intensity to bring the solution to the local optima. Extensive computational
experiments have been performed on numerous benchmark instances with various sizes obtained
from the CluVRP literature to evaluate the performance of the proposed hybrid PSO. The obtained
results of the proposed algorithm are compared with the results found in the literature to validate
the effectiveness of the proposed hybrid PSO. The proposed algorithm is proven to be superior to
the state-of-the-art algorithms on the CluVRP. The proposed algorithm obtains 138 new best-known
solutions among the 293 benchmark instances.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The typical vehicle routing problem (VRP) is a logistic distri-
ution problem. The VRP aims to obtain a list of least-cost vehicle
outes serving many geographically scattered customers under
arious supply and demand constraints. It is a combinatorial
ptimization problem that requires exponential computational
ime to be optimized. This study presents a variant of the capac-
tated vehicle routing problem (CVRP) called the Clustered VRP
CluVRP). In CluVRP, customers are partitioned into predefined
roups called clusters. The customers corresponding to a single
luster must all be visited by the same vehicle before it leaves
he cluster. The notion of clustering in VRP has been well known
ue to its economic implications and its reduced complexity in
odeling and solving a great range of real-world applications [1].
he CluVRP is a generalized form of the CVRP. As the CVRP is
roven to be an NP-hard problem, the CluVRP is also NP-hard [2].
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568-4946/© 2021 Elsevier B.V. All rights reserved.
There are two variants of CluVRP such as CluVRP with strong
cluster constraints (CluVRP) and CluVRP with weak cluster con-
straints (SoftCluVRP). In the CluVRP, all customers belong to the
same cluster must be visited uninterruptedly by the same vehicle.
Vehicles are not permitted to enter and leave clusters several
times while serving the customers. In the SoftCluVRP, though
customers belong to a specific cluster are visited by the same
vehicle, but vehicles are allowed to leave and enter clusters many
times during their trip in the route. This paper studies a CluVRP
with strong cluster constraints referred as CluVRP. The CluVRPs
are explored in many studies such as [1,3–10] and SoftCluVRPs
are studied in the works of [8,10,11]. Most of the studies in the
literature proposed metaheuristics based solution approaches.

The comprehensive CluVRP introduced by Sevaux and
Sörensen [12] focused on a real-world parcel delivery problem in
courier companies. The consignment parcels were arranged into
bins corresponding to the specific delivery zones. The consignees
belonged to the same zone designated as a cluster. The CluVRP
can also arise in many scenarios such as transporting elderly peo-
ple when the customers prefer to move with friends or neighbors,
providing service to gated communities, collecting urban solid

waste, providing the services of common repairmen, delivering

https://doi.org/10.1016/j.asoc.2021.107655
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107655&domain=pdf
mailto:islamma@myumanitoba.ca
mailto:Yuvraj.Gajpal@umanitoba.ca
mailto:tmekkawy@qu.edu.qa
https://doi.org/10.1016/j.asoc.2021.107655


M.A. Islam, Y. Gajpal and T.Y. ElMekkawy Applied Soft Computing 110 (2021) 107655

h
t
a

h
r
t
(
t
m
t
s
i
t
a

l
C
T
T
c

2

p
t
d
t
s
t
a
f
c
e
c
C
m
o
m
g
t
e
v
A
t
t
l
v
t
b
s
H
s
p
c
t
c
m
h
T
i

c
v
i
i

ealthcare providing service in both precedence ordered multi-
ude of emergency environments and in logistics operations in
n order-picking [1,13].
The key contribution of this paper is to design a hybrid meta-

euristic for solving a CluVRP. The proposed metaheuristic algo-
ithm is based on the combination of particle swarm optimiza-
ion (PSO) and the CluVRP specific variable neighborhood search
VNS). The VNS helps to discover the local optimal solution of
he search region. In the literature, VNS has been implemented
ostly to improve particle solutions. But, this paper uses VNS

o improve personal best solutions along with the global best
olution by using improvement scheme. The contribution also
ncludes the use of new features in the PSO algorithm such as
he use of two types of particles. This hybrid PSO is targeted to
chieve a better quality solution for the CluVRP problem.
The rest of the paper is structured as herein described. The

iterature of CluVRP is reviewed in Section 2. In Section 3, the
luVRP is defined, and its mathematical formulation is presented.
he proposed hybrid PSO is discussed in detail in Section 4.
he computational results are reported in Section 5. Finally, the
onclusion is stated in Section 6.

. Literature review

Sevaux and Sörensen [12] proposed a mixed integer linear
rogramming formulation of a CluVRP for a distribution opera-
ion in a famous courier services company. Barthélemy et al. [3]
esigned a heuristic for a CluVRP, where a big value was added
o all inter-cluster edges to convert the CluVRP into a CVRP and
olve it by simulated annealing method. Pop et al. [4] presented
wo integer programming based exact solution approaches for
CluVRP. In another study, based on the integer programming

ormulation, two exact solution approaches such as branch-and-
ut and branch-and-cut-and-price were presented by Battarra
t al. [5]. A new hybrid algorithm based on the genetic algorithm
ombined with simulated annealing was developed to solve a
luVRP by Marc et al. [6]. Vidal et al. [7] proposed two hybrid
etaheuristics for solving a CluVRP. The first one was based
n the iterated local search (ILS) algorithm designed by Subra-
anian [14]. The second one was based on the unified hybrid
enetic search (UHGS). An approximate two-level optimization
echnique was suggested to solve a CluVRP in Expósito-Izquierdo
t al. [1]. Defryn and Sörensen [8] developed an efficient two-level
ariable neighborhood search (VNS) heuristic to solve a CluVRP.
study by Pop et al. [9] addressed a unique two-level optimiza-

ion approach to solve a CluVRP. The problem was divided into
wo sub-problems: the upper-level (cluster) sub-problem and the
ower-level (customer) sub-problem. In the approach, the route
isiting the clusters was obtained by a genetic algorithm, then,
he customers’ visiting order within the clusters was determined
y the Concorde TSP solver. The recent trend of metaheuristics
hows its hybridization for performance improvement. Recently,
intsch and Irnich [10] presented a large multiple neighborhood
earch (LMNS) based metaheuristic algorithm for the CluVRP. The
roblem was broken down into three sub-problems: assigning
lusters to the routes, intra-cluster routing, and routing the clus-
ers. In the LMNS approach, multiple destroy and repair moves for
lusters were used first, then a VND-based local search improve-
ent scheme was employed for further optimization. Most of the
ybridization is done through the use of local search schemes.
his observation motivated us to hybridize the PSO to improve
ts performance in this study.

Our current paper proposes a solution approach based on
lassical particle swarm optimization (PSO) combined with a
ariable neighborhood search (VNS) for solving a CluVRP. The PSO
s a population-based combinatorial optimization technique orig-
nally familiarized in Eberhart and Kennedy [15]. The technique
2

has been inspired by social collective behaviors seen in many
natural swarms such as bird flocking, fish schooling, and human
beings. The hybridized PSO approaches were used in many vari-
ants of VRPs such as hybridized with local searches in Ai and
Kachitvichyanukul [16]; with local searches and path relinking
strategy in Marinakis et al. [17] and with modified local search in
Norouzi et al. [18]. Additionally, an adaptive PSO algorithm was
built to solve an integrated quay crane and yard truck scheduling
problem successfully [19]. Dridi et al. [20] developed a new PSO
based solution approach for an optimization problem of multi-
depots pick-up and delivery problems with time windows and
multi-vehicles. It is clear from the literature that the efficiency of
PSO can be improved by its hybridizing.

