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Abstract— Recent works have shown that deep learning (DL)
models can effectively learn city-wide crowd-flow patterns, which
can be used for more effective urban planning and smart city
management. However, DL models have been known to perform
poorly on inconspicuous adversarial perturbations. Although
many works have studied these adversarial perturbations in
general, the adversarial vulnerabilities of deep CFP models in
particular have remained largely unexplored. In this paper,
we perform a rigorous analysis of the adversarial vulnerabilities
of DL-based CFP models under multiple threat settings, making
three-fold contributions; 1) we propose CaV-detect by formally
identifying two novel properties—Consistency and Validity—of
the CFP inputs that enable the detection of standard adversarial
inputs with 0% false acceptance rate (FAR); 2) we leverage
universal adversarial perturbations and an adaptive adversarial
loss to present adaptive adversarial attacks to evade CaV-
detect defense; 3) we propose CVP, a Consistent, Valid and
Physically-realizable adversarial attack, that explicitly inducts the
consistency and validity priors in the perturbation generation
mechanism. We find out that although the crowd-flow models
are vulnerable to adversarial perturbations, it is extremely
challenging to simulate these perturbations in physical settings,
notably when CaV-detect is in place. We also show that CVP
attack considerably outperforms the adaptively modified stan-
dard attacks in FAR and adversarial loss metrics. We conclude
with useful insights emerging from our work and highlight
promising future research directions.

Index Terms— Deep neural networks, CFP, adversarial ML.

I. INTRODUCTION

THE CFP (CFP) problem aims to predict the CFS (CFS)
at some future time, given a set of CFS at previous

times. CFP has significance in diverse fields including mod-
eling and understanding human behavior [1], transportation
management [2], and smart-city planning [3]. Deep Neural
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Fig. 1. An illustration of gridding a region and computing the inflow and
the outflow matrices from the flow of crowd between adjacent regions (grid
points). We typically assume the adjacency within the 2nd neighborhood—the
adjacent grid points of green highlighted area are highlighted yellow.

Networks (DNNs) represent a promising technique for solving
the cFP problem [2], [3], [4] and related tasks [1], [5], [6].
However, the performance of a DNN highly depends on its
training data, which causes it to be vulnerable to adversarial
perturbations—undetectable noise, intentionally induced in the
input in order to change the DNN output [7], [8], [9], [10],
[11]. Although several CFP models based on diverse archi-
tectures have been proposed, to the best of our knowledge,
the adversarial vulnerabilities of these models remain largely
unexplored.

In this paper, we bridge this gap by studying the worst-
case performance of three popular and diverse CFP models—
Multi-Layer Perceptron (MLP) [3], Spatio-Temporal Resnet
(STResnet) [2] and Temporal Graph Convolutional Neural
Network (TGCN) [12]—under multiple attack settings. For
evaluation, we consider the TaxiBJ dataset, which is one of
the most commonly used datasets for CFP. TaxiBJ divides a
city into 32× 32 grid points (regions) and records the region-
wise crowd inflow1 and outflow2 at half-hourly intervals [2],
[3], [13], as illustrated in Fig. 1.

A. Challenges

Firstly, input structure of different CFP models in literature
vary significantly. For example, the TGCN [12] takes the CFS
history of a pre-defined length at half-hourly intervals as input.
In contrast, STResnet [2] takes three sets of inputs representing
hourly, daily, and weekly histories of the pre-defined length.
For a fair evaluation of different architectures, the models
should be evaluated under similar input settings.

Secondly, recent years have witnessed an arms race between
adversarial attackers and defenders—most of the attacks and

1Total devices flowing into a grid point from its adjacent grid points.
2Total devices flowing out of a grid point into its adjacent grid points.
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Fig. 2. An illustration of invalid and valid perturbations generated by the
standard PGD (red digits).

defenses were proven ineffective by more adaptive defenses
and attacks, respectively, within a few months after they
were proposed. Therefore, developing novel adaptive defense
and attack strategies to comprehensively analyze adversarial
attacks (and their limitations) on DNNs is both extremely
important and challenging [14], [15].

B. Findings and Contributions
We first analyze different CFP models against three standard

adversarial attacks—FGSM, i-FGSM, and PGD attacks—and
show that the CFP models, much like other deep learning
models, are vulnerable to these attacks under several design
choices. However, we note that these vulnerabilities are mainly
limited to the digital attack setting, which assumes a worst-
case attacker who has access to the digital input pipeline of
the CFP model.

We then identify two properties—consistency and validity—
that natural crowd-flow inputs must satisfy. Although these
properties are natural and intuitive, to the best of our knowl-
edge, they have not been emphasized or used in previous
works. The property of consistency requires that the CFS
history at any time must be consistent with the CFS at the
previous times. In relation to validity, the inflow to and
outflow from a particular grid point at any time, by definition,
must always be less than the accumulative outflows from and
inflows to the adjacent grid points respectively. As illustrated
in Fig. 2(a) with example, adversarial perturbations of standard
attacks contradict these relationships, and therefore, can be
easily invalidated at test time. Noting that the adversarial
inputs generated by the standard attacks are inconsistent
and invalid, we show the usefulness of these properties by
proposing CaV-detect, a novel consistency and validity check
mechanism to detect adversarial inputs at test time by ana-
lyzing input consistency and validity. Results show that CaV-
detect can detect standard adversarial inputs with 0% FAR
(FRR ≤ 0.5%).

Assuming an expert attacker, we adaptively modify standard
adversarial attacks to evade CaV-detect by combining universal
adversarial perturbations [16] and adaptive adversarial loss.
Compared to non-adaptive standard attacks with FAR of 0%,
the adaptive attacks typically achieved FAR of ≥80% (FRR
≤ 0.5%).

We then propose CVP attack, a Consistent, Valid, and
Physically-realizable adversarial attack that explicitly inducts
the consistency and validity priors in the adversarial input
generation mechanism to find consistent and valid adversarial
perturbations (see Fig. 2(b)), and outperforms the standard

and the adaptive attacks in both the FAR (≈100%) and the
adversarial loss against CaV-detect.

We then analyze the physical realizability of adaptive PGD
and CVP attacks. Our findings highlight that realizing adver-
sarial perturbations under the physical setting requires an
impractically large number of adversarially controlled devices,
particularly, when CaV-detect is in place.

Although the proposed CVP attack can be implemented
in the physical world, we have chosen in this work to rely
on simulation of the attacker in our Python framework. The
pragmatic choice of opting for simulation for our analysis
instead of relying on a real-world testbed arises from the fact
that developing a CFP real-world testbed would be prohibitive
from the perspective of cost and time. However, assuming a
simulation model that implements the assumed environmental
model, we can execute the adversarial attack in the physical
world. To foster further research and enable empirical testing
of our framework, we have made our code openly available at
https://github.com/hassanalikhatim/CVP-Attack/ .

Finally, our qualitative evaluations show that the CFP
models exhibit limited expressiveness—the resulting models,
despite showing small test errors, are incapable of producing
certain outputs. We attribute this to TaxiBJ data comprising
clustered and highly similar CFS [3].

Our main contributions are listed below:
• We are the first to study the adversarial vulnerabilities of

the CFP models.
• We formalize two novel properties —consistency and

validity—of CFP inputs and show their usefulness by
proposing a novel defense method named CaV-detect that
achieves 0% FAR with ≤0.5% false rejection rate (FRR).

• We combine adaptive loss with universal adversarial
perturbation to exhaustively test CaV-detect.

• We induct the consistency and validity priors in the
adversarial input generation mechanism to propose CVP
attack that addresses several shortcomings of the standard
attacks.

