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A B S T R A C T

Ensuring the safe operation of suspension bridges is paramount to prevent unwanted events that can cause
failures. Therefore, it is crucial to continuously monitor their operational status to uphold safety and reliability
levels. However, natural deterioration caused by the surrounding environment, primarily due to corrosion,
inevitably impacts these structures over time, particularly the main cables made of steel. In this study, a robust
framework is proposed to predict the annual corrosion rate in main cables of suspension bridges, while inves-
tigating the impact of the surrounding environmental factors on this process. To do so, the implementation of
four regression models and four machine learning techniques are used in the first phase for modeling the annual
corrosion rate based on a comprehensive database containing various environmental factors. The modeling
performance is evaluated through a range of statistical and graphical metrics. After that, Shapley Additive Ex-
planations (SHAP) is utilized to explain the model and to extract the impact of each variable on the final
modeling results. Overall, the findings demonstrate the effectiveness of the proposed framework for addressing
this issue. The Extreme Gradient Boosting (XGB) emerged as the top-performing model, achieving an overall R2

of 0.982. Moreover, the SHAP findings highlight the impact of CL− on the annual corrosion rate as the factor with
the highest influence during the modeling process. The high performance of the proposed model suggests its
potential utility in further research concerning the reliability of suspension bridge main cables.

1. Introduction

Bridges represent key assets in transportation networks as they
enhance the mobility of people and goods across countries and regions
[1–3]. These complex infrastructures represent unique technological
and economic challenges along their lifecycle [4,5]. A recurrent open
topic in the field is the lack of adequate maintenance of this type of
infrastructure asset [6,7]. In Canada, 12.4 % of bridges (9661 assets)
have been classified to be in poor/very poor condition [8], while 7.5 %
of this kind of asset (46 154 bridges) are considered deficient in the USA
[9]. In contrast, percentages as up to 39 %, 30 %, and 37 % of deficient
bridges are reported in France, Germany, and the United Kingdom,
respectively [10]. This issue has motivated researchers to explore the
phenomena that negatively impact their structural response [11], and
develop more efficient and better monitoring strategies [12] and dam-
age detection methodologies [13–15] that could improve bridge man-
agement and operations.

Among the different existing bridge typologies, suspension bridges
are especially suitable to cover long spans [16–18]. A suspension bridge
is one in which the deck is carried by vertical hangers supported by main
cables suspended between tall piers and normally anchored at each end
of the bridge to the ground [19]. Examples of iconic suspension bridges
around the world are the historic Golden Gate Bridge built in 1937 in
San Francisco Bay, USA, with a main span of 1280 m (once the longest
single-span bridge in the world) [20] and the 1915 Çanakkale Bridge in
Türkiye, with the current longest bridge span in the world (2023 m)
opened in 2022 [21]. In suspension bridges, the main cables are of
utmost importance because their failure would cause the bridge to
collapse as a whole [22]. Main cables are fabricated with hundreds or
thousands of individual high-strength steel wires bundled together [23].
Although the bundled wires are typically coated to avoid corrosion, with
time and exposure to changing climate and the harsh surrounding
environment, the coating layer will degrade and fail [24,25]. This will
lead to the inevitable occurrence and acceleration of corrosion in terms
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of defects that grow depending on the situation and location of the
suspension bridges, which later on can cause failures if no intervention is
made [26]. Conversely, the existence of cable coating creates chal-
lenging conditions for inspection and monitoring. Current in-depth in-
spection techniques entail the removal of cable coating and the sampling
of wire segments, which are cut and taken to a lab to be analyzed [27,
28]. Although novel embedded monitoring systems capable of
measuring corrosion rate and environmental conditions have been
tested [29,30], their full deployment in existing bridges has not been yet
conducted. Corrosion thus has a significant impact on the suspension
bridge main cables’ remaining strength. Therefore, it is crucial to pro-
vide an accurate prediction tool for determining the degree of corrosion
in the suspension bridge’s main cables.

The complicated chemical, thermodynamic, and electrochemical
process known as corrosion causes the metallic wires of the main cables
to gradually deteriorate because of exposure to corrosive environments
[31–33]. The position of the wires within the bundle and along the cable
determines the corrosion degree [34]; wires at the bottom of the cable
and those around the perimeter have shown higher corrosion levels
[35]. Furthermore, it is yet unclear how climate change may affect the
environmental conditions that cause wire corrosion [36]. All these
complexities hinder the development of accurate analytical or numerical
models capable of accurately estimating corrosion within suspension
bridge main cables. Attempts to determine the safety level of main ca-
bles in suspension bridges have been undertaken through the imple-
mentation of multiscale probabilistic models [37], an inverse reliability
method [38], and a partial factor approach based on monitoring data
[39]. However, due to the high nonlinearity and complexity of the
corrosion process, stochastic approaches can hardly predict corrosion
rate variability in an accurate manner [40,41].