PSO algorithm has many advantages such as few parameters
to tune, easy to implement, and requires less server memory
compared to other metaheuristics. PSO algorithm is successfully
utilized and found as a validated solution method for many
combinatorial optimization problems in the areas of transport,
manufacturing, and scheduling problems [21–23]. The VNS uses
multiple local search methods to obtain the local optimum. The
PSO has the ability to diversify the solution while VNS has the
ability to intensify the solutions. These strengths are combined
in our proposed metaheuristic algorithm.

The variable neighborhood search (VNS) was first introduced
by Mladenovic and Hansen [24] to solve a traveling salesman
problem in 1997. Usually, a VNS is used as a local search algo-
rithm to obtain the local best solution [25]. The VNS is also a
widely used heuristic search method in VRPs [26]. Many studies
found using the VNS with the PSO for solving several optimization
problems, where PSO solution used as a global search algorithm.
Marinakis et al. [27] generated a hybrid PSO metaheuristic to
solve a CVRP, by producing an initial solution from a greedy
randomized adaptive search procedure and by improving the
solution further by a VNS algorithm. Goksal et al. [28] introduced
a hybrid metaheuristic based on PSO and variable neighborhood
descent (VND), a lower-level VNS, to solve a vehicle routing prob-
lem with simultaneous pickup and delivery. Besides, Marinakis
et al. [29] proposed a multi-adaptive PSO solution approach for
a vehicle routing problem with time windows, where the PSO
solutions were improved by applying VNS for each particle in the
swarm. Zou et al. [30] presented a novel PSO algorithm hybridized
with VNS to solve a multi-objective VRP with pickup and delivery
problems with time windows. Zhang et al. [31] designed a hybrid
solution based on VNS integrated with binary PSO to solve a
location-routing problem (LRP). Marinakis [32] hybridized a PSO
combined with a VNS for solving a capacitated LRP. In another
study, Moghaddam et al. [33] used VNS in an advanced PSO
based solution approach to solve a vehicle routing problem with
uncertain demands. A novel decoding algorithm was used to
increase the efficiency of the solution approach. The decoding
was designed for generating vehicle routes and updating particle
values. Moreover, due to the dominant behavior of PSO in pro-
ducing a strong global solution and VNS having the advantages
of generating the best local solution, PSO and VNS have also
been used widely in job scheduling problems [34]. Liu et al. [35]
used a hybrid metaheuristic based on PSO combined with VNS to
solve a multi-objective flexible job-shop scheduling problem. In
additional work [36], it was shown that a simpler VNS algorithm
without hybridization with PSO produces a better quality solution
with shorter CPU time than a hybrid PSO with a VNS algorithm
for the job-shop scheduling problems. Furthermore, a hybrid
metaheuristic combining a PSO and VNS algorithm was proposed
for solving an unconstrained global optimization problem in Ali
et al. [37]. In the study, the PSO was used to perform a wider
diversification and deep intensification in the solution space, and
VNS was used as a local search algorithm. Furthermore, a PSO-
based hybrid metaheuristic was designed for permutation flow
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hop scheduling problems [38]. In the work, a PSO algorithm was
ncorporated with a stochastic VNS, a variant of VNS proposed
n [32], hybridized with simulation annealing to enhance the
xploration ability of PSO in the solution approach. Gumaida and
uo [39] developed a new hybrid optimization technique based
n PSO combined with a VNS to enhance the localization process
n wireless sensor networks. Marinakis et al. [40] designed a
ybrid PSO incorporated with VNS to solve a constrained shortest
ath problem. Cai et al. [41] proposed a hybrid PSO based solution
pproach where the PSO was hybridized by VNS to solve a VRP
ith speed variables through reduced carbon emissions in the
outes. A railway cargo transportation problem was studied by
roposing a solution method based on PSO with VNS in Nie
t al. [21]. Ranjbar and Saber [42] designed a VNS and modified
SO based solution approaches for a transshipment scheduling
roblem of multi-products at a single station. Islam et al. [43]
resented a PSO and VNS based solution approach for solving a
ixed fleet green logistics problem under carbon emission cap.
otivated by this observation, this paper embeds the VNS with

he PSO to obtain a good quality solution of the CluVRP.

. Problem definition of CluVRP

The CluVRP can be defined on an undirected graph G = (V , E),
where V = {0, 1, 2, . . . , n}, a set of nodes (vertices) including the
customers {1, 2, . . . , n}, E is the set of arcs linking each pair of
nodes (i, j) in V , and a depot 0. A homogeneous fleet of vehicles
is situated at the depot, where the vehicles start and end their
trip while serving the customers.

Parameters
n Total number of customers
c Total number of clusters
0 The depot
nl The number of customers for the lth cluster
m Individual vehicle
M Total number of vehicles available in the network
r Individual cluster (mutually exclusive non-empty

disjoint), r ∈ R
R Group of the clusters
dr Demand of cluster, r (aggregated over all

customers in the cluster), dr > 0
tcij The nonnegative travel cost for the edges from i to

j, (i, j) ∈ E
Q Maximum loading capacity of each vehicle, Q > 0
Cr The group of customers within a cluster,

Cr = {i ∈ n: ri = r} ,∀r ∈ R
V Set of vertices
S Any subset of customer nodes, {1, 2, . . . , n}
δ+(S) Set of edges (i, j) where i∈S and j∈V \S
δ−(S) Set of edges (i, j) where i∈V \S and j∈S

The binary decision variables are:

ijm =

{
1 vehicle m travels from customer i to j
0 otherwise

im =

{
1 customer i is served by vehicle m
0 otherwise

he CluVRP can be formulated as follows:

inimize
∑

(i,j)∈E

M∑
m=1

tcijxijm (1)

s.t.,
M∑

yim = 1 ∀i ∈ {1, 2, . . . . . . n} (2)

m=1

3

M∑
m=1

y0m ≤ M (3)

y0m ≥ yim ∀m ∈ {1, 2, . . . ,M} ,∀i ∈ {1, 2, . . . . . . n} (4)
n∑

j=1

xijm =
n∑

j=1

xjim = yim

∀m ∈ {1, 2, . . . ,M} ,∀i ∈ {0, 1, 2, . . . , n} (5)
n∑

i=0

diyim ≤ Q ∀m ∈ {1, 2, . . . ,M} (6)∑
i∈S

∑
j∈V\S

xijm ≥ yhm

∀S ⊆ {1, 2, . . . , n} , h ∈ S,m ∈ {0, 1, 2, . . . ,M} (7)∑
(i,j)∈δ+(Cr )

M∑
m=1

xijm =
∑

(i,j)∈δ−(Cr )

M∑
m=1

xijm = 1 ∀r ∈ R (8)

n∑
i=1

diyim ≥
n∑

i=1

diyim+1 ∀m ∈ {1, 2, . . . ,M − 1} (9)

xijm ∈ {0, 1} ∀ (i, j) ∈ E,∀m ∈ {1, 2, . . . ,M} (10)

yim ∈ {0, 1} ∀i ∈ {0, 1, 2, . . . , n} ,∀m ∈ {1, 2, . . . ,M} (11)

The objective of minimizing the total travel cost is determined
by Eq. (1). Constraint (2) guarantees that each customer is visited
exactly once. Constraint (3) assures that the number of vehicles
used does not exceed the number of available vehicles. Constraint
(4) enforces the rule that each vehicle in the route should visit
the depot. If a vehicle m does not visit the depot then it should
not visit any customer. Constraint (5) ensures that the arriving
and the departing vehicle is the same for a given customer. Con-
straint (6) states the maximum loading capacity of the vehicles
is satisfied. Constraint (7) represents the sub-tour elimination
constraint. Constraint (8) ensures that each cluster can be visited
exactly once by a unique vehicle. Constraint (9) is the inequality
ensuring partial symmetry.