II. RELATED WORK

Owing to the recent developments in intelligent trans-
portation systems (ITS), road traffic congestion forecasting
is becoming one of the key steps in curtailing delays and
associated costs in traffic management [17]. In the following,
we highlight some of the notable and recent works on CFS
prediction.

A. CFS Prediction

Depending on the characteristics, structure and quality of the
data, various kinds of machine learning (ML) techniques are
employed to develop road traffic congestion models. In the lit-
erature, these CFP techniques are widely categorized into three
main branches—probabilistic and statistical reasoning-based
crowd-flow models [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], shallow ML techniques [31], [32],
[33], [34], [35], [36], [37], [38], [39] and deep learning (DL)
models [17], [24], [40], [41], [42], [43]. Our work focuses
on studying the adversarial vulnerabilities of DL-based CFS
prediction models. More specifically, we choose three CFP
models—MLP model by Jiang et al. [3], STResnet model by
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Zhang et al. [2] built over the spatio-temporal residual unit
modeling both the spatial dependencies using convolutional
layers and the temporal dependencies by concatenating CFS
from the recent past into a tuple, and T-GCN model by
Zhao et al. [12] using graph convolutional networks (GCN)
to model spatial and temporal dependacies. All our CFP
models are of notably different architectures for the robustness
evaluation. Our choices are based on the recency, diversity,
relevance to the problem, and popularity of the architecture.
All of these model architectures were trained and evaluated
on TaxiBJ dataset in their original papers.

B. Adversarial Attacks on DL Models

Adversarial attacks are small imperceptible changes to
the input to fool DNNs. Since they were discovered by
Szegedy et al. [9] for image classification, many works have
shown that DNNs are generally vulnerable to these attacks in
a range of applications including Computer Vision (CV) [7],
[44], [45], audio processing [46], networking [47], [48], [49]
and Natual Language Processing(NLP) [50], [51], [52]. Adver-
sarial attacks may assume a black-box [7], [53], [54] or a
white-box threat model [55], [56], [57]. Several defense tech-
niques have been proposed [55], [58], [59], [60], [61], ranging
from model alteration [59], [60]) to input transformation [58],
[62], to defend against adversarial attacks. However, most of
these defenses were proven ineffective by the later works [14],
[63], [64]. More specifically, Athalye et al. [14] note that most
of the proposed adversarial defenses can be easily circum-
vented by the adaptive adversarial attacks customized to render
the defense ineffective, leaving adversarial training as the only
reliable empirical adversarial defense that survives the test
of customized adaptive attacks, in addition to the certified
defenses.

In this work, we assume a white-box threat model assuming
an attacker knowledgeable of the model architecture and
weights. Let an input x ∈ X , where X denotes the valid input
feature space, produce a true output F∗θ (x), where θ∗ denotes
the optimized parameters of F . The goal of an attack is to
compute an adversarial perturbation δ∗, in order to get the
desired output, ytarget from the model when the perturbation
is added to the input.

δ∗ = argmin
δ∈B(ϵ)

(Fθ∗(x + δ)− ytarget )
2 (1)

where B(ϵ) denotes a pre-defined bounded set of allowed
perturbations. One of the most common choices for B(ϵ) is
an l∞ ball, defined as, δ ∈ B∞(ϵ) := −ϵ ≤ δ ≤ ϵ. Eq-(1) is
iteratively optimized depending on the attack algorithm [9].
In this paper we use three standard adversarial attacks—
Fast Gradient Sign Method (FGSM) [55], iterative-FGSM
(i-FGSM) and Projected Gradient Descent (PGD) [56]—for
evaluation.

III. METHODOLOGY

We first formulate the CFP problem in the context of the
TaxiBJ dataset and formally define the consistency and validity
properties of CFS inputs. Based on these properties, we pro-
pose CaV-detect, to detect adversarially perturbed inputs by
analyzing their consistency and validity. Finally, we present

Fig. 3. The training setup of CFP models for the TaxiBJ dataset. The
trajectory data collected from the city is first converted into the inflow/outflow
matrices, saved in the memory, concatenated with the history set and input to
the CFP model.

our novel algorithm of CVP attack for generating consistent,
valid, and physically realizable adversarial perturbations.

A. CFS Prediction

1) Task Formulation: The TaxiBJ crowd-flow dataset [3]
divides the city into a 2-D grid of size l1× l2, where each grid
point physically spans an area of 1000 meters square. Each
data sample is a tuple of the city-wide inflow and outflow
matrices at 30 minutes interval. At any time t , the integer
CFS nt

∈ Z2×l1×l2 is defined as a tuple of the integer inflow
and outflow matrices, denoted nt

in ∈ Zl1×l2 and nt
out ∈ Zl1×l2 ,

defining the number of devices (≈ persons [2]) flowing into
and out of the grid points in the l1× l2 city grid, respectively,
where Z denotes the integer set. Formally,

nt
= (nt

in, nt
out ) (2)

More specifically, for p1 ∈ [0..l1), p2 ∈ [0..l2), nt
in(p1, p2)

denotes the total number of devices flowing into the grid
point-(p1, p2) from the adjacent grid points, and nt

out (p1, p2)

denotes the total number of devices outflowing from the
grid point-(p1, p2) to the adjacent grid points. For example,
in Fig. 1, nt

in(1, 0) = 2 (C2 and C3) and nt
out (1, 0) = 1 (C4).

Following prior works, the integer CFS nt is transformed
into the floating CFS xt

∈ R2×l1×l2 (also referred to as the
CFS in the future) using a transformation function T (·).

xt
= (xt

in, xt
out ) = T (nt ) = (T (nt

in), T (nt
out )) (3)

T (·) is chosen such that it is (somewhat) reversible and
∀nt
∈ [0..∞], xt

∈ [0, 1].3 Following the prior arts [2], [3],
we use T (nt ) = min(nt/1000, 1) in our experiments.

Our goal is to learn a model F∗θ that predicts yt+1—the
CFS in the immediate future t + 1—given the current and
the previous states Xh(t) =

⋃h
i=0 xt−i , where h is the history

length denoting the total number of previous CFS concatenated
together with the current state as a tuple input to Fθ . Following
previous works, we solve the above problem as a regression
task to learn a model Fθ∗ as formalized below,

θ∗ = argmin
θ

Ex∼D[(Fθ (Xh(t))− xt+1)2
] (4)

The training setup that we use for training the CFP models
Fθ is shown in Fig. 3.

3Following standard notation, we use [a..b] to denote a set of all integers
from a to b, and [a, b] to denote a set of real numbers {x, such that, a ≤
x ≤ b}.
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Fig. 4. An illustration of the consistency property of CFS inputs. The CFS history at any time t , must be consistent with the CFS recorded at the previous
times.

2) Adversarial Formulation: Given Xh(t) and F∗θ (·), a typ-
ical targeted adversarial attack aims to learn the perturbations,
∆h(t) =

⋃h
i=0 δt−i

=
⋃h

i=0(δ
t−i
in , δt−i

out ), to Xh(t) that bring
F∗θ (Xh(t) + ∆h(t)) close to the adversarially desired target
output, yt+1

target .

Ladv (Xh(t), ∆h(t)) =
∣∣∣Fθ∗(Xh(t)+∆h(t))− yt+1

target )

∣∣∣ ,
∆h(t) = argmax

∆h(t)∈B(ϵ)

−Ladv (Xh(t), ∆h(t)) (5)

where B(ϵ) denotes a pre-defined bounded set of allowed
perturbations.

B. Properties of the CFS Inputs
Here we formally define two key properties of CFP inputs,

consistency and validity, which enable the development of
CaV-detect. We also formally analyze eq-(1) (in specific
regards to the aforementioned properties) to highlight the
limitations of adversarial attacks against the CFP inputs.