Studies related to corrosion in bridges include the work of Karanci
and Betti [42] who compiled an extensive database with information
from environmental factors affecting the degree of annual corrosion rate
in carbon steel. This database was subsequently used to develop and
validate a supervised data-based Machine Learning (ML) predictive
model [43]. Among the three different algorithms tested, the Support
Vector Regression (SVR) model with a Radial Basis Function (RBF)
kernel provided the highest performance. It was concluded by Chou
et al. [44] that the hybrid Smart Firefly Algorithm-Least Squares Support
Vector Regression (SFA-LSSVR) model was capable of improving the
prediction accuracy of corrosion due to its dynamic optimization of
model hyperparameters. Metaheuristic Optimization Algorithms (MOA)
(i.e., Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC),
Ant Colony Optimization (ACO), among others) have also been used to

solve real-world problems in the fields of electrical and civil engineering
[45]. Ben Seghier et al. [46] also used the database compiled by Karanci
and Betti to develop and validate a model to predict the annual corrosion
rates in suspension bridge main cables. Their framework was based on
Multilayer Perceptron (MLP) in combination with different MOA to
optimize the calibration of the model hyper-parameters. Ben Seghier
et al. [46] experimented with four different variations, all of which
yielded higher values of R2 compared to the SVR algorithm reported by
Karanci and Betti [42]. Among these variations, the MLP-MPA algorithm
demonstrated the highest performance. An SVR algorithm was also used
by Deng et al. [47] to predict fatigue damage in suspension bridges.
Their algorithmwas trained and tested on a database collected through a
novel weight-in-motion (WIM) monitoring system. Therefore, an accu-
rate estimation of the annual corrosion rate is a key element in the
development of a time-dependent corrosion rate model.

ML has become a pervasive alternative to solve complex problems, in
particular when the physical phenomenology is hard to explain and data
can be obtained from underpinning parameters. For instance, Hernán-
dez-Díaz et al. [48] implemented a ML strategy to predict the non-linear
shear response in reinforced and prestressed concrete beams, thus
avoiding convergence problems on conventional Newton-type numeri-
cal methods. Yadav et al. [49] reported more precise forecasting values
on air pollution levels using ML methods in comparison to model-based
numerical approaches. Similarly, Harrou et al. [50] observed higher
road traffic flow forecasting performances by implementing ML solu-
tions. Improved performance based ML techniques have been suggested
to forecast solar irradiance by Molu et al. [51], to generate surrogate
models used on pavements design by Li et al. [52], and to enhance
damage detection and classification in bridges by Stagi et al. [53], who
validated their novel ML framework on the well-known benchmark case
study of the Z24 bridge [54]. Based on this long, but not exhaustive, list
of successful ML implementation cases, using sophisticated ML models
will produce accurate framework to predict the level of annual corrosion
rate in steel cables, which could eventually lead to better safety as-
sessments of existing suspension bridges.

The novelty of our work consists of the development and imple-
mentation of a new data-driven framework that employs advanced ML
techniques to predict the level of annual corrosion rate in the main ca-
bles of suspension bridges, while introducing the Shapley Additive Ex-
planations (SHAP) [55] analysis for the first time to explain the outputs
of the proposed ML techniques to solve this problem. The approach
implemented here is based on the use of Ensemble Learning (EL) models.
The performance of Decision Trees (DT), Random Forest (RF), Adaptive
Boosting (ADB), and Extreme Gradient Boosting (XGB) algorithms is

Fig. 1. Schematic representation of the adopted ML predictive models: (a) DT, (b) RF, (c) ADB, and (d) XGB.
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assessed. The performance of these models is compared against con-
ventional regression techniques, namely, Multiple Linear Regression
(MLR), Ridge Regression (RR), Lasso Regression (LR), and Elastic Net
Regression (ENR). Additionally, the impact of the input variables used
during the modeling was investigated using the SHAP technique. Our
work goes beyond the state of the art and adds value to the existing
literature by demonstrating explicit steps on how to employ ML-based
explainable models to address the annual corrosion rate in the main
cables of suspended bridges. The remainder of the manuscript is orga-
nized as follows: Section 2 outlines the adopted methodology, providing
detailed descriptions of the characteristics of each implemented algo-
rithm. Section 3 presents the framework implemented for estimating the
annual corrosion rate. In Section 4 the obtained results are shown and
discussed. Finally, Section 5 offers concluding remarks.

2. Methodology

2.1. Regression-based predictive models

The relationship between two or more variables is commonly studied
in engineering through statistical regression methods [56–58]. The
simplest of those techniques is the linear regression model, which for a
single independent variable can be expressed as:

Y = β0 + β1x + ε (1)

where Y is the dependent variable of interest being estimated, β0 and β1
are the function intercept and slope, known as regression coefficients, x
is the independent variable or regressor, and finally, ε represents a
random error term. In this study, four different advanced statistical
regression techniques are used to develop a predictive model for the
annual corrosion rate, Crate, in main cables of suspension bridges. The
subsequent part provides a brief overview of each of these regression-
based predictive models.

2.1.1. Multiple Linear Regression (MLR)
MLR is a statistical technique used to examine the relationship be-

tween a dependent variable and two or more independent variables
[56]. In general, this model can be expressed as follows:

Y = β0 + β1x1 + β2x2 + … + βkxk + ε (2)

where k is the considered number of independent variables (i.e. re-
gressors), while βj, j = 0, 1, …, k, are the regression coefficients. The
latter are commonly computed using the least squares method, which
assumes that the estimator is unbiased. MLR provides relatively good
results when there are no significant dependencies within regressors
(multicollinearity) [56].

2.1.2. Ridge Regression (RR)
RR is a linear regression technique used to address the problem of

multicollinearity and overfitting in MLR. This is achieved by dropping
the assumption of an unbiased estimator [59]. The ridge estimator, β̂R,
can be found by solving the following equation:

(XʹX+ λI)β̂R=Xʹy (3)

where y is the vector of dependent variables, X the matrix of indepen-
dent variables, I the identity matrix, and λ is a strictly positive coefficient
[60].