4. Proposed hybrid PSO for the CluVRP

The proposed approach is a hybrid PSO algorithm that com-
bines the standard PSO and the VNS. The structure of VNS in
the proposed approach is inspired by a study by Vidal et al. [7].
Generally, the performance of the PSO is largely affected by the
accuracy of the problem mapping. Thus, the PSO is modified in
accordance with problem specifications in this study. The main
features of the proposed hybrid PSO are the use of two types of
particles representing clusters and customers, and the use of an
improvement scheme for the personal best solutions. The pseudo
code of the proposed hybrid PSO is shown in Algorithm 1.

The proposed hybrid PSO uses the following definition:

αil Current cluster position value of ith particle in lth
dimension

γij Current customer position value of ith particle in
jth dimension

βil Current cluster velocity value of ith particle in lth
dimension

δij Current customer velocity value of ith particle in
jth dimension

fi Fitness function of particle, i
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α

γ

i
f

αb
il Personal best cluster position value found so far

for the ith particle in the lth dimension
γ b
ij The personal best customer position value found

so far for the ith particle in the jth dimension
f bi Fitness function of best particle, i
α∗l Global best cluster position value found in the lth

dimension
γ ∗j Global best customer position value found in the

jth dimension
f g Fitness function of global best particle
w Inertia coefficient
c1 Cognitive coefficient
c2 Social coefficient
r1, r2 Independent random numbers
K Total number of the particles
X Position matrix for customer swarm
Y Position matrix for cluster swarm
U Velocity matrix for customer swarm
V Velocity matrix for cluster swarm
Xb/XG Customer personal best/global best position value

for swarm
Y b/Y G Cluster personal best/global best position value for

swarm
Sb Personal best solution for swarm

4.1. Initialization phase

The position and velocity vectors are initialized as follows:

il = αmin + (αmax − αmin) ∗ U(0, 1)

∀i ∈ {1, 2, . . . K } ,∀l ∈ {1, 2, . . . c} (12)

il = γmin + (γmax − γmin) ∗ U(0, 1)

∀i ∈ {1, 2, . . . K } ,∀j ∈ {1, 2, . . . n} (13)
δil = δmin + (δmax − δmin) ∗ U(0, 1)

∀i ∈ {1, 2, . . . K } ,∀l ∈ {1, 2, . . . c} (14)
βil = βmin + (βmax − βmin) ∗ U(0, 1)

∀i ∈ {1, 2, . . . K } ,∀j ∈ {1, 2, . . . n} (15)

Where αmax = γmax = δmax = βmax = 4;αmin = γmin = δmin =

βmin = −4.
Here, U(0, 1) represents a uniform random number generated

between 0 and 1. The personal best fitness vector for the particle,
i and fitness vector of a global particle are initialized as infinity.

f bi = ∞ ∀i ∈ {1, 2, . . . , K }
f g = ∞
4

Table 1
An instance with 6 clusters with their position values and demands in any
iteration, t .
Clusters 1 2 3 4 5 6

Position values, αil 1.99 3.67 −2.25 2.50 −0.09 1.08
Cluster demand, dr 45 10 25 15 25 30

4.2. Mapping position vectors to generate CluVRP solution

The PSO usually maps the position values of the particles to
generate the solution for a given problem. The position values
are used to generate the CluVRP solution (S← GenerateCluVRP-
Solution (X, Y ,U, V )) as stated in line 8 in algorithm 1. The
two-phase approach is used in many studies to generate CluVRP
solutions [8,9]. In the proposed PSO, the solution is generated in
two phases. In the first phase, the cluster route for the vehicles
is generated from the position values of clusters αil, while the
customer route for each cluster is generated in the second phase
from the position values of customers γij.

4.2.1. Generating cluster route
The generation of the cluster route starts with the empty trip

for each vehicle, where the vehicles start and finish their trip at
the depot. The clusters are iteratively added to the vehicle routes
to find the complete solution. Firstly, the clusters with the highest
position values are chosen for inclusion in the vehicle route,
then the chosen cluster is inserted into the vehicle routes by
using the cheapest insertion method. However, cluster insertion
might face a situation where no vehicle has enough capacity
for inserting a chosen cluster. In this situation, a tabu search
based searching method is used to insert the chosen cluster. This
method tries to maximize the available vehicle capacity using
swap (1,1) and shift (1,0) neighborhood move. The selected swap
move between clusters i and j is forbidden for next U

(
c2
8 , c2

4

)
terations. Similarly in shift (1,0) move, insertion of cluster i is
orbidden in cluster j for next U

( c∗v
8 , c∗v

4

)
iterations.

To understand the mapping procedure for cluster routes, con-
sider an instance with 6 clusters and 2 vehicles with a vehicle
capacity of 80. In any iteration t, consider the following cluster
position values for ith particle in lth dimension as shown in Ta-
ble 1. In this example, 6 different dimensions represent 6 different
clusters. Since different dimensions are associated with different
clusters, we refer the cluster position value of lth dimension as a
position value of lth cluster.

In the mapping, clusters are arranged in non-increasing order
of their position values. The resultant order is π = 2-4-1-6-5-3.
The two vehicles routes initially start with the first two clusters
from π . The initial route is {0-2-0; 0-4-0} and the remaining
vehicle capacity for each vehicle is updated accordingly. Then,
cluster 1 is chosen for insertion on vehicle routes. The insertion
cost (i.e., increase in total route length) of cluster 1 is evaluated on
every position of two routes {0-2-0; 0-4-0}. Suppose the cheapest
insertion of cluster 1 is obtained by inserting at position 3 of
vehicle 2. Then the new route is {0-2-0; 0-4-1-0}. In the next
iteration, cluster 6 is chosen for insertion. Suppose the cheapest
insertion of cluster 6 is obtained by inserting at position 3 of
vehicle 1. Then the new route is {0-2-6-0; 0-4-1-0}. In the next
iteration, cluster 5 is chosen for insertion. Suppose the cheapest
insertion of cluster 5 is obtained by inserting at position 2 of
vehicle 1. Then the new route is {0-5-2-6-0; 0-4-1-0}. At this
point, the remaining capacities for the two vehicles are 15 and
20. But the demand for unassigned cluster 3 is 25 and no vehicle
has the required capacity to accommodate cluster 3. In this sit-
uation, we use the tabu search with swap (1, 1) and shift (1, 0)

with the objective function of maximizing the remaining vehicle
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able 2
vehicle route of 2 clusters with their customers and position values in any

teration, t .
Cluster 1 Customers 10 4 7

Position values, γij 2.74 3.44 −1.81

Cluster 3 Customers 2 17 9 5
Position values, γij 2.03 −0.96 1.60 1.87

capacity. The tabu search is stopped when the objective function
(i.e., remaining vehicle capacity) becomes at least 25. Let assume
the tabu search finds the new routes as {0-4-5-2-6-0; 0-1-0}. The
remaining capacities are 0 and 35 for vehicle 1 and vehicle 2
respectively. Finally, cluster 3 is chosen for insertion. Suppose the
cheapest insertion of cluster 3 is obtained by inserting at position
3 on vehicle 2. Consequently, the final routes is {0-4-5-2-6-0;
0-1-3-0}.