Consistency: We consider a sequence of CFS
⋃
−2h
i=0 xt−i ,

recorded at time intervals from t − 2h to t ,
2h⋃

i=0

xt−i
= {xt−2h, . . . , xt−h, . . . , xt

} (6)

The data preprocessing step concatenates the history set con-
taining h previous CFS

⋃h
i=1 xt−i with the current CFS xt as

tuple input to the CFP model. We note that, for 1 ≤ k ≤ h,
the history set at time, t , is a union of a subset of the history
set,

⋃lh−k
i=1 x(t−k)−i , and the CFS, x(t−k), of the model input

at time, t − k. An input is consistent, if and only if,

∀k ∈ [1..h],
h−k⋃
i=0

x(t−k)−i
=

h⋃
i=k

xt−i (7)

which leads to the consistency check mechanism that we
develop later. Simply, the history set at any time, t , should
be consistent with the CFS at the previous times as illustrated
in Fig. 4 with an example.

Remark: For each t , a standard adversarial attack learns
a new perturbation

⋃h
i=0 δt−i , independent (and therefore,

different) from the perturbation
⋃h

i=0 δ(t−k)−i learned for
some previous time t − k. Formally, for standard adversarial
attacks,

∀k ∈ [1..h],
h⋃

i=k

δt−i
̸=

h−k⋃
i=0

δt−k− j (8)

Stated simply, the adversarial perturbations (and hence, the
adversarially perturbed inputs), generated by the standard
adversarial attacks are inconsistent, and therefore, can be
detected effectively.

Validity: Consider a 4 × 4 grid shown in Fig. 1. For a
grid point-(1, 0), (shaded green) the total number of devices
entering into the grid point from its adjacent grid points
(shaded yellow) is 2 (C2 and C3). As these devices must
outflow from the adjacent grid points, validity requires that
the total outflow from the adjacent grid points must atleast be
2. In Fig. 1, the total outflow from the adjacent grid points
is 3 (C1, C2 and C3), which is greater than 2 (the inflow).
Similarly, the total inflow to the adjacent grid points is 2 (C1
and C4), which is greater than 1—outflow from the grid point-
(1, 0) (C4).

More generally, given a specific grid point-(p1, p2), let
An(p1, p2) denote a set of grid points adjacent to the grid
point-(p1, p2) in the nth neighborhood,

An(p1, p2) =

n⋃
i=−n

n⋃
j=−n
|i |+| j |̸=0

(p1 − i, p2 − j) (9)

where n is the size of neighborhood considered for adjacency.
In our experiments, we heuristically choose n = 2 as detailed
later. By definition, at any time t , the inflow to the grid point-
(p1, p2), is the total number of devices entering into that
grid point from its adjacent grid points An(p1, p2). Therefore,
the total outflow from An(p1, p2) must be atleast equal to
the total inflow to (p1, p2). Let xt

in(p1, p2) and xt
out (p1, p2)

respectively denote the inflow to and outflow from the grid
point-(p1, p2) at time, t . Any input to the CFP model is only
valid, if,

xt
in(p1, p2) ≤

∑
(p′1,p′2)∈An(p1,p2)

xt
out (p′1, p′2) (10a)

xt
out (p1, p2) ≤

∑
(p′1,p′2)∈An(p1,p2)

xt
in(p′1, p′2) (10b)

Although, there can be inflow to (and outflow from)
An(p1, p2) from (and to) outside An(p1, p2), this only adds to
the total inflow to (and outflow from) An(p1, p2) (right hand
sides of eq-(10)), and therefore does not affect the generality
of our formulation.

Remark: While generating perturbations, standard adversar-
ial attacks formalized in eq-(1) do not respect the validity
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Fig. 5. Illustrating our newly proposed CaV-detect methodology integrated
with the CFP model to detect adversarial inputs at run-time. For any input,
CaV-detect checks the consistency, γc > 0 and the validity γ n

v > 0 of the
input. The input is marked adversarial if any of the checks fail. CaV-de-
tect does not require retraining the model and can be integrated with an
off-the-shelf model.

between the inflow and outflow matrices, and therefore, can
be detected at run-time.

C. CaV-detect: Consistency and Validity Check Mechanism
to Detect Adversarially Perturbed Inputs

Here we utilize the previously defined two properties of
crowd-flow inputs to propose CaV-detect, a novel input vali-
dation mechanism to detect adversarially perturbed inputs to
the CFP models. To summarize, our CaV-detect methodology
comprises two main steps—consistency check mechanism and
validity check mechanism. An input to the model is considered
adversarially perturbed if it fails to satisfy either of the
aforementioned checks. Step-by-step details of CaV-detect are
given below.

1) Consistency Check Mechanism: At any time t , the input
to the CFP model Fθ∗ is Xh(t) =

⋃h
i=0 xt−i . Our consistency

check mechanism works in three steps:
1) Firstly, we keep all the model inputs, x(t−k), received at

the previous times, t − k, saved in the memory, ∀k ∈
[1..h].

2) Noting that the model inputs received at the previous
times, t − k, reappear in the history set of the input
received at the current time, t , we compute the difference
between appropriately cropped model inputs at different
times

γc =

h∑
k=1

∣∣∣∣∣
h⋃

i=k

xt−i
−

h−k⋃
i=0

x(t−k)−i

∣∣∣∣∣ ≥ 0 (11)

where γc is the inconsistency score—the closer γc is to
zero, the more consistent the input.

3) The input is marked as adversarial if γc > 0.
Remark: Although the consistency check mechanism essen-

tially compares variables at different times, it is necessary to
include the consistency (and validity) check mechanism in the
CFP model itself. This is because in the digital setting, a digital
attacker may directly influence the originally consistent input
to the CFP model (See Fig. 7).

2) Validity Check Mechanism: Our validity check mecha-
nism works in four steps described below.

1) Given nth neighborhood, we first define a filter, fn
∈

Z(2n+1)×(2n+1), such that ∀p1, p2 ∈ [0..2n],

fn(p1, p2) =

{
1, p1 = n, p2 = n
0, otherwise

(12)

2) Secondly, we compute the inflow and outflow invalidity
scores, denoted γ n

vi
and γ n

vo
respectively, by simul-

taneously analyzing both the inflow and outflow

matrices in the input.

γ n
vi
= xt−i

in ⊛ fn
− xt−i

out ⊛ (1− fn) ≤ 0 (13)

γ n
vo
= xt−i

out ⊛ fn
− xt−i

in ⊛ (1− fn) ≤ 0 (14)

where ⊛ denotes a 2-D convolution operation.
3) Finally, we compute the input invalidity score, γ n

v , based
on the inflow and outflow invalidity scores computed in
step 2.

γ n
v = relu(γ n

vi
+ γ n

vo
) (15)

where relu denotes the rectified linear unit function
commonly used in DL literature.

4) The input is marked as adversarial if γ n
v > 0.

Note that both the check mechanisms used by CaV-detect
are model agnostic. Therefore, CaV-detect can be incorporated
with the pre-trained CFP models of varying architectures
without undermining their efficacy.

D. CVP Attack: Consistent Valid and Physically-Realizable
Adversarial Attack Against CFP Models

In light of the previously formalized practical limitations
of standard adversarial attacks, in this section, we propose
CVP attack—a consistent, valid and physically realizable
adversarial attack. Recall that at any time t , we consider an
input Xh(t) =

⋃h
i=0 xt−i to the model F∗θ . Our goal is to

generate perturbations ∆h(t) =
⋃h

i=0 δt−i to the input in
order to bring the model output closer to the adversarial target
yt+1

target .
Consistency: To ensure consistency in the perturbations,

we leverage universal adversarial perturbations to regulate
∆h(t), such that, ∀i ∈ [0..h], δt−i

= δu .