2.1.3. Lasso Regression (LR)
LR is a regression technique used for variable selection and regula-

rization. It assumes the sparsity of the regression coefficients and pre-
vents the MLR overfitting [61]. In LR, regression coefficients are
estimated by solving Equation (4):

minimize
β0 ,β

∑N

i=1

(

yi − β0 −
∑p

j=1
xijβj

)2

subject to ‖β‖1 ≤ t (4)

where ‖β‖1 denotes the l1 norm of β, where t is a user-specified meta
parameter. l1 ensures the problem convexity, which reduces the
computational cost.

2.1.4. Elastic Net Regression (ENR)
ENR is an advanced regression technique that combines both LR and

RR methods to address the limitations of each approach [61]. To esti-
mate the regression coefficients, the ENR solves the following convex
problem:

minimize
(β0 ,β)∈R×Rp

{
1
2
∑N

i=1

(
yi − β0 − xT

i β
)2

+ λ
[
1
2
(1 − α)‖β‖22 + α‖β‖1

]}

(5)

where α ∈ [0,1] is a user-specifiedmeta parameter, whereas ‖β‖2 is the l2
norm of β.

2.2. ML-based predictive models

Ensemble learning (EL) models are ML techniques that combine the
predictions of multiple individual models (i.e. so-called base ML-model
or learners; in this case, Decision Trees) to improve the overall predic-
tive performance, generalization, and robustness. The underlying prin-
ciple of EL models is that, by combining the predictions of multiple base
models, the ensemble can frequently yield more accurate and consistent
findings than any single model could. Thus, one base model and three EL
models are investigated in this work and shown schematically in Fig. 1,
whereas briefly discussed in the subsections that follow (further infor-
mation can be found in Ref. [62]).

2.2.1. Decision Trees (DT)
The DT model, which can be used either for regression or classifi-

cation purposes, was selected as the base model in this study. This
method is a versatile and interpretable hierarchical paradigm that can
be visually depicted as a tree structure. While DT is primarily appro-
priate for classification, it can also be adjusted to address regression
problems. The DT concept is to use Equation (6) to generate variance
measures within nodes, τi, since the dependent variable is continuous in
regression problems [63].

i(τ)=
∑

(yi − ymean)
2 (6)

where ymean denotes the dependent variable mean at the i-th node τi,
while yi is the i-th value of the dependent variable (i = 1,2,3,…n). The
tree is constructed by dividing the “parent” node into “child” nodes
based on the independent variable that produces the lowest variance
between parent and child.

2.2.2. Random forest (RF)
RF utilizes a randomized feature selection technique to generate a T

number of datasets with m samples each (i.e. randomized bootstrap
sampling or bagging) [64,65]. Thereafter, individual DT are built from
each dataset. Contrary to DT, which splits each node based on optimal
criteria, RF uses a subset of randomly generated k features to split the
nodes. k is a meta-parameter that influences the process randomness,
where values of k = log2 d are recommended with d represents the
number of independent variables [66]. All T datasets are evaluated, and
the outcome is obtained as expressed in the following equation:

Y=
1
T
∑T

j=1
YjXʹ (7)

where Xʹ represents the unknown instances, Yj is the j individual deci-
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sion tree, and Y denotes the target output.

2.2.3. Adaptive boosting (ADB)
ADB is designed to generate a strong EL model by combining weak

learners (G(X)), thus improving their performance. Each sample can be
predicted with G(X), which will result in a relative error ei, as described
by Equation (8) [67].

ei = L(yi,G(Xi)) (8)

where
(
Xi, yi

)
(i= 1, 2,…,m) represent the i-th sample, m denotes the

total number of samples, and L is the loss function. As expected, these
weak learners, Gk(X) k = 1,2,…,N, will have a poor performance stand-
alone. The overall performance will be highly enhanced based on ADB
using the expression:

H(X) = υ
∑N

k=1

ln
1
αk

g(X) (9)

where υ∈ (0,1] is the learning rate, αk denotes the weight related to each

Fig. 2. Proposed framework for modeling the annual corrosion rate in main cables of suspension bridges.
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Gk(X), while g(X) represents the mean of all αkGk(X) k = 1, 2,…,N
products. This iterative process adjust the sample distribution weights
using the predicting error, E = max|Yi − G(Xi)|, of the previous itera-
tions.

2.2.4. Extreme gradient boosting (XGB)
XGB is an enhanced version of the Gradient Boosting Regression Tree

(GBRT) algorithm [68]. It employs DT as a base learner and builds
multiple weak learners in an iterative process. Gradient descent is used
to train these weak learners. The optimal solution, accuracy, and
complexity of this method are achieved through the implementation of
Taylor series to expand the loss function, which contains a regulariza-
tion term [69]. XGB can be mathematically represented through Equa-
tion (10):

ŷi =φ(xi)=
∑n

k=1

fk(xi), fk ∋ F (10)

where F is composed by the DT within the function space, fk denotes a
series of independent functions, xi and φ(xi) are the ith sample and the
function related to the xi sample, respectively, whereas ŷi denotes the
model predicted value.