4.2.2. Generating customer route
Once the cluster routes are constructed, a sequence of the

ustomers for each cluster is generated to find the complete so-
ution of the CluVRP. The sequence of the customers is generated
y selecting customers similar to the clusters routes generation
ethod described in Section 4.2.1.
To understand the generation of customer routes, consider
cluster route in a vehicle is {0-1-3-0}. Suppose there are 3

ustomers and 4 customers in cluster 1 and cluster 3 respectively
s shown in Table 2. In any iteration t, consider the following

customer position values for ith particle in jth dimension as
stated in Table 2. Since different dimensions are associated with
different customers, we refer the position value of jth dimension
s a position value of jth customer.
In the customer routes generation, customers are arranged

n non-increasing order of their position values. The resultant
ustomer order for cluster 1 is τ = 4 − 10 − 7 and cluster 3
is τ = 2−5−9−17. The complete customer route of the vehicle
is {0-4-10-7-2-5-9-17-0}. The travel cost (i.e., objective function
value) of the route is the sum of the travel costs of all customers
in the route.

4.3. Variable neighborhood search (VNS) for CluVRP

The proposed PSO considers the position vector as a region in-
stead of a particular point. The solution generated in the mapping
phase represents one solution in the region, which might not be
the best solution of the region. Therefore, the VNS is employed
to achieve the local optima. The VNS procedure consists of three
local search moves, which are inter-route search, intra-route
search, and intra-cluster search. Both the inter-route search and
intra-route search focus on the cluster level; whereas, the intra-
cluster search focuses on the customer level. The neighborhood
operators which are used at cluster level: shift, shift2, swap,
swap (2,1), swap (2,2), and 2-opt in the inter-route search; and
shift, or-opt2, or-opt3, 2-opt, and swap in the intra-route search.
The NLc is the list of all inter-route neighborhood searches. The
neighborhood operators that are adopted for intra-cluster search
(customer level) are shift, 2-opt, and swap; these explore all
moves within each cluster. The detail of the operators can be
found in the literature [7,14,44]. The structure of each operator
is shown in Figs. 1 and 2. The first move adoption strategy is
adopted for all local search moves. In this strategy, the solution
is updated whenever an improved solution is found. In all lo-
cal searches, each neighborhood move is selected only once for
possible improvement instead of iterative strategy. The overall
structure of the VNS is shown in Algorithm 2.
5

Fig. 1. Inter-route neighborhood search operators.
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Fig. 2. Intra-route and inter-cluster neighborhood search operators.

.4. Updating position and velocity vectors

The personal best position value for each particle is updated if
he current solution obtained is better than the current personal
est solution. Similarly, the global best value is updated if the new
est solution is found better than the current global best value.
The velocity and position vectors are updated as follows:

δil = wδil + c1r1
(
α
p
l − αil

)
+ c2r2

(
α∗l − αil

)
∀i ∈ {1, 2, . . . , K } ,∀l {1, 2, . . . , c} (16)

βil = wβil + c1r1
(
γ

p
j − γil

)
+ c2r2

(
γ ∗j − γil

)
∀i ∈ {1, 2, . . . , K } ,∀j {1, 2, . . . , n} (17)

il = αil + δil ∀i ∈ {1, 2, . . . , K } ,∀l {1, 2, . . . , c} (18)

γil = γil + βil ∀i ∈ {1, 2, . . . , K } ,∀j {1, 2, . . . , n} (19)

.5. Improvement scheme

The improvement scheme is used to improve the personal
est solution. This is one of the new features of PSO used in
his study. To our knowledge, this feature is not used in the
xisting literature of PSO. In the improvement scheme, at first, the
olution is perturbed to generate a new solution. The perturbed
olution is then optimized using the VNS scheme. A perturbation
echnique is implemented in both cluster and customer levels.
n the perturbation scheme, firstly the ∆1/∆2 number of clus-
ers/customers are removed and then reinserting again using the
 p

6

heapest insertion method. The structure of the improvement
cheme is shown in Algorithm 3. The parameters ∆1 and ∆2
re randomly generated between [0.5c, 0.75c] and [0.5nl, 0.75nl]

respectively.

4.6. Computational complexity of hybrid PSO

There are four main steps in the hybrid PSO algorithm- (1)
sequence generation, (2) VNS method, (3) parameter update and
(4) improvement scheme. The sequence generation step first
creates route for clusters. The cluster route generation performs
two sequential operations- (a) arranging clusters according to the
position values, and (b) inserting clusters in partially generated
routes. Both operations can be performed in O

(
c2

)
time, the com-

plexity of the cluster route generation step remains O
(
c2

)
. After

generating cluster routes, the sequence generation step creates
routes of the customer, which can be performed in O

(
n2

)
time.

ince the cluster route generation and the customer route gen-
ration are performed sequentially, the complexity of sequence
eneration step becomes O

(
c2 + n2

)
. Similarly, VNS method, pa-

ameter updating, and improvement scheme can be performed
n O

(
c2 + n2

)
time. The four steps of the PSO are performed

equentially, therefore the complexity of one iteration of hybrid
SO remains O

(
c2 + n2

)
.

. Computational experiments

The proposed hybrid PSO algorithm is implemented using the
++ programming language to solve several benchmark datasets
rom the literature of CluVRP. The experiments are run on a Linux
erver with four 2.1 GHz processors with 16-core each and a total
f 256 GB of RAM.

.1. The benchmark CluVRP instances

The performance of the hybrid-PSO is tested on the CluVRP
enchmark instances composed of 20 major customer groups
amed as, A, B, P, M, and Golden instances (Golden 1 to Golden
0) with a total of 298 individual instances. These CluVRP in-
tances are originally adopted from the GVRP instances by Bektas
t al. [45]. The characteristics of the benchmark dataset are sum-
arized in Table 3. The algorithms and their notations used in

his study for the results reporting purpose are shown in Table 4.
The PSO parameters are set by performing sensitivity analysis

sing the problem instances of sets A, B, M, and P. We use PSO
olution without VNS and without improvement scheme for 100
terations to set the parameters. We start the sensitivity analysis
ith the parameter values found in the literature [16,17,27]. The
arameter values are set one by one in the order of w, c1, c2,
1, r2, and K . A number of different alternative values for each

arameter are tested as w = {0.5, 2}; c1 = {2, 5}; c2 = {2, 5};
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Table 3
The summary of the benchmark instances.
Instance
type

No. of
instances

No. of
customers

No. of
clusters

Vehicle capacity
(No. of vehicles)

Source

A 27 31–79 11–27 100 (2–5) Bektas et al. [45]
B 23 30–77 11–23 100 (2–5) Bektas et al. [45]
M 4 100–261 34–76 200 (3–8) Bektas et al. [45]
P 24 15–100 6–51 35–400 (1–8) Bektas et al. [45]
Golden 220 201–483 17–97 550–1000 (4–12) Battarra et al. [5]
Table 4
The algorithms and their notations used in this study.
Notations Algorithms

BC The branch and cut method of Battarra et al. [5]
UHGS The unified hybrid genetic search approach of Vidal et al. [7]
Two-level The two level algorithm results of Expósito-Izquierdo et al. [1]
Two-level VNS The two level variable neighborhood search results of Defryn and Sorensen [8]
Decomposition-based method The decomposition method of Horvat-Marc et al. [6]
Two-level optimization The two-level optimization approach by Pop et al. [9]
LMNS The large multiple neighborhood search result of Hintsch and Irnich [10]
Hybrid PSO The algorithm proposed in this paper
Fig. 3. Improvement% of the algorithms results for A, B, M instances.
1 ={0, 1}; r2 = {0, 1}. Finally we set our best parameters as
= 0.7; c1 = c2 = 2; r1 = r2 = 0.5; K = n/4. We run

the proposed hybrid PSO for each instance ten times with 100
iterations (i.e., algorithm termination criterion). The best result
for each instance with average CPU time is obtained over ten runs.
We observe that the improvement of results after 100 iterations
is very marginal.