∆h(t) =
h⋃

i=0

δu
=

h⋃
i=0

(δu
in, δu

out ) (16)

Validity: To ensure validity, we introduce a novel mecha-
nism to generate the perturbation outflow matrix δu

out , given
a perturbation inflow matrix δu

in . More specifically, given
δu

in , a specific grid point-(p1, p2), and a set of its adjacent
grid points in the nth neighborhood An(p1, p2), we learn a
perturbation distribution matrix W ∈ Rl1×l2×(2n+1)2

−1 to first
distribute the (perturbed) inflow to grid point-(p1, p2) among
An(p1, p2). To achieve this, we first process W with a sigmoid
function σ(·) to differentiably remove the negative values of
W. The processed matrix σ(W) is then normalized so that
it sums to 1 for An(p1, p2). The normalized matrix is then
multiplied with the inflow of grid point-(p1, p2) to compute
the outflow of each adjacent grid point.

δ∗out = δu
in ⊙

σ(W)∑
i σ(W)[:, :, i]

(17)

where ⊙ denotes the element-wise (Hadamard) multiplication
and δ∗out ∈ Rl1×l2×(2n+1)2

−1 is a set of distributed perturbation
outflow matrices for δ∗in satisfying the validity condition of
crowd-flow inputs. The total perturbation outflow for the grid
point-(p1, p2) is then computed by accumulating relevant
distributed outflows,

δu
out (p1, p2) =

n∑
i=−n

n∑
j=−n
|i |+| j |̸=0

δ∗out (p1 − i, p2 − j, k) (18)
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Fig. 6. Illustrating the newly proposed CVP attack methodology of generating valid adversarial perturbations. Terms highlighted in blue denote the variables
that are updated during attack to optimize the adversarial loss. Given a perturbation inflow matrix, δin , a set of distributed perturbation outflow matrices,
δ∗out is computed by element-wise application of δin and the appropriately shifted normalized perturbation distribution matrices, W. Finally, the perturbation
outflow matrix, δout , is computed by adding all the slices of δ∗out .

where k is defined as,

k =

{
(2n + 1)(i + n)+ j + n − 1, i > 0, j > 0
(2n + 1)(i + n)+ j + n, otherwise

(19)

In other words, δout is computed as a function, f , of δin
and W as illustrated in Fig. 6. Eq-(16) can then be re-written
as,

∆h(t) =
h⋃

i=0

(δu
in, δu

out ) =

h⋃
i=0

(δu
in, f (δu

in, W)) (20)

Physical Realizability: Perturbation ∆h(t) =
⋃h

i=0 δt−i

learned by standard adversarial attacks at time t is different
for each i . In practice, such attacks are only feasible under
the digital attack setting. Realizing such attacks under the
physical setting requires an attacker to precisely control the
number of devices in each grid point, which is challenging
because an attacker has to either repeatedly relocate the
adversarial devices or have a sufficient number of adversarial
devices repeatedly switched on and off to simulate ∆h(t).
Universal adversarial perturbation naturally addresses this by
generating a single most effective perturbation for each time
interval.

Additionally, generating δu
∈ B∞(ϵ) ball only works under

the digital setting. For physical setting, an attacker can only
realize δ > 0 perturbations (for example, by physically
adding a certain number of adversarial devices). For example,
in Fig. 2(a) PGD attacker tries to reduce the inflow to the
grid point-(2, 1) by stopping C1—a real device, not controlled
by the attacker—from flowing into the grid point, which is
impractical. Therefore, for physical attacks, we optimize the
perturbations for B∞(0, ϵ) bound—an attacker may add con-
trollable physical devices into the crowd, but may not control
the original devices. To summarize, a physical CVP attacker
may move a preset number of adversarial devices repeatedly
along the computed optimal paths to simulate consistent, valid,
positive and universal adversarial perturbation in the physical
world.

While generating the perturbations δu , we iteratively update
δin and W to find the optimal perturbations. More specifically,

Algorithm 1 CVP Attack Algorithm
Input:

Xh(t)← history of CFS
Fθ∗ ← trained model
y← output CFS
N ← # of iterations
ϵ ← maximum perturbation budget

Output:
δu
← (δu

in, δu
out )← universal adversarial perturbations

1: Define i ← 1, δin ← 0, W←−5
2: Define η← (5× ϵ)/N
3: repeat
4: δu

← (δu
in, f (δu

in, W))

5: Ladv ←

(
Fθ∗

(
Xh(t)+

⋃h
i=0 δu)

)
− yt+1

target

)2

6: δu
in ← δu

in − η × sign
(

∂L
∂δu

in

)
7: W←W− η × sign

(
∂L
∂W

)
8: δu

in ← clip(−ϵ, ϵ) —— (l∞ bound)
9: δu

out ← f (δu
in, W)

10: i ← i + 1
11: until i ≤ N

we optimize the following loss function,

Lupa
(
Xh(t), (δu

in, W)
)
=

∣∣∣∣∣Fθ∗

(
Xh(t)+

h⋃
i=0

δu

)
− yt+1

target

∣∣∣∣∣ ,
δu

in, W = argmax
δu

in∈B(ϵ),W
−Lupa

(
Xh(t), (δu

in, W)
)

(21)

where δu
= (δu

in, δu
out ) denotes the universal adversarial

perturbations that remain constant for all xt
∈ D, ϵ is

the maximum perturbation budget as discussed previously.
For physical realizability (limitation 3), we repeatedly clip
the negative values and project δu on B(ϵ) ball while
maximizing Ladv using gradient-descent. Details are given
in Algirthm 1.
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Fig. 7. Illustration and comparison of different white-box threat models used
in our experiments. D-WB denotes a digital attack setting under the white-box
threat model. P-WB denotes a physical attack setting under white-box threat
model. An adaptive attacker adapts the perturbation generation mechanism to
fool CaV-detect.

IV. EXPERIMENTAL SETUP

A. Threat Models

For all the experiments in this paper, we assume a white-box
threat model in which the attacker has complete knowledge
of the CFP model architecture and its learned parameters θ∗.
Further, we always assume a targeted attack scenario where
the goal of a white-box attacker is to learn the perturbations
∆h(t) ∈ B(ϵ), that, when added to the inputs, produce
the maximum relevance to an attacker’s defined target state,
yt+1

target .

Ladv (Xh(t), ∆h(t)) =
∣∣∣Fθ∗(Xh(t)+∆h(t))− yt+1

target )

∣∣∣ (22)

We experiment with three different white-box threat config-
urations as detailed below, and illustrated in Fig. 7.

1) WB-Blind Threat Model: In this white-box threat model,
the attacker is assumed to be unaware of the CaV-detect
mechanism deployed in the pipeline. The goal of WB-blind
attacker is formalized below,

∆h(t) = argmax
∆h(t)∈B∞(ϵ)

−Ladv (Xh(t), ∆h(t)) (23)

where B∞(ϵ) is an l∞ ball, defined as,
δ ∈ B∞(ϵ) := −ϵ ≤ δ ≤ ϵ.

2) WB-Aware Threat Model: This white-box threat model
assumes that the attacker is fully aware of CaV-detect mecha-
nism in the pipeline, and tries to evade the detection by CaV-
detect while simultaneously trying to produce the target state
at the model output. Formally, we define a Lagrange function,

∆h(t) = argmax
∆h(t)∈B(ϵ)

−Ladv (Xh(t), ∆h(t))− λ× (γc + γ n
v )

(24)

where λ is the Lagrange multiplier. We set λ = 1010, to strictly
meet the validity and the consistency condition.