2.3. Shapley Additive Explanations

Shapley Additive Explanations (SHAP) offers both local and global
explanations of results thereby enhancing the interpretability of pre-
dictive models [70]. It assigns an importance value to each one of the
model features when predicting the output which is more consistent
with human intuition. This characteristic allows for a better under-
standing of the model and of how it could be further improved. Even-
tually, this results in higher levels of user trust [55]. The importance that
every model feature may have in the predicted outcome value could be
either negative or positive. The former contributes to increasing the

magnitude of the response, whereas the latter decreases it. To compute
SHAP values, all feature subsets (S ⊆ F, where F is the set of all features)
are retrained in the model. The importance value of each feature in the
model is obtained by comparing a trained model with such feature
included, fSU{i}, against another without it, fS. The comparison is per-
formed on the current input as presented in Equation (11):

fSU{i}
(
xSU{i}

)
− fS(xS) (11)

where xS represents the input feature values in the S set. Finally, Shapely
regression values are computed as a weighted average of all differences
in the possible subsets, S ⊆ F\{i}, following Equation (12) [55]:

ϕi =
∑

S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fSU{i}

(
xSU{i}

)
− fS(xS)

]
(12)

3. Implementation

3.1. Proposed framework

The annual corrosion rate, Crate (μm/year) in suspension cable
bridges is predicted using the framework depicted in Fig. 2. The aim is to
assess and evaluate the comparative efficiency of ML and regression
models in predicting the corrosion behavior, and to identify the best
approach for examining the influence of input variables on the outcome.
To accomplish this, variables affecting the annual corrosion rate, Crate,
were identified, and the relevant data were gathered and preprocessed
(Section 3.2). These datasets were utilized in training and testing the
predictive models. The modeling process is carried out using four ML
models (DT, RF, ADB, and XGB), of which three are EL models, and four
regression models (MLR, RR, LR, and ENR). To determine the perfor-
mance of each model and its effectiveness, the analysis employed
various comparative evaluation criteria (Section 3.3). Finally, the SHAP
approach is employed to explain the best predictive model and to

Table 1
Descriptive statistical report for the utilized database in this study.

Type Variables, units Mean STD Min 25th percentile 50th percentile 75th percentile Max

Inputs T, ◦C 15.29 8.74 − 3.10 10.91 15.7 23.03 29.82
RH, % 46.05 18.03 0.00 35.00 47.0 58.00 98.00
TOW, % 68.69 14.10 33.30 63.80 69.2 77.00 91.10
P, mm 882.42 486.83 13.00 513.00 792.0 1208.00 3677.00
pH, - 4.98 0.86 3.44 4.45 4.9 5.26 7.37
CL− , mg/L 12.35 27.17 0.01 0.80 2.4 8.00 192.73

Output Crate, μm/year 38.52 43.76 3.30 17.90 28.1 41.10 376.70

Fig. 3. Pearson correlation matrix between the database variables. (a) All correlations; (b) Only correlations with an absolute value higher than 0.5.
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analyze the most influential variables and their impact on the output
trend. It is worth noting that all the coding is done using the Python
platform and its available libraries.

The data cleaning and pre-processing procedure include in general,
first, data understanding (numerical data, identifying the inputs and
outputs), identifying and handling potential missing values (no missing
values were identified), dealing with duplicated data, if discovered (no
duplicated data was discovered), and handling outliers using box plots
(all data were used in the study), statistical analysis (Section 3.2), data
normalization to a similar range to prevent features with larger scales
from dominating the model, and finally data splitting before beginning
the modeling process.

Normalizing the input and output variables during the modeling
process is crucial to enhance the model’s effectiveness. This ensures that

all variables are on the same scale, preventing biased or overly scruti-
nized results. The purpose of normalization is to transform the numer-
ical values in a dataset to a standard scale while preserving meaningful
variations between value ranges. Every variable in this dataset has been
normalized to fall between − 1 and 1, using the following formula:

xNormalized =
2(xActual − xmin)

(xmax − xmin)
− 1 (13)

where xActual denotes the actual annual corrosion rate dataset, xmin and
xmax denotes the dataset’s minimum and maximum values, respectively.
After the normalization process, the datasets are randomly split into two
subsets: the training dataset, which constitutes 70 % of the total dataset,
and the testing dataset, which comprises the remaining 30 %. It is worth

Fig. 4. Pair plot for data distribution between the input-output variables.
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noting that K-fold cross-validation is used on the training data to mini-
mize overfitting issues during the model development phase.

3.2. Data description and preprocessing

A thorough database is required to gain a better understanding of the
complex relationship between environmental conditions and the annual
corrosion rate, Crate, in the main cables of suspension bridges. To do this,
a database that Karanci and Betti [42,43] compiled and arranged from
numerous atmospheric corrosion tests on carbon steel conducted across
several countries is examined and used. The database comprises 309
datasets, gathered frommore than 250 distinct test locations spread over
33 countries. The extensive collected data sheds light on how different
variables impacted the corrosion rate, Crate of carbon steel specimens
over time (years). Six environmental factors are classified as indepen-
dent variables, while the final factor—the annual corrosion rate,
Crate—is classified as a dependent variable and expressed in μm/year.
The independent variables, also defined as the input parameters during
the modeling process include: (i) Temperature (T, ◦C), (ii) Relative hu-
midity (RH, %), (iii) Duration of moisture on the metal’s surface (TOW,
%), (iv) Annual precipitation (P, mm), (v) Rainwater pH (pH), and (vi)
Chloride ion concentration (CL− , mg/L). These variables collectively
represent the atmospheric conditions with a significant influence on the
value of the dependent variable, also referred to as the output parameter
in this study.