5.2. Performance evaluation of different algorithms

All the results in this study are evaluated by comparing the
results reported by Battarra et al. [5] using the branch and cut
(BC) algorithm to solve the CluVRP problem. They could not
achieve the optimal solutions for all the problem instances but
reported the best feasible upper bound solutions obtained dur-
ing the execution of their algorithms. The solutions by Battarra
et al. [5] are denoted by UB. Overall, the performance of the
algorithms, including algorithms obtained from the literature, is
evaluated by two criteria. The first criterion is that in how many
instances does the algorithm finds a better solution than the
upper bound, UB solution. It is reported in the tables under the
‘‘No. of improved UB’’. The second criterion is the improvement%
of the algorithm compared to the UB. It is measured by Eq. (20),
where Sol is used to denote the solutions found by the other
algorithms. The improvement% of a group instance is reported as

‘‘improvement%’’ in the tables. In addition, the processing time

7

(CPU time) is reported as t (s). The following formula is used to
calculate improvement% from the UB.

Improvement% =
UB− Sol

UB
× 100 (20)

Tables 5 and 6 show all the results of this study including
reported results from the literature.

In the performance evaluation, the statistical tests, non-
parametric Friedman test and post-hoc Bonferroni test are used
to check any significant difference exists in the performance of
algorithms. Friedman’s test only reveals the difference among the
results of different algorithms. The Bonferroni test is performed
after Friedman’s test to show which particular pair of algorithms
is different from each other in comparison [46]. The statisti-
cal software IBM SPSS version 19 is used to run the Friedman
and post-hoc Bonferroni test using α = 0.05 as the level of
significance.

5.2.1. Performance evaluation for A, B, M and P instances
Table 5 reports the results for the instances groups A, B, M, and

P. The two-level VNS algorithm, decomposition-based method,
two-level optimization, and the hybrid PSO are evaluated in the
table. The comparison shows that all of the two-level VNS, the
decomposition-based method, and the two-level optimization
obtain the improved UB solution for one instance out of 75
instances; whereas, the hybrid PSO is capable of obtaining the
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improved UB

Improvement
%

t (s)

0.05 . . . 0 0.00% 0.06
0.04 . . . 0 0.00% 0.04
3.48 . . . 1 0.09% 2.09
0.07 . . . 1 0.13% 0.27
. . . . . . 2/78 . . . . . .
0.23 . . . . . . 0.05% 0.22
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Table 5
Summarized results of A, B, M, and P instances.
Instances in BC Two-level VNS

Group No. of
instances

No. of
Customer

No. of improved
UB

Improvement
%

A 27 31–79 0/24 −0.07%
B 23 30–77 0 −0.03%
M 4 100–261 1 0.11%
P 24 15–100 0 −0.01%
Total 78 . . . 1/75 . . .
Avg . . . . . . . . . −0.03%
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t (s) No. of
improved UB
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%

1 −2.6% ... 1 −1. 21%
0 −3.0% . . . 0 −1.63%
0 −32.3% . . . 0 −5.32%
. . . . . . . . . . . . . . .
1/78 . . . . . . 1/78 . . .
. . . −5.00% . . . . . . −1.7%
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Hybrid PSO
vemen ement t (s) No of

improved
UB

Improvement
%

t (s)

% 9.9 8 1.12% 2.50

% 3.7 15 1.09% 3.02
% 1.4 11 1.03% 3.15
% 2.1 11 0.92% 3.32
% 20.1 8 0.83% 6.07
% 6.3 11 1.28% 4.77
% 4.9 20 0.71% 5.69
% 2.6 0 −0.88% 6.54
% 17.9 14 0.49% 10.53

% 2.4 1 −0.81% 10.29
% 2.8 3 −0.16% 11.69
% 19.5 10 0.52% 12.24
% 15.4 8 0.36% 19.90
% 19.9 7 0.20% 15.82
% 15.6 6 −0.18% 19.29
% 2.9 3 −0.62% 18.55

136/215 . . . . . .
% 9.5 . . . 0.40% 9.44
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Table 6
Summarized results of Golden instances.
Golden instance UHGS Two-level
n No of

instances
No of
improved
UB

Improvement
%

t (s) No of
improved
UB

Impro
%

200
201

11 0 0.00% 2866.56 . . . −4.61

240 22 0 0.00% 154.93 . . . −2.39
252 11 0 −0.01% 127.15 . . . −0.50
255 11 0 −0.02% 135.45 . . . −3.69
280 11 0 0.00% 3848.31 . . . −2.94
300 11 0 0.00% 197.93 . . . −1.04
320 22 0 −0.02% 202.49 . . . −1.26
323 11 0 −0.08% 175.74 . . . −4.94
360 20 0 0.00% 1250.15 . . . −2.87

396 11 0 −0.05% 292.26 . . . −1.54
399 11 0 −0.06% 225.26 . . . −4.96
400 11 0 −0.01% 1384.18 . . . −2.56
420 8 0 0.00% 361.86 . . . −2.60
440 11 0 −0.02% 1017.64 . . . −3.67
480 22 0 −0.01% 1434.94 . . . −3.42
483 11 4 −0.07% 405.87 . . . −4.93
Total 215 4/220 . . . . . . . . . . . .
Avg. . . . −0.03% 626.70 . . . −2.40
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.
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.