Note: We conduct experiments under the WB-aware threat
model and discover that a WB-aware attacker is unable to
cause any considerable change in the model output. We con-
jecture that the strict consistency and validity check mecha-
nism leads to contradicting gradient updates when optimizing
eq-(24). Therefore, we do not report the quantitative results in
the paper.

3) WB-Adaptive Threat Model: Similar to WB-aware, this
threat model also assumes an attacker fully aware of CaV-
detect mechanism in the pipeline and tries to evade the
detection by CaV-detect while changing the output towards
the target state by adaptively modifying the attack algorithm.
More specifically, an adaptive attacker modifies the attack to
make it easier for eq-(24) to be optimized. In order to achieve
this, our adaptive attacker leverages the algorithm of universal
adversarial perturbations to naturally evade the consistency
check mechanism, while optimizing the following adaptive
loss function,

δu
= argmax

δu
∈B(ϵ)

−Ladv

(
Xh(t),

h⋃
i=0

δu

)
− λ× γ n

v (25)

where we set λ = 1010.
4) Digital and Physical Settings: In addition to the threat

models mentioned above, we consider two different attack
settings—digital and physical. The digital attack setting (D-
WB) depicts a typical white-box scenario where an attacker
can hack into the inference pipeline to directly perturb the
digital input to the model. On the contrary, the physical attack
setting (P-WB) depicts a more realistic white-box scenario
where an attacker knows Fθ∗ , but cannot directly perturb
the digital input to the model. Instead, a physical attacker
has to optimally control a specific number of devices, called
adversarial devices, at specific grid points in order to realize
adversarial perturbations. P-WB restricts an attacker by only
allowing physical perturbations, which makes it more practical
than D-WB.

B. Adversarial Attacks
For D-WB settings, we evaluate three standard adversarial

attacks—FGSM, i-FGSM, and PGD attacks—on our trained
models. FGSM attack is simple, fast, and generates transfer-
able adversarial perturbations, which makes it a good choice
for our evaluation. On the other hand, PGD is among the
strongest adversarial attacks found in literature against non-
obfuscated models such as the ones we use in our evaluations.
For P-WB settings, we compare the aforementioned attacks
with our newly proposed CVP attack on different model
architectures.

C. Evaluation Metrics
1) Test Loss: To evaluate Fθ∗ on some test data Dtest ,

we use a commonly used metric, the mean square error (MSE),
that captures the distance of the model output from the ground
truth xt+1, as defined below,

L(Dtest ) =
1
|Dtest |

∑
∀Xh(t)∈Dtest

(Fθ∗(Xh(t))− xt+1)2 (26)

A smaller value of L(Dtest ) indicates a better learned model.
2) Adversarial Loss: For the adversarial evaluation, we let

D∗test denote the adversarially perturbed test data and compute
an adversarial MSE, denoted L∗(D∗test ), as a measure of the
model’s robustness.

L∗(D∗test ) =
1
|D∗test |

∑
∀X∗h(t)∈D∗test

(Fθ∗(X∗h(t))− yt+1
target )

2 (27)
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where yt+1
target denotes the target output desired by an attacker,

and X∗h(t) = Xh(t) + ∆h(t) is the perturbed input. A larger
L∗(D∗test ) indicates that Fθ∗(X∗h(t)) is considerably different
from yt+1

target , and therefore Fθ∗ is more robust to the per-
turbations in the input. On the contrary, a smaller L∗(D∗test )

indicates that Fθ∗(X∗h(t)) closely matches yt+1
target (target output

achieved), signifying that Fθ∗ is less robust to the perturbations
in the input.

3) False Acceptance Rate (FAR): False Rejection Rate is
defined as the percentage of original (unperturbed) inputs
marked as perturbed by the detector to the total number of
original inputs. Formally, given n,

FRR(n) =
|Xh(t) ∈ Dtest , s.t. γc > 0, γ n

v > 0|
|Xh(t) ∈ Dtest |

× 100%

(28)

To evaluate the efficacy of CaV-detect in capturing adver-
sarial inputs, we use a widely used metric called FAR defined
as the percentage of adversarial inputs marked unperturbed by
the detector to the total number of adversarial inputs generated
by the attacker. Formally, given n, FAR(n) is defined as,

FAR(n)=
|X∗h(t) ∈ D∗test , s.t. γc=0, γ n

v =0|
|X∗h(t) ∈ D∗test |

×100% (29)

In our experiments, we heuristically choose the minimum
value of n (the adjacency number) such that the FRR(n) ≤

0.5% (See Table I). In our experiments, we use n = 2.
Additionally, we also use FAR(n) to quantify the efficacy
of adversarial attacks to evade the detection by CaV-detect.
A greater FAR(n) indicates that the attack is stealthier and
appears more benign to CaV-detect.

D. Hyperparameters

In this subsection, we report key hyperparameters that we
analyze to understand the performance of the model under
both, the standard and the adversarial scenarios.

Data: While preparing the dataset, we use the history
length, h ∈ {2, 5, 10, 15, 20}.

Models: We train different models based on the MLP
and STResnet architectures by varying the number of hidden
layers of each model. Specifically, our MLP-l architecture is
defined as: Input () – {FC (512) – ReLU ()}×l – FC (output
shape) – Sigmoid (), where FC() denotes a fully connected
layer. We use l in {3, 5, 10} for MLP and denote the models
as MLP-3, MLP-5 and MLP-10 respectively. Similarly, our
STResnet-l architecture from Zhang et al. [2] is defined as:
Input () – Conv2D (64, (7, 7)) – ReLU () – {residual
block()}×l – Conv2D (10, (7, 7)) – ReLU () – FC (output
shape) – Sigmoid (), where each residual block() contains
two Conv2D layers. We use l in {1, 2, 3} for STResnet and
denote the models as STResnet-1, STResnet-2 and STResnet-3
respectively. As such, our STResnet-2 contains a total of
9 layers—1 input layer, 6 2D convolution layers (+6 activation
layers), 1 fully connected layer and 1 output layer with the
sigmoid activation. Similarly, STResnet-1 and STResnet-3 are
comprised of 7 and 11 layers. For a TGCN model, we exper-
iment with different dimensions of the hidden messages in
{1, 3, 5, 10} (See [12] for the definition of hidden messages
in the TGCN model) and study the effect of changing the

number of neighbors, dA ∈ {1, 3, 5, 10} on the accuracy
of TGCN models, where dA denotes the number of adjacent
nodes of TGCN model assumed to be able to communicate
with each other. For future reference, we denote tgcn-(m, dA)

as a TGCN model with m dimensional hidden messages and
dA node connectivity.

Attacks: For adversarial evaluation, we experiment with
ϵ ∈ {0.01, 0.03, 0.05, 0.07, 0.1} (for digital attack settings)
and the adversarial device budget bd ∈ {1000, 3000, 5000,
7000, 10000} (for physical attack settings). We also analyze
the effects of changing the number of attack iterations, N ∈
{100, 250, 500, 750, 1000} on the performance of the afore-
mentioned model. For future references, we denote a specific
attack setting as Attack-(ϵ, N ). For example, PGD-(0.1, 1000)

denotes a PGD attacker with the maximum allowed perturba-
tion of 0.1 and an iteration budge of 1000.

V. RESULTS

We first establish the baselines by reporting mean square
loss over the original/unperturbed inputs. We then evaluate
these models under the standard adversarial attacks and the
newly proposed CVP attack. Finally, we show the efficacy of
CVP attack over the standard adversarial attacks by comparing
the number of adversarial devices required by each to achieve
the adversarial goal.