Table 1 reports the statistical summary of each variable within the
database. The statistics of interest for every independent and dependent
variable include the mean (XMean), standard deviation (XSTD), minimum
value (XMin), maximum value (XMax), as well as the 25th, 50th, and 75th

percentiles. From this table, it can be observed that the different vari-
ables spread over ranges with diverse orders of magnitude. For example,
RH can go from 0 to 0.98 (all values are contained within a single unit),
whereas CL− can go from 0.1 up to 192, covering three orders of
magnitude. Therefore, as previously mentioned, a normalization process
was implemented.

Fig. 2 displays a Pearson correlation matrix that helps visualize the
correlation between the database variables. All ranges (− 1 to 1) are
shown in Fig. 3 (a) whereas Fig. 3 (b) includes only correlation co-
efficients with an absolute value higher than 0.5. It is worth noting that a
strong positive correlation is observed between chloride ion

concentration (CL− ) and the dependent variable of interest (Crate), as the
corresponding Pearson correlation coefficient has a value of 0.72. A
moderate to low correlation is observed between the rest of the inde-
pendent variables and the annual corrosion rate, Crate, all being positive
apart from pH.

Fig. 4 illustrates the pair plots as a series of scatterplots and histo-
grams of the variables compiled within the described database. From the
diagonal of this figure, only RH presents a clear normal distribution.
TOW distribution appears to be left-skewed, whereas that pH and the
precipitation are right-skewed. Moreover, T has sort of a uniform dis-
tribution and CL− an exponential distribution. Furthermore, there is a
lack of clear correlation between any of the environmental variables and
the annual corrosion rate, Crate. This is evidence of the complexity and
high nonlinearity characteristic of the corrosion phenomena, which
justifies the utilization of advanced ML algorithms to improve predict-
ability performance.

3.3. Evaluation metrics

To have a better understanding of the performance evaluation of the
different proposed regression and ML predictive models, a series of
statistical and graphical evaluation metrics were adopted [71,72]. The
graphical comparative illustration consists of the Taylor diagram (as a
global graphical indicator) and scatterplots (as a single graphical indi-
cator), while the comparative statistical indicators are included in
Table 2. Note that a single statistical indicator (e.g., RMSE, MAE, and R2)
only uses a relationship between the anticipated and measured values of
Crate, whereas a global indicator employs several single indicators (e.g.,
CI, U95, and Taylor diagram [73]). For a given model, higher values of
R2, WI, NSE, and CI indicate higher agreement between the predicted
and measured values, whereas lower values of RMSE, MAE, and U95
indicate a lower predicted error. Both RMSE and MAE values can range
from 0 to ∞, with 0 indicating a perfect fit to the data. R2 and WI vary
between 0 and 1, being 1 a perfect agreement while 0 a sign that the
model explains none of the variability observed in the response. NSE
could range between − ∞ and 1, where an efficiency of 1 corresponds to
perfect predictive performance, while an efficiency of 0 indicates that
the model predictions are as accurate as the mean of the observed data,
whereas a negative value occurs when the residual variance is larger
than the data variance.

Table 2
Performance metrics utilized to evaluate the behavior of the studied models.

Metric: statistical significance Equation Equation
#

Root Mean Square Error (RMSE): represent the stander error and used to compare the absolute deviation of various
models.

RMSE =
1
n
∑n

i=1

(
CAct

rate,i − CPre
rate,i

)2 (14)

Mean Absolute Error (MAE): represents a statistical measure used to estimate the average value of the absolute
deviation, where the sum of predicted and observed individual of the database are used.

MAE =
1
n
∑n

i=1

⃒
⃒
⃒CAct

rate,i − CPre
rate,i

⃒
⃒
⃒

(15)

Coefficient of determination (R2): used to determine the correlation for a fraction of the estimated and predicted
values. R2 = 1 −

∑n
i=1

(
CAct

rate,i − CPre
rate,i

)2

∑n
i=1

(
CAvg

rate − CPre
rate,i

)2

(16)

Confidence Interval (CI): is introduced to calculate and compare the performance of several models and calculated
using the product of two metrics

CI = WI× NSE (17)

Willmott’s Index of agreement (WI): used as a cross-comparison between models based on the standard error values. WI = 1 −
∑n

i=1

(
CAct

rate,i − CPre
rate,i

)2

∑n
i=1

(⃒
⃒
⃒CPre

rate,i − CAvg
rate

⃒
⃒
⃒+

⃒
⃒
⃒CAct

rate,i − CAvg
rate

⃒
⃒
⃒

)2

(18)

Nash–Sutcliffe Efficiency (NSE): indicates the model efficiency, whereas a goodness-of-fit measure is calculated
based on the error variance and observed variance. NSE = 1 −

∑n
i=1

(
CAct

rate,i − CPre
rate,i

)2

∑n
i=1

(
CAct

rate,i − CAvg
rate

)2

(19)

Uncertainty at 95 % (U95): indicates the 95 % confidence interval (1.96 standard errors). U95 = 1.96×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Standard deviation2 − RMSE2

√ (20)

CAct
rate,i : Actual value of the ith annual corrosion rate from the test result measurements.

CAvg
rate,i : Average value of the i th annual corrosion rate from the test result measurements.