Two-level VNS LMNS
t t (s) No of

improved
UB

Improvement % t (s) No of
improved
UB

Improv
%

10 0 −0.07% 10 8 −0.10%

10 0 −0.44% 10 17 −0.05%
10 0 −0.53% 10 8 −0.10%
10 0 −1.33% 10 8 −0.09%
10 0 −0.71% 10 7 −0.05%
10 0 −0.93% 10 8 −0.06%
10 0 −0.85% 10 13 −0.10%
10 0 −0.93% 10 6 −0.26%
10 0 −1.02% 10 17/22 −0.09%

−5
10 0 −1.37% 10 1 −0.41%
10 0 −2.15% 10 4 −0.32%
10 0 −1.26% 10 3 −0.15%
10 0 −1.11% 10 8/11 −0.12%
10 0 −1.32% 10 2 −0.21%
10 0/21 −1.49% 10 6 −0.33%
10 0 −2.23% 10 1 −0.33%
. . . 0/219 . . . . . . 114/220 . . . .
10 . . . −1.08% 10 . . . . −0.18%
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As
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Fig. 4. Improvement% of the algorithms results for 16 groups of Golden instances.
Table 7
Effect of hybridization on solution quality.
Degree of hybridization Number of iterations No. of improved UB Improvement % t (s)
PSO without VNS and without improvement scheme 3000 0 −83.59% 11.09
PSO with VNS and without improvement scheme 350 0 −1.05% 10.44
Pure improvement scheme 14000 94 0.01% 9.67
Proposed PSO 100 138 0.31% 6.99
Table 8
Results for the instances A, B.
Instance BC Hybrid PSO
Group n c m UB Solution CPU t (s) Improvement %
A 31 11 2 522 522 0.02 0.00%
A 32 11 2 472 472 0.04 0.00%
A 32 11 2 562 562 0.02 0.00%
A 33 12 2 547 547 0.03 0.00%
A 35 12 2 588 588 0.04 0.00%
A 36 13 2 569 569 0.04 0.00%
A 36 13 2 615 615 0.04 0.00%
A 37 13 2 507 507 0.04 0.00%
A 38 13 2 610 610 0.05 0.00%
A 38 13 2 613 613 0.06 0.00%
A 43 15 2 714 714 0.08 0.00%
A 44 15 3 712 712 0.07 0.00%
A 44 15 3 664 664 0.05 0.00%
A 45 16 3 664 664 0.08 0.00%
A 47 16 3 683 683 0.08 0.00%
A 52 18 3 651 651 0.09 0.00%
A 53 18 3 724 724 0.09 0.00%
A 54 19 3 653 653 0.08 0.00%
A 59 20 3 787 787 0.09 0.00%
A 60 21 4 682 682 0.08 0.00%
A 61 21 3 778 778 0.09 0.00%
A 62 21 4 801 801 0.08 0.00%
A 62 21 3 865 865 0.08 0.00%
A 63 22 3 773 773 0.07 0.00%
A 64 22 3 725 725 0.07 0.00%
A 68 23 3 814 814 0.08 0.00%
A 79 27 4 972 972 0.09 0.00%
B 30 11 2 375 375 0.02 0.00%
B 33 12 2 416 416 0.16 0.00%
B 34 12 2 562 562 0.01 0.00%
B 37 13 2 431 431 0.01 0.00%
B 38 13 2 321 321 0.01 0.00%
B 40 14 2 476 476 0.01 0.00%
B 42 15 2 415 415 0.01 0.00%
B 43 15 3 447 447 0.01 0.00%
B 44 15 2 506 506 0.01 0.00%
B 44 15 2 391 391 0.03 0.00%
B 49 17 3 467 467 0.02 0.00%
B 49 17 3 666 666 0.02 0.00%
B 50 17 3 585 585 0.03 0.00%
B 51 18 3 427 427 0.05 0.00%
B 55 19 3 433 433 0.03 0.00%
B 56 19 3 634 634 0.05 0.00%
B 56 19 3 753 753 0.04 0.00%
B 62 21 3 685 685 0.04 0.00%
B 63 22 4 526 526 0.04 0.00%
B 65 22 3 687 687 0.05 0.00%
B 66 23 4 626 626 0.08 0.00%
B 67 23 3 588 588 0.09 0.00%
B 77 26 4 721 721 0.11 0.00%
10
Table 9
Results for the instances M, P.
Instance BC Hybrid PSO
Group n c m UB Solution CPU t (s) Improvement %
M 100 34 4 607 607 0.54 0.00%
M 120 41 3 691 693 0.67 −0.29%
M 150 51 4 804 804 2.52 0.00%
M 199 67 6 914 908 4.61 +0.66%
P 100 51 5 679 669 1.95 +3.18%
P 15 6 4 253 253 0.01 0.00%
P 18 10 2 186 186 0.01 0.00%
P 19 7 1 200 200 0.01 0.00%
P 20 7 1 190 190 0.01 0.00%
P 21 8 1 202 202 0.01 0.00%
P 21 8 4 365 365 0.03 0.00%
P 22 8 3 279 279 0.02 0.00%
P 39 14 2 396 396 0.06 0.00%
P 44 15 2 440 440 0.09 0.00%
P 49 17 4 491 491 0.10 0.00%
P 49 17 3 447 447 0.10 0.00%
P 49 17 3 460 460 0.10 0.00%
P 50 17 4 537 537 0.13 0.00%
P 54 19 4 500 500 0.13 0.00%
P 54 19 6 595 471 0.23 0.00%
P 54 19 3 462 462 0.26 0.00%
P 54 19 3 471 595 0.17 0.00%
P 59 20 4 552 552 0.35 0.00%
P 59 20 5 611 611 0.21 0.00%
P 64 22 4 619 619 0.40 0.00%
P 69 24 4 643 643 0.47 0.00%
P 75 26 2 581 581 0.84 0.00%
P 75 26 2 581 581 0.84 0.00%

6. Conclusion

The combinatorial optimization problem, the CluVRP, is con-
sidered in this paper. In the CluVRP, customers are partitioned
into predefined clusters. The same vehicle is assigned to serve
all customers consecutively under a cluster before it moves to
another cluster or returns to the depot. All customers and clus-
ters must be served only once. The objective of the problem is
to find the optimal distribution costs for the logistic network
serving all customers by using the available vehicles. In this
paper, a hybrid PSO algorithm is proposed to solve the CluVRP.
With the complementary nature of both algorithms, the hybrid
PSO combines the local optimal improvement capabilities of VNS
with the swarm based diversification abilities of the PSO. The
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able 10
esults for the Golden instances 1–4.
Instance BC Hybrid PSO
Group n c m UB Solution CPU t (s) Improvement %
Golden 1 240 17 4 4831 4751 3.66 1.66%
Golden 1 240 18 4 4847 4757 2.42 1.86%
Golden 1 240 19 4 4872 4789 2.45 1.70%
Golden 1 240 21 4 4889 4790 2.57 2.02%
Golden 1 240 22 4 4908 4826 2.58 1.67%
Golden 1 240 25 4 4899 4818 2.61 1.65%
Golden 1 240 27 4 4934 4862 2.60 1.46%
Golden 1 240 31 4 5050 4953 2.68 1.92%
Golden 1 240 35 4 5102 5047 2.98 1.08%
Golden 1 240 41 4 5097 5058 3.64 0.77%
Golden 1 240 49 3 5000 4953 4.38 0.94%

Golden 2 320 22 4 7716 7622 6.10 1.22%
Golden 2 320 23 4 7693 7578 6.04 1.49%
Golden 2 320 25 4 7668 7571 6.14 1.26%
Golden 2 320 27 4 7638 7527 5.27 1.45%
Golden 2 320 30 4 7617 7552 4.55 0.85%
Golden 2 320 33 4 7640 7548 4.12 1.20%
Golden 2 320 36 4 7643 7550 4.71 1.22%
Golden 2 320 41 4 7738 7644 4.80 1.21%
Golden 2 320 46 4 7861 7795 5.59 0.84%
Golden 2 320 54 4 7920 7830 7.27 1.14%
Golden 2 320 65 4 7892 7841 10.32 0.65%