A. Performance of Prediction Models
Fig. 8(a, b and c) compare L(Dtest ) over unperturbed

test inputs of MLP, TGCN and STResnet models trained
on TaxiBJ-16 dataset with different history lengths. We do
not observe any strict relationship between the complexity of
a model and its performance over unperturbed test inputs.
STResnet models generally perform better than MLP and
TGCN models which can be attributed to their spatio-temporal
architecture. Although TGCN models also capture spatio-
temporal patterns in data, they have far fewer parameters as
compared to STResnet models.

In Fig. 8, as h is increased, L(Dtest ) typically slightly
increases for all architectures, with occasional exceptions.
We conjecture that a greater h increases the input information
to the model, which may lead to mutually contradicting
gradient updates during training, causing the resulting model
to underfit. For relatively simpler models that are already
vulnerable to underfitting, the increase in L(Dtest ) with the
increase in h is more significant, which further validates our
hypothesis.

Performance of CaV-detect on Original Inputs: Table I
shows the FRR of original inputs by CaV-detect as function
of n (see eq-(9)). For n = 1, 42.5% of original inputs are
marked as adversarial by CaV-detect, while for n = 2 FRR(n)

drops to 0%. This indicates that for the TaxiBJ-16 dataset,
n = 1 is too small to give a good performance. On the other
hand, n = 2 successfully satisfies the validity of all the inputs
in the dataset. Overall, increasing n makes the definition of
validity looser, which makes CaV-detect more tolerant towards
perturbations in the input.

B. D-WB-Blind Adversarial Attacks
Fig. 9(a-c) summarizes our results of adversarial

attacks on the CFP models of different architectures for
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Fig. 8. A comparison of the model loss, L(Dtest ) (eq-(26)), over the original/unperturbed test set, Dtest , for different model complexities as the
predefined history length, h, is increased. (Settings: Dataset is TaxiBJ-16). No strict relationship between the model complexity and its performance over Dtest
is observed. When the input history length is increased, the L(Dtest ) increases in a slight manner, indicating a decrease in model performance. Of the three
architectures, STResnet performs best.

Fig. 9. Comparing the adversarial loss, L∗(D∗test ) (eq-(27)), over the perturbed dataset, D∗test , by different attacks for different model architectures as ϵ

is increased assuming a D-WB-blind attacker. (Settings: Dataset is TaxiBJ-16; h is 5.). Deep CFP models are vulnerable to adversarial attacks. Increasing
ϵ makes the attack stronger. TGCN-(5,5) is the most robust of the considered architectures.

Fig. 10. False acceptance rate (FAR) of CaV-detect mechanism against the perturbed inputs, D∗test , generated by a D-WB-blind attacker. (Settings: Dataset
is TaxiBJ-16. h is 5). The adversarial perturbations become increasingly invalid as ϵ increases. FAR of the consistency check mechanism is always 0%, so we
only report FAR of the validity-check mechanism.

TABLE I
COMPARING CaV-detect MECHANISM’S FALSE REJECTION RATE (FRR) ON ORIGINAL INPUTS AND FALSE ACCEPTANCE RATE (FAR) ON PERTURBED

INPUTS BY DIFFERENT ATTACK ALGORITHMS ASSUMING D-WB-BLIND AND D-WB-ADAPTIVE ATTACKERS AS A FUNCTION OF n, WHERE n
DENOTES THE ASSUMED NEIGHBORHOOD IN EQ-(9). (SETTINGS: ALL ATTACKS ASSUME ϵ = 0.1, N = 500)

ϵ ∈ {0.01, 0.03, 0.05, 0.07, 0.1}. Overall, we note that deep
CFP models, like other deep learning models, are significantly
vulnerable to adversarial attacks illustrated by considerably
smaller values of L∗(D∗test ) for ϵ > 0 compared to those for
ϵ = 0.

Increasing ϵ makes the attack stronger (decrease in the value
of L∗(D∗test )), which is consistent with our intuitions. PGD

attack appears to be the strongest, while CVP attack seems the
weakest. However, as we see later, the perturbations generated
by the three standard attacks are 100% detectable by CaV-
detect mechanism, while the perturbations generated by the
CVP attack remain undetected.

As compared to MLP-5 and TGCN-(5,5), STResnet-2
exhibits smaller values of L∗(D∗test ), suggesting that
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Fig. 11. Comparing the adversarial loss, L∗(D∗test ), over D∗test , of different attack algorithms adapted with consistency and validity. (a)-(c), with L∗(D∗test )
of CVP attack (d) for different model architectures as ϵ is increased assuming a D-WB-adaptive attacker. (Settings: Dataset is TaxiBJ-16; lh is 5). Of the
three architectures assumed in the paper, the TGCN-(5,5) model shows the greatest adaptive adversarial robustness against different attacks followed by the
STResnet-2 model.

STResnet-2 is relatively more vulnerable to adversarial pertur-
bations. This is surprising considering the relatively superior
performance of STResnet-2 on the unperturbed dataset. These
observations hint at the possibility of an accuracy-robustness
tradeoff in the CFP models, as has been commonly observed
in other DL models [50], [65].

Unlike other architectures, for MLP-5, L∗(D∗test ) of FGSM
slightly increases as ϵ is increased. This is because FGSM is a
single-shot attack, and the gradients computed by the attacker
only locally estimate the loss surface. Larger perturbations
render these local gradients imprecise, thus, degrading the
efficacy of the attack. On the other hand, an i-FGSM attacker
iteratively computes these gradients after small perturbation
steps, which significantly increases the strength of the attack.

Detecting D-WB-Blind Adversarial Perturbations: In this
experiment, we evaluate the efficacy of CaV-detect to detect
adversarial attacks by a D-WB-blind attacker as illustrated in
Fig. 7. Overall, with the False Rejection Rate (FRR) set to
≤0.5%, our CaV-detect mechanism shows a False Acceptance
Rate (FAR) of 0% against standard adversarial attacks and
FAR of >99.7% against our proposed CVP attack.

In Fig. 10, we only report the FAR of the validity check
mechanism, as the FAR of the consistency check mechanism

is always 0% against standard adversarial attacks and 100%
against CVP attack. Consequently, the overall FAR of CaV-
detect is 0% for standard attacks and equal to the FAR of
validity check mechanism for CVP attack. This can also been
seen in Table I in tabular form, where the FAR of adversarially
perturbed inputs is 0% for all the attacks.

As ϵ increases, the adversarial perturbations become
increasingly invalid. This is not surprising because Xh(t)
is initially valid, and introducing invalid perturbations of
larger magnitude more significantly affects the validity of the
perturbed inputs. For MLP-5, we observe that the generated
perturbations are relatively more valid as compared to TGCN-
(5,5) and STResnet-2. We conjecture that because of its
relatively simpler architecture, MLP-5 gradients are mostly
linear. By definition in eq-(10), if Xh(t) is valid, its linear
multiple is also valid.

C. D-WB-Adaptive Adversarial Attacks

Fig. 11(a-d) summarizes our results of four differ-
ent adversarial attacks on the CFP models for ϵ ∈

{0.01, 0.03, 0.05, 0.07, 0.1}. Table II gives a summary of
Fig. 11 in tabular form. As observed previously, increasing
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TABLE II
COMPARISON OF THE ADVERSARIAL LOSS L∗(D∗test ) (↓= BETTER ATTACK) ACHIEVED BY DIFFERENT ADAPTIVE ATTACKS (ADAPTED WITH OUR

CONSISTENCY AND VALIDITY, SEE EQ-(25)) WITH THE CVPR ATTACK FOR DIFFERENT MODEL DEPTHS AND ARCHITECTURES IN THE TABULAR
FORM. BEST RESULTS ARE UNDERLINED. CVP Attack Notably and Consistently Outperforms the Other attacks

Fig. 12. False acceptance rate (FAR) of CaV-detect mechanism against the perturbed inputs, D∗test , generated by a D-WB-adaptive attacker. (Settings:
Dataset is TaxiBJ-16. h is 5). The adversarial perturbations become increasingly invalid as ϵ increases. FAR of the consistency check mechanism is always
100%, so we only report FAR of the validity-check mechanism.