CPre
rate,i : Predicted value of the i th annual corrosion rate from the test result measurements.
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4. Results and discussion

This section presents and discusses the modeling results based on the
performance evaluation of each predictive model. Additionally, the
discussion is expanded using SHAP results, which are graphically pre-
sented as force plots, global feature importance bar plots, and beeswarm
summary plots.

4.1. Performance evaluation using statistical metrics

4.1.1. Regression based predictive models
The statistical performance evaluation of the regression-based pre-

dictive models implemented in this study is presented in Table 3. This
includes the outcomes attained in the testing, training, and overall
phases—the latter of which consists of 30 % testing and 70 % training.
Additionally, two global metrics—CI and U95—as well as four single
statistical metrics—RMSE, MAE, NSE, and WI—are employed. The re-
sults show that the ENR model performs better for the training data
across all calculated statistical metrics (i.e. higher values of CI, NSE, and
WI, and lower values of RMSE, MAE, and U95). For the testing data, the
best-performing regression model in terms of RMSE, MAE, U95, and CI
was also the ENR. However, the MLR resulted in a higher WI value.
Similarly, the overall results show a better performance by the ENR
model for all statistical metrics apart from WI, where the MLR model

Table 3
Performance evaluation of the regression-based predictive models.

Phase Models RMSE MAE NSE WI CI U95

Training MLR 22.9910 16.3312 0.7583 0.6993 0.5303 46.1343
RR 23.5276 15.7075 0.7469 0.6413 0.4790 47.1070
LR 21.9105 15.2360 0.7805 0.6613 0.5162 43.8989
ENR 19.8590 14.3278 0.8197 0.7029 0.5761 39.6731

Testing MLR 29.4214 16.3912 0.3100 0.7694 0.2385 58.2252
RR 20.4419 14.4800 0.6669 0.6850 0.4568 40.5453
LR 18.8339 13.4275 0.7173 0.6701 0.4806 37.7432
ENR 18.2453 13.3103 0.7347 0.6819 0.5010 36.5653

Overall MLR 24.9201 16.3492 0.6239 0.7203 0.4428 49.7616
RR 22.6019 15.3392 0.7229 0.6544 0.4724 45.1385
LR 20.9875 14.6935 0.7615 0.6639 0.5055 42.0522
ENR 19.3749 14.0226 0.7942 0.6966 0.5536 38.7408

Fig. 5. Relative metrics performance comparison for the regression-based predictive models.

Table 4
Performance evaluation of the ML-based predictive models.

Phase Models RMSE MAE NSE WI CI U95

Training DT* 0.0000 0.0000 1.0000 0.7500 0.7500 0.0000
RF 9.5787 5.2450 0.9581 0.7138 0.6839 19.7700
XGB 1.6045 1.1450 0.9988 0.7466 0.7457 4.0103
ADB 11.0305 8.4924 0.9444 0.7349 0.6940 20.8970

Testing DT 37.9995 16.9968 − 0.1509 0.7774 − 0.1173 74.9782
RF 14.8763 10.9661 0.8236 0.6666 0.5490 29.7841
XGB 8.8579 6.7326 0.9375 0.7233 0.6780 18.3155
ADB 14.5620 12.1730 0.8310 0.7009 0.5824 25.9365

Overall DT 11.3998 5.0990 0.6547 0.7582 0.4898 22.4935
RF 11.1680 6.9613 0.9177 0.6997 0.6434 22.7743
XGB 3.7805 2.8213 0.9804 0.7396 0.7254 8.3019
ADB 12.0899 9.5966 0.9104 0.7247 0.6605 22.4088

*DT model showed over-fitting.
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provided the highest value. In general terms, the regression-based pre-
dictive models implemented in this paper show low adaptation to the
complexity of the database, indicating a relatively low performance to
predict Crate values.

The overall performance of the different models is subjected to a
relative comparison. The reference model is the ENR, which has been
identified as the best-performing regression model. The comparison is

performed through a relative percentage comparison, computed as
shown in Equation (21). Fig. 5 shows the relative metric performances of
the different regression-based predictive models in comparison to ENR.
Apart from the WI value obtained with the MLR model, (WIMLR was 3.4
% higher than WIENR) the ENR performed better than any other
regression model. The RMSEENR shows an improvement of 28.62 %,
16.66 %, and 8.32 % compared to the RMSEMLR, RMSERR and RMSELR

Fig. 6. Relative metrics performance comparison for the ML-based predictive models.

Fig. 7. Scatter plots for the regression models: (a) MLR, (b) RR, (c) LR, and (d) ENR.
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values, respectively.

Relative comparison=
(Comparisoni metric − Referencei metric)

Referencei metric
∗ 100 (21)

4.1.2. ML-based predictive models
The performance evaluation metrics for the ML-based predictive

models are presented in Table 4. According to the statistical metrics, the
DT model exhibited overfitting during the training phase, as evidenced
by a perfect fit between the predicted and measured data, which
significantly dropped during the testing phase. On the other hand, the
best-performing ensemble learning algorithm during both phases is the
XGB, as it provided the lowest values of RMSE, MAE, and U95 along with
the highest values of CI and NSE. XGB was surpassed by DT in terms of
WI. Similar comments can be made for the overall performance scenario
of the ML-based predictive models, as can be seen in the overall rows of
Table 4. According to the observed performance metric values, the DT
model yielded the lowest performance among the ML models, thus
indicating poor adaptability to solve the presented problem.