Golden 3 400 27 4 10540 10489 17.15 0.48%
Golden 3 400 29 4 10504 10393 11.23 1.06%
Golden 3 400 31 4 10486 10395 8.33 0.87%
Golden 3 400 34 4 10465 10408 8.56 0.54%
Golden 3 400 37 4 10482 10415 8.50 0.64%
Golden 3 400 41 4 10501 10426 10.03 0.71%
Golden 3 400 45 4 10485 10405 9.66 0.76%
Golden 3 400 51 4 10583 10538 10.70 0.43%
Golden 3 400 58 4 10776 10751 12.38 0.23%
Golden 3 400 67 4 10797 10785 15.36 0.11%
Golden 3 400 81 4 10614 10627 22.75 −0.12%

Golden 4 480 33 4 13598 13567 19.24 0.23%
Golden 4 480 35 4 13643 13635 19.17 0.06%
Golden 4 480 37 4 13520 13498 16.29 0.16%
Golden 4 480 41 4 13460 13473 16.55 −0.10%
Golden 4 480 44 4 13568 13540 16.65 0.21%
Golden 4 480 49 4 13758 13772 17.88 −0.10%
Golden 4 480 54 4 13760 13767 19.11 −0.05%
Golden 4 480 61 4 13791 13796 20.86 −0.04%
Golden 4 480 69 4 13966 13975 20.77 −0.06%
Golden 4 480 81 4 13975 14001 27.50 −0.19%
Golden 4 480 97 4 13775 13833 36.26 −0.42%

Table 11
Results for the Golden instances 5–8.
Instance BC Hybrid PSO
Group n c m UB Solution CPU t (s) Improvement %
Golden 5 200 14 4 7622 7462 3.08 2.10%
Golden 5 200 15 3 7424 7424 2.94 0.00%
Golden 5 200 16 3 7491 7491 2.92 0.00%
Golden 5 200 17 3 7434 7434 2.83 0.00%
Golden 5 200 19 4 7576 7484 2.11 1.21%
Golden 5 200 21 4 7596 7489 1.98 1.41%
Golden 5 200 23 4 7643 7532 2.02 1.45%
Golden 5 200 26 4 7560 7436 2.15 1.64%
Golden 5 200 29 4 7410 7299 2.28 1.50%
Golden 5 200 34 4 7429 7321 2.52 1.45%
Golden 5 200 41 4 7241 7130 2.69 1.53%

Golden 6 280 19 3 8624 8624 8.87 0.00%
Golden 6 280 21 3 8628 8633 7.97 −0.06%
Golden 6 280 22 3 8646 8655 6.14 −0.10%
Golden 6 280 24 4 8853 8728 5.46 1.41%
Golden 6 280 26 4 8910 8777 5.57 1.49%
Golden 6 280 29 4 8936 8846 4.51 1.01%
Golden 6 280 32 4 8891 8799 4.37 1.03%
Golden 6 280 36 4 8969 8862 4.79 1.19%
Golden 6 280 41 4 9028 8920 5.30 1.20%
Golden 6 280 47 4 8923 8823 6.08 1.12%
Golden 6 280 57 4 9028 8948 7.77 0.89%

Golden 7 360 25 3 9904 9978 12.34 −0.75%
Golden 7 360 26 3 9888 9946 10.85 −0.59%
Golden 7 360 28 3 9917 9963 10.67 −0.46%
Golden 7 360 31 4 10021 9989 10.00 0.32%
Golden 7 360 33 4 10029 9937 9.42 0.92%
Golden 7 360 37 4 10131 10034 9.93 0.96%
Golden 7 360 41 4 10052 9975 10.57 0.77%
Golden 7 360 46 4 10080 10010 9.70 0.69%
Golden 7 360 52 4 10095 10010 10.15 0.84%
Golden 7 360 61 4 10096 10061 12.83 0.35%
Golden 7 360 73 4 10014 9985 17.67 0.29%

Golden 8 440 30 4 10866 10797 13.57 0.64%
Golden 8 440 32 4 10831 10744 13.48 0.80%
Golden 8 440 34 4 10847 10787 13.54 0.55%
Golden 8 440 37 4 10859 10792 13.09 0.62%
Golden 8 440 41 4 10934 10898 13.50 0.33%
Golden 8 440 45 4 10960 10947 13.65 0.12%
Golden 8 440 49 4 11042 11045 11.84 −0.03%
Golden 8 440 56 4 11194 11224 13.35 −0.27%
Golden 8 440 63 4 11252 11279 15.74 −0.24%
Golden 8 440 74 4 11321 11314 21.45 0.06%
Golden 8 440 89 4 11209 11256 30.78 −0.42%
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Table 12
Results for the Golden instances 9–12.
Instance BC Hybrid PSO
Group n c m UB Solution CPU t (s) Improvement %
Golden 9 255 18 4 300 296 3.17 1.33%
Golden 9 255 19 4 299 295 3.05 1.34%
Golden 9 255 20 4 296 293 2.98 1.01%
Golden 9 255 22 4 290 289 2.91 0.34%
Golden 9 255 24 4 290 289 2.85 0.34%
Golden 9 255 26 4 288 285 2.76 1.04%
Golden 9 255 29 4 292 291 2.78 0.34%
Golden 9 255 32 4 297 293 3.03 1.35%
Golden 9 255 37 4 294 290 3.43 1.36%
Golden 9 255 43 4 295 292 4.09 1.02%
Golden 9 255 52 4 296 294 5.52 0.68%

Golden 10 323 22 4 367 373 5.60 −1.63%
Golden 10 323 24 4 361 365 5.28 −1.11%
Golden 10 323 25 4 359 361 5.20 −0.56%
Golden 10 323 27 4 361 365 5.27 −1.11%
Golden 10 323 30 4 367 370 5.43 −0.82%
Golden 10 323 33 4 373 379 5.40 −1.61%
Golden 10 323 36 4 385 389 5.61 −1.04%
Golden 10 323 41 4 400 402 6.18 −0.50%
Golden 10 323 47 4 398 399 7.10 −0.25%
Golden 10 323 54 4 393 395 8.77 −0.51%
Golden 10 323 65 4 387 389 12.11 −0.52%

Golden 11 399 27 5 457 452 8.42 1.09%
Golden 11 399 29 5 455 456 8.40 −0.22%
Golden 11 399 31 5 455 457 8.44 −0.44%
Golden 11 399 34 5 455 456 8.50 −0.22%
Golden 11 399 37 5 459 461 8.70 −0.44%
Golden 11 399 40 5 461 462 9.07 −0.22%
Golden 11 399 45 5 462 461 9.76 0.22%
Golden 11 399 50 5 458 456 10.98 0.44%
Golden 11 399 58 5 456 458 13.55 −0.44%
Golden 11 399 67 5 454 458 17.44 −0.88%
Golden 11 399 80 5 451 454 25.36 −0.67%

Golden 12 483 33 5 535 541 11.56 −1.12%
Golden 12 483 35 5 537 542 11.55 −0.93%
Golden 12 483 38 5 535 542 11.64 −1.31%
Golden 12 483 41 5 537 541 11.59 −0.74%
Golden 12 483 44 5 535 545 11.93 −1.87%
Golden 12 483 49 5 533 540 13.69 −1.31%
Golden 12 483 54 5 535 545 15.33 −1.87%
Golden 12 483 61 5 538 542 18.42 −0.74%
Golden 12 483 70 5 546 539 23.37 1.28%
Golden 12 483 81 5 546 545 30.51 0.18%
Golden 12 483 97 5 560 551 44.42 1.61%