ϵ increases the strength of the attack. Contrary to our previous
observation (where STResnet-2 was least robust), against
adaptive attacks, the robustness of STResnet models is on par
with or better than MLP. Of the three architectures, TGCN
models show the greatest adaptive adversarial robustness.
Also, our proposed CVP attack performs significantly better
than other adaptive attacks.

MLP-10 is more robust as compared to MLP-3 and MLP-5,
owing to the greater model complexity [50]. All the standard
attacks considered in this paper give a comparable adversarial
performance on MLP, which appears counter-intuitive (as
i-FGSM and PGD are generally considered stronger than
FGSM), but can be attributed to the simplicity of MLP
architecture, which makes it equally vulnerable to relatively
simpler attacks.

For the TGCN architecture, we do not observe a definitive
effect of increasing a model’s complexity on its adversarial
robustness. However, STResnet-1 shows a considerably greater
adversarial robustness, respectively followed by STResnet-2
and STResnet-3, which can be attributed to the increased
adversarial vulnerability of latent DNN layers [66].

Detecting D-WB-Adaptive Adversarial Perturbations: In
this experiment, we evaluate how effectively do the adversarial
inputs perturbed adaptively are detected by CaV-detect. Fig. 12
only reports the FAR of the validity check mechanism under
adaptive attack settings, because the FAR of the consistency
check mechanism is always 100% against all adaptive adver-
sarial attacks due to the universal adversarial perturbations.
Consequently, the overall FAR of CaV-detect is equal to the
FAR of the validity check mechanism. To summarize our
results, with the False Rejection Rate (FRR) set to ≤0.5%,
adaptive attacks have considerably higher FAR (≈80%-100%)
against CaV-detect modified by our novel objective (eq-(25))
as compared to FAR of D-WB blind/aware attacks. However,
despite their high FAR, adaptive attacks also achieve a much
higher L∗(D∗) as compared to D-WB-blind attacks and CVP
attack.

As previously observed, increasing ϵ considerably decreases
FAR. Contrary to the CaV-detect-blind attacks, D-WB-
adaptive attacks can evade CaV-detect with around 80% FAR
for standard adaptive attacks. We specifically attribute this
to the newly proposed adaptive modifications to the stan-
dard attacks—universalizing the adversarial perturbations and
adaptive Lagrange optimization. However, despite its D-WB-
adaptive algorithm, FGSM fails to perform well against CaV-
detect, particularly notable for TGCN-(5,5) and STResnet-2
where FAR drops to 0% when ϵ = 0.1 (also see Table I,
which can again be attributed to the imprecise local gradients.

We also compare FAR(n) of adaptive adversarial attacks for
a range of values of n in Table I for ϵ = 0.1. As observed
previously for the original inputs, increasing n makes CaV-
detect more tolerant towards adversarial perturbations resulting
in the adaptive attacks achieving 100% FAR against MLP-5
and STResnet-2 for n ≥ 3.

VI. DISCUSSIONS

A. Visualizing CFPs

Fig. 13 compares the predicted inflow states of different
CFP models with the ground truths recorded in the future
for both the original and the perturbed inputs generated by
different adaptive attacks, where the goal of the attacks is to
increase the predicted inflow state as much as possible while
keeping δ ∈ B∞(ϵ). The qualitative analysis shows that the
CVP attack outperforms other attacks, as the predicted inflow
state for CVP attacked inputs typically exhibits the highest
value, irrespective of the model architecture. Furthermore,
TGCN-(5,5) is more robust to the adaptive attacks as compared
to other models. We also note that the predicted inflow state
is more affected by the CVP perturbations when the originally
predicted inflow state is relatively small.

Interestingly, the predicted inflow states for the adversarial
inputs are, in general, highly correlated—either positively
(Fig. 13(b,c) or negatively (FGSM-(0.1,1) and CVP-(0,1,500)
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Fig. 13. Visualizing the predicted inflow states of the CFP models of different architectures with the actual inflow states (recorded in the future). “No Attack”
denotes the predicted inflow states for the original/unperturbed inputs assuming a D-WB-adaptive attacker. (Settings: Dataset is TaxiBJ-16; h is 5; ϵ is 0.1).
CVP attack outperforms the other attacks. TGCN-(5,5) is more robust to consistent and valid adversarial attacks than the other two models.

Fig. 14. A comparison of the adversarial loss, L∗(D∗test ), over the perturbed test inputs generated by different attacks for different models (of varying
architectures) trained for different history length, h. (Settings: Dataset is TaxiBJ-16; ϵ is 0.1). Typically, when the input history length is increased, the
L∗(D∗test ) slightly increases indicating that the models trained on a larger history length are slightly more robust to the adversarial perturbations.

on MLP-5 in Fig. 13(a)—with the originally predicted inflow
states, for all the models considered in this experiment. Based
on these observations, we conjecture that the CFP models have
limited expressiveness—the models are incapable to produce
certain outputs irrespective of the inputs.

B. Effect of History Length, h, on Adversarial Loss
We analyze the effect of changing h on the adversarial

loss of different attacks. We train MLP-5, TGCN-(5,5) and
STResnet-2 for h ∈ {2, 5, 10, 15, 20} and then attack the mod-
els. Note that for each h, we train a new model as the inputs of
the models trained for different h values are incompatible with
each other. For this experiment, we set ϵ=0.1 and N=500 for
all the attacks. Fig. 14(a-c) reports L∗(D∗test ) values of attacks
on the aforementioned three models respectively.

We observe no strict relationship between the adversarial
robustness and h. However, increasing h typically makes the
model slightly more robust, which appears counter-intuitive as
a greater history length allows an attacker to add more per-
turbations to the input. However, recalling from Section V-A,
the increasing robustness night be due to the decreased perfor-
mance of the models when h is increased hinting the accuracy-
robustness tradeoff [50], [65].

C. Speed of Adversarial Attacks
Fig. 15(a-c) compares the speed of different attacks to

optimize the adversarial loss along the number of iterations
for MLP-5, TGCN-(5,5) and STResnet-2. As the attacks
progress, the generated perturbations become better indicated
by the decreasing adversarial loss. CVP attack consistently

outperforms the other two attacks with a significant margin,
specifically notable for TGCN-(5,5) and STResnet-2.

Fig. 15(a),(b) also hint that the adaptive PGD attack per-
forms slightly better than CVP attack for lesser iterations
(more notable for MLP-5). This can be attributed to the
additional constraints imposed by the consistent and valid
perturbation generation mechanism of CVP attack.

D. On Physical-Realizability of Adversarial Attacks

In order to study the potential impact of the proposed
adversarial attack in the real world, we assume a physical
threat model with a physical attacker who cannot control the
input to the CFP model, but may influence it by controlling
physical adversarial devices (e.g., the mobile phones or the
GPS modules communicating with the pipeline) up to a certain
device budge bd as perturbations in the real world. The aim
of the physical attacker is to change the model’s prediction
about the future CFS by physically controlling the available bd
adversarial devices in the most optimal way. P-WB-adaptive
attack in Fig. 7 illustrates such a threat model. In addition,
we further limit our attacker by assuming a limited query
setting [7] that limits our attacker to be only able to query
the model 20 times at maximum. We further assume that
our attacker has a limited device budget, bd , defining the
number of devices, that we refer to as the adversarial devices,
which our attacker can physically control. The goal of our
attacker is to fool the crowd-prediction model by physically
moving the adversarial devices (to simulate adversarial pertur-
bations). We vary the bd ∈ {500, 1000, 5000, 10000, 15000},
and report the adversarial loss of two attacks—adaptive
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Fig. 15. Comparing the decline of adversarial loss, L∗(D∗test ), over the perturbed dataset, D∗test , by different attack algorithms for different model architectures
as the attack progresses assuming a D-WB-adaptive attacker. (Settings: Dataset is TaxiBJ-16; h is 5; ϵ is 0.05). CVP attack consistently outperforms other
attacks in terms of the adversarial loss and speed, given a perturbation budget.