In general, the performance of the ML-based predictive models is
superior to that of the regression-based models. This claim is supported
by the comparatively lower RMSE, MAE, and U95 values provided by
the ML-based predictive models. On the other hand, in terms of WI, NSE,
and CI, the regression-based models were the ones with higher metric
values. The XGB was not only the best-performing ML predictive model
but the best-performing one among the entire variety of implemented
and assessed models. These results highlight the suitability of EL models
to be implemented in Crate prediction.

Fig. 6 shows the relative metric performances of the different ML-
based predictive models in comparison to XGB, which has been identi-
fied as the overall best-performing model. The XGB model performed

better than any other model in all different performance metrics, apart
from the WI value obtained with the DTmodel, (WIDT was 2.51 % higher
than WIXGB). The RMSEDT, RMSERF and RMSEADB were 202 %, 195 %,
and 220 % higher than the RMSEXGB value respectively. The XGB results
outperformed the best ML-model in the literature, proposed by Ben
Seghier et al. [46], in terms of RMSE and MSE by 3.5 times (RMSEBen
Seghier = 13.1837 μm/year) and 3.3 times (MAEBen Seghier = 9.3932
μm/year), respectively.

4.2. Performance evaluation using graphical metrics

The performance of the different predictive models is visually
assessed using scatter plots and Taylor diagram plots [73], in which the
first presents the degree of agreement, while the second illustrates the
degree of correspondence between the predicted and measured. Such
diagrams present in a single plot three statistics, namely, correlation
coefficient (R), RMSE, and standard deviation (σ), which allow for a
straightforward visual comparison of the predictive model’s perfor-
mance (the closer a model’s marker is to the reference point, the higher
the model’s performance is).

4.2.1. Regression-based predictive models
Fig. 7 presents the scatter plots, including regression lines, and cor-

responding R2 values of the different employed regression models, both
for the training and testing sets. From these plots, it can be observed that
the ENR has the highest performance, where it resulted in the highest R2

values during the training (0.824) and testing (0.742) phases. The high
performance of the ENR model could be explained by the fact that this
regression technique combines both advantages of LR and RR methods,
thus addressing the limitations of each approach. The performance of

Fig. 8. Scatter plots for the ML models: (a) DT, (b) RF, (c) ADB, and (d) XGB.

A. Jimenez Rios et al. Results in Engineering 23 (2024) 102723 

10 



the regression-based predictive models could be ranked as ENR > LR >

RR > MLR in terms of R2. Apart from the relatively poor predictive re-
sults of the other regression models, another significant limitation to
note is that these models produced negative values for the annual
corrosion rate (this is particularly visible for MLR). This is illustrated by

the dots plotted below the horizontal axis, near the origin, which bear no
physical significance. Therefore, the use of these models could lead to
misleading values for the annual corrosion rate, Crate.

Fig. 9. Taylor diagram plots for: Regression-based predictive models: (a) training and (b) testing, ML-based predictive models (c) training and (d) testing, All
predictive models during (e) training and (f) testing phases.
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4.2.2. ML-based predictive models
Similarly, the scatter plots for the ML-based predictive model are

plotted in Fig. 8. Overall, the R2 values of all these models is higher than
those of the regression-based predictive models. It can be observed that
DT achieved perfect agreement during the training phase with R2 = 1
indicating overfitting as the R2 value during the testing phase is 0.38,
which is the lowest among all models. The EL model with the highest
performance is XGB, which provided R2 values of 0.999 and 0.941 for
the training and testing phases, respectively. As a result, the perfor-
mance of the ML models can be ranked as follows: XGB > ADB > RF >

DT. In addition to their already discussed superior performance, it’s
notable that EL models never produce negative values for the annual
corrosion rate, Crate under any conditions, thereby maintaining the
physical significance of the required predictive task. The XGB out-
performed the ADB, RD, and DT models in terms of R2 prediction, by
4.88 %, 4.42 %, and 17.07 %, respectively. Furthermore, the results are
improved by 2.9 % compared to the best ML-model in the literature,
proposed by Ben Seghier et al. [46].

4.2.3. Global evaluation
A more holistic way of visually comparing the model’s performance

evaluation is through Taylor diagram plots. Fig. 9 (a) and (b) present the
Taylor diagrams of the regression-based predictive models. It can be
observed that for both the training and the testing phases, the ENR
model is the nearest to the observed data location. Fig. 9 (c) and (d)
show the Taylor diagrams of the ML-based predictive models. It can be
claimed that although both DT and XGB practically overlap close to the
observed data point for the training phase, the XGB model outperforms
all other ML models during the testing phase. Finally, both regression
and ML predictive models’ performance can be observed in Fig. 9(e) and
(f), which confirms the outperformance of the XGB model compared to
all other investigated models in this study.

4.3. SHAP-based results

A SHAP analysis was conducted to improve the model interpret-
ability and boost the level of trust in the reported results. This investi-
gation focused on the XGB model, which was determined to be the best-
performing model among the examined approaches. The SHAP force
plots for the XGB model are presented in Fig. 10, which provide a visual
representation of the SHAP values using an additive force layout. In

these plots, red regions indicate parameters that increase the prediction
towards the model output when included, while blue regions signify a
decrease towards the output prediction when incorporated. This plot is
effective at illustrating how the model reached its decision. In Fig. 10 it
can be observed that TOW, RH and T contribute to increasing the pre-
dictive output values of the XGB model, while CL− , pH, and P reduced
the prediction values. Moreover, it can be argued that the feature with
the greatest contribution is CL− , followed by T and pH. This statement is
supported by the length of the bar assigned to each of the features
represented in the horizontal scale. The final accumulated output value,
based on the feature values shown in the figure, resulted in an annual
corrosion rate, Crate = 25.70 μm/year.