Table 13
Results for the Golden instances 13–16.
Instance BC Hybrid PSO
Group n c m UB Solution CPU t (s) Improvement %
Golden 13 252 17 4 552 549 2.85 0.54%
Golden 13 252 19 4 549 544 2.67 0.91%
Golden 13 252 20 4 548 540 2.70 1.46%
Golden 13 252 22 4 548 540 2.65 1.46%
Golden 13 252 23 4 548 540 2.65 1.46%
Golden 13 252 26 4 542 535 2.68 1.29%
Golden 13 252 29 4 540 534 2.77 1.11%
Golden 13 252 32 4 543 538 3.01 0.92%
Golden 13 252 37 4 545 543 3.41 0.37%
Golden 13 252 43 4 553 549 4.08 0.72%
Golden 13 252 51 4 560 554 5.17 1.07%

Golden 14 320 22 4 692 690 4.87 0.29%
Golden 14 320 23 4 688 685 4.64 0.44%
Golden 14 320 25 4 678 676 4.41 0.29%
Golden 14 320 27 4 676 676 4.38 0.00%
Golden 14 320 30 4 678 680 4.42 −0.29%
Golden 14 320 33 4 682 681 4.45 0.15%
Golden 14 320 36 4 687 685 4.58 0.29%
Golden 14 320 41 4 690 688 5.04 0.29%
Golden 14 320 46 4 694 691 5.84 0.43%
Golden 14 320 54 4 699 697 7.46 0.29%
Golden 14 320 65 4 703 697 10.13 0.85%

Golden 15 396 27 4 842 854 6.86 −1.43%
Golden 15 396 29 4 843 852 6.89 −1.07%
Golden 15 396 31 4 837 851 6.69 −1.67%
Golden 15 396 34 4 838 852 6.85 −1.67%
Golden 15 396 37 4 845 857 6.98 −1.42%
Golden 15 396 40 4 849 856 7.40 −0.82%
Golden 15 396 45 5 853 852 7.36 0.12%
Golden 15 396 50 5 851 853 10.27 −0.24%
Golden 15 396 57 5 850 853 12.35 −0.35%
Golden 15 396 67 5 855 857 16.69 −0.23%
Golden 15 396 80 5 857 858 24.89 −0.12%

Golden 16 480 33 5 1030 1029 11.45 0.10%
Golden 16 480 35 5 1028 1026 10.97 0.19%
Golden 16 480 37 5 1028 1028 10.83 −0.00%
Golden 16 480 41 5 1032 1035 11.50 −0.29%
Golden 16 480 44 5 1028 1031 11.93 −0.29%
Golden 16 480 49 5 1031 1034 12.51 −0.29%
Golden 16 480 54 5 1022 1027 14.74 −0.49%
Golden 16 480 61 5 1013 1022 17.35 −0.89%
Golden 16 480 69 5 1012 1017 21.60 −0.49%
Golden 16 480 81 5 1018 1024 30.20 −0.59%
Golden 16 480 97 5 1018 1025 40.92 −0.69%



M.A. Islam, Y. Gajpal and T.Y. ElMekkawy Applied Soft Computing 110 (2021) 107655

T
R

a
p
w
M
s
c
d
o
p
g

C

able 14
esults for the Golden instances 17–20.
Instance BC Hybrid PSO
Group n c m UB Solution CPU t (s) Improvement %
Golden 17 240 17 3 418 420 3.17 −0.48%
Golden 17 240 18 3 419 422 3.07 −0.72%
Golden 17 240 19 3 422 422 2.94 −0.00%
Golden 17 240 21 3 425 426 2.89 −0.24%
Golden 17 240 22 3 424 426 2.92 −0.47%
Golden 17 240 25 3 418 419 2.68 −0.24%
Golden 17 240 27 3 414 415 2.67 −0.24%
Golden 17 240 31 4 421 411 2.77 2.38%
Golden 17 240 35 4 417 406 2.97 2.64%
Golden 17 240 41 4 412 403 3.61 2.18%
Golden 17 240 49 4 414 404 4.13 2.42%

Golden 18 300 21 4 592 587 5.01 0.84%
Golden 18 300 22 4 594 590 4.98 0.67%
Golden 18 300 24 4 592 587 4.05 0.84%
Golden 18 300 26 4 590 580 4.17 1.69%
Golden 18 300 28 4 577 569 4.04 1.39%
Golden 18 300 31 4 578 572 3.63 1.04%
Golden 18 300 34 4 582 574 3.69 1.37%
Golden 18 300 38 4 586 580 4.34 1.02%
Golden 18 300 43 4 594 584 4.70 1.68%
Golden 18 300 51 4 601 591 5.81 1.66%
Golden 18 300 61 4 599 588 8.09 1.84%

Golden 19 360 25 10 925 807 54.79 12.76%
Golden 19 360 26 10 924 807 52.66 12.60%
Golden 19 360 28 4 808 813 9.26 −0.62%
Golden 19 360 31 4 811 815 7.84 −0.49%
Golden 19 360 33 4 797 802 7.07 −0.63%
Golden 19 360 37 5 799 790 7.00 1.13%
Golden 19 360 41 5 789 776 7.30 1.65%
Golden 19 360 46 5 788 775 8.27 1.65%
Golden 19 360 52 5 800 788 9.68 1.50%
Golden 19 360 61 5 807 798 12.27 1.12%
Golden 19 360 73 5 810 801 17.74 1.11%

Golden 20 420 29 11 1220 1081 99.2 11.39%
Golden 20 420 31 12 1232 1072 84.19 12.99%
Golden 20 420 33 12 1208 1060 78.68 12.25%
Golden 20 420 36 5 1059 1056 10.93 0.28%
Golden 20 420 39 5 1052 1047 10.14 0.48%
Golden 20 420 43 5 1052 1048 9.58 0.38%
Golden 20 420 47 5 1053 1052 17.35 0.09%
Golden 20 420 53 5 1058 1053 18.52 0.47%
Golden 20 420 61 5 1058 1055 23.47 0.28%
Golden 20 420 71 5 1049 1054 30.54 0.47%
Golden 20 420 85 5 1049 1045 38.64 0.38%

algorithm is tested on the benchmark instances found in CluVRP
literature. The major contributions of the study include designing
a new hybrid PSO metaheuristic algorithm to solve the CluVRP
and finding the new best-known solutions for a total of 138
instances out of 293 benchmark instances with an average CPU
time of 6.99 s. It is also contributed in this study by adding new
features in the PSO algorithm such as the use of two types of
particles and improvement scheme for the personal best solution.
In the improvement scheme, the personal best solutions of the
swarm are further improved by adopting the perturbation and
VNS method. Hence, the proposed algorithm has great potential
for solving instances of other variants of VRP. With the capabil-
ity of a quality solution on relatively acceptable CPU time, the
algorithm has the perspective to use in many practical scenarios
such as distribution logistics with CO2 emission cap leading to
penalty, the problem of perishable items, and transportation
roblems in military operations, etc. Like all research works, this
ork also has some limitations and future research directions.
any attributes of VRPs such as time windows, carbon emis-
ions, backhaul, and multi-depot can be added with CluVRP to
apture real-world scenarios. Although the proposed algorithm is
esigned to solve CluVRP solely, it can be easily extended to solve
ther variants of VRP. Future research works can also explore the
ossibility of combining PSO with other metaheuristics such as
enetic algorithm, tabu search, simulated annealing etc.
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