Fig. 16. Comparing the physical plausibility of the PGD attack and the CVP attack for different model architectures at different device budgets in terms
of the adversarial loss, L∗(D∗test ), and FAR of CaV-detect assuming a D-WB-adaptive attacker. (Settings: Dataset is TaxiBJ-16; h is 5; N is 20; bd is the
maximum number of devices physically controllable by the attacker).

PGD-(bd , 20) (with consistency and validity priors formalized
in eq-(25)) and CVP-(bd , 20)—in Fig. 16 for different values
of bd .

Interestingly, we note that for smaller bd the adaptive PGD
attack outperforms the CVP attack in terms of L∗(D∗test )

for all the three architectures considered in this experiment.
We attribute this to two reasons. Firstly, the adversarial pertur-
bations generated by adaptive PGD attack are relatively more
invalid as compared to those generated by the CVP attack,
observable in the last row of Fig. 16, which reports FAR of
the CaV-detect mechanism. Secondly, the outflow perturbation
generating mechanism proposed in eq-(18) implicitly imposes
additional constraints on δin and δout , which makes it difficult
to find optimal perturbations in fewer iterations. This obser-
vation also aligns with that observed in Fig. 15 in the long
run (for larger bd and N ). However, given enough iterations,
L∗(D∗test ) achieved by the CVP attack is notably smaller than
the PGD attack. Therefore, we believe that CVP attack is the
strongest crowd-flow prediction attack yet, and is much more
practical than the PGD attack.

Compared to L∗(D∗test ) values in Fig. 11, L∗(D∗test ) in
Fig. 16 are notably larger, which can simply be attributed to
the limited query budget and device budget of the attacker.
This shows that although the CFP models are vulnerable to
consistent and valid adversarial perturbations under physical
setting, realizing the targeted outputs is considerably more
challenging than the digital attack setting—bd = 15000 is
still a very large number. A low power GPS module typically
costs ∼1$. Therefore, each adversarial device not only incurs
an additional cost of ∼1$, but the attacker might have to use
an additional vehicle if the computed path in not similar to
the previous ones. Given bd , an attacker may use our openly
available code to compute an optimal perturbation that is
consistent, valid and physically-realizable.

E. Limited Expressiveness of CFP Models
In this experiment, we show that MLP-5, TGCN-(5,5),

and STResnet-2 exhibit limited expressiveness. We define
expressiveness as the ability of a model to produce a certain
output given an appropriate input. Fig 17(b) shows that all
the three models perfrom well on the original inputs. To show
the limited expressiveness of the models, we assume a strong
PGD-(1,500) adversary with ϵ = 1 so that the adversary can
make any change to the input with CaV-detect-blind threat
model—the adversary does not have to care about the CaV-
detect. Additionally, we assign two adversarial target states—
Target-1 and Target-2 in Fig. 17(a)—for the adversary to
produce at the models’ outputs. Fig. 17(c,d) report the output
predictions of models on adversarial inputs generated by PGD-
(1,500) attack for Target-1 and Target-2 respectively.

Ideally, assuming a complete control over the inputs, the
adversary should be able to manipulate the model into produc-
ing any desired output. However, results in Fig. 17(c,d) show
that this is not the case with the CFP models. For example, the
outputs of MLP-5 are significantly different from the targets,
which concludes that MLP-5 is incapable of producing the
target outputs. We conjecture that MLP-5 has very limited
expressiveness. Although TGCN-(5,5) and STResnet-2 get sig-
nificantly closer to the target outputs as compared to MLP-5,
they still lack sufficient expressiveness to exactly produce
the target output. We attribute this to the mostly clustered
and highly similar outputs in the TaxiBJ dataset. Overall,
we observe that STResnet-2 is the most expressive, which also
explains why STResnet models are adversarially less robust
compared to TGCN models (as observed in Fig. 11).

F. Challenges and Future Directions
Real world scenarios are challenging and diverse. White-box

(WB) attacks help us understand the behavior and stability
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Fig. 17. Illustrating limited expressiveness (the ability of a model to produce the desired output given an infinite control over the input) of CFP models of
different architectures. (Settings: Dataset is TaxiBJ-16; h is 5; Attack is PGD-(1,500); ϵ is 1—indicating infinite control over the inputs). STResnet-2 is the
most expressive of the three models considered in this experiment, while MLP-5 is the least expressive.

of the subject model in the worst-case scenarios, and give
us further insights into the potential fail cases where the
model behaves unexpectedly. Previous works have shown that
white-box adversarial attacks can be a real threat, even in the
black-box scenario, due to additional challenges like insider
threats, network breach and viruses. Several open research
questions remain unanswered, such as, how a hybrid threat
setting targeting multiple such vulnerabilities make adversarial
concerns graver, and how to counter the adversarial threat in
such a hybrid setting. In the following, we state some of these
challenges for future researchers.

Model Stealing Attacks: Previous works have shown that
given query access to the model, it is often possible for
an expert attacker to perform the model stealing attack by
either repeatedly querying the model using adversarial data
or monitoring its input and the corresponding output, given a
network security breach (which is not uncommon in today’s
systems). Gradients from the stolen model can then be used to
estimate the original gradients and optimize the perturbation.

Insider Threat: Insider threat may let an adversary steal a
copy of the deployed model, compute gradients, and optimize
the perturbations in order to maximize the adversarial reward.

Black-box Adversarial Attacks: Zeroth-order optimization,
decision-based attacks and their advanced alterations can be
used to simulate almost all of the white-box attacks (including
the CVP attack) in the black-box setting.

Limitation of Our Study: One of the major limitations of
our study is that, although CVP attack is physically realizable,
our experiments do not include its real-world implementation
due to the lack of sufficient resources for a real-world study.
We only simulate a physical attacker in our python framework.

VII. CONCLUSION

In this paper we studied the adversarial vulnerabilities of
the CFP models of three different architectures—Multi-Layer
Perceptron, Temporal Graph Convolution Neural Network and
Spatio-Temporal ResNet. We extensively analyze the effects of
changing the model complexity and crowd-flow data history
length on the performance and the adversarial robustness of

the resulting models, and find that the CFP models, like
other deep learning models, are significantly vulnerable to
adversarial attacks. Secondly, we identified and normalized
two novel properties—consistency and validity—of the crowd-
flow inputs that can be used to detect adversarially perturbed
inputs. We therefore propose CaV-detect that can detect adver-
sarial inputs with FAR of 0% by analyzing their consistency
and validity—a model input is considered unperturbed if
it is both consistent and valid. We then adaptively modify
the standard adversarial attacks to evade CaV-detect with
an FAR of ∼80-100%. Finally, by encoding the consistency
and validity priors in the adversarial perturbation generating
mechanism, we propose CVP attack, a consistent, valid and
physically-realizable adversarial attack that outperforms the
adaptive standard attacks in terms of both the target adversarial
loss and the FAR of CaV-detect. Lastly, insightfully discuss
the adversarial attacks on CFP models and show that CFP
models exhibit limited expressiveness and can be physically
realized by simulating universal perturbations.
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