In Fig. 11 (a) the global importance of each feature is determined by
calculating the mean absolute value across all provided samples. CL−
emerges as the most influential parameter, aligning with the findings of
Pearson correlation analysis. The parameters that follow in importance
after CL− are T and TOW. In Fig. 11 (b), an information-rich summary
illustrates how the top features in the dataset influence the model’s
output. Each instance of the provided explanation is depicted by a single
dot on each feature row. The horizontal position of the dot is determined
by the SHAP value of that feature, with dots accumulating along each
feature row to demonstrate density. Color is used to display the original
value of a feature. For instance, points with negative SHAP values of CL−

suggest a lower likelihood of corrosion occurrence. By default, the fea-
tures are ordered using the mean absolute SHAP value for each feature.
However, this order prioritizes broad average impact over rare but high-
magnitude impacts. To identify features with significant impacts for
individual instances, sorting by the max absolute value is recommended.
As can be observed, increasing the selected values results in a significant
acceleration of the corrosion process, with CL- having the biggest in-
fluence (red dots on the right side), followed by T and TOW. An
intriguing point is that an increase in pH would result in decreased
corrosion acceleration, which is consistent with experimental in-
vestigations, where corrosion tends to be higher in an acidic environ-
ment rather than in an alkaline environment [74].

Fig. 12 represents the dependence scatter plots, which demonstrate
the effect of a single feature on the model’s predictions as a function of
other feature values, also known as interaction effects, with each dot
representing a single prediction (row) from the dataset. The x-axis in-
dicates the value of the feature, whereas the left y-axis represents its
SHAP, indicating how much knowing that feature’s value influences the

Fig. 10. SHAP force plot based on the XGB model.

Fig. 11. SHAP plots for the XGB model: (a) Global feature importance bar plot, and (b) Beeswarm summary plot.
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model’s output for that sample’s prediction. To illustrate the interaction
effects, dots are colored based on a second feature value (right y-axis).
As it is not possible to identify a distinct vertical pattern of coloring in
any of the subfigures, it can be stated that based on the SHAP interaction
effects of the analyzed features, there is no significant interaction impact
between the used variables. This observation does not imply a negative
outcome or render the SHAP analysis ineffective; rather, it indicates the
absence of evident interaction based on the SHAP values. Nonetheless,
the effect of individual parameters remains visible in Fig. 11, as previ-
ously discussed.

5. Conclusions

Predicting the annual corrosion rate in suspension bridge main ca-
bles presents a multidimensional challenge characterized by intricate,
nonlinear dynamics with chaotic patterns and stochastic behavior. In
this study, we evaluated the efficiency of various ML models—namely,
decision tree (DT), random forest (RF), adaptive boosting (ADB), and
extreme gradient boosting (XGB), in predicting the annual corrosion
rates. In addition, the performance of these models was benchmarked
against four traditional regression methods, namely, Multiple Linear
Regression (MLR), Ridge Regression (RR), Lasso Regression (LR), and
Elastic Net Regression (ENR). The analysis leveraged a comprehensive

Fig. 12. Dependence scatter plots with interaction effects for the XGB model: (a) CL− and T, (b) pH and T, (c) P and TOW, (d) TOW and CL− , and (e) RH and T.
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database comprising 309 measurements of annual corrosion rates of
carbon steel specimens, recorded across diverse atmospheric conditions,
and tested in 33 different countries over the course of a year. The per-
formance of these models was then evaluated using various metrics,
with the best model explained using the SHAP approach. The key find-
ings derived from the acquired results are summarized as follows.

• Regression-based models exhibit limited flexibility in predicting
Crate. ENR had the best performance in this category, with an overall
RMSE of 19.3749 μm/year, CI of 0.5536, and R2 of 0.799. ENR
increased prediction outcomes by 28.62 %, 16.66 %, and 8.32 % in
terms of RMSE when compared to MLR, RR, and LR, respectively.

• EL-based predictive models outperformed regression models while
maintaining physical integrity and predicting only positive Crate.
However, the DT model demonstrated a significant overfitting issue.

• XGB emerged as the top-performing model, achieving an impressive
overall R2 value of 0.982, an RMSE of 3.7805 μm/year, and a CI of
0.7254. The XGB outperformed the ADB, RD, and DTmodels in terms
of R2 prediction, by 4.88 %, 4.42 %, and 17.07 %, respectively.
Furthermore, the results are improved by 2.9 % compared to the best
ML-model in the literature, proposed by Ben Seghier et al. [46].

• The SHAP analysis enhanced the interpretability of the XGB model’s
output and bolstered confidence in the reported results. The SHAP
findings highlight the impact of CL- on the Crate as the factor with the
highest influence during the XGB modeling. Additionally, all input
variables displayed a proportional relationship with increasing Crate,
except for pH, which exhibited a disproportional impact.

• Finally, as no distinct vertical patterns of coloring were identified in
the SHAP dependence scatter plots, it can be stated that the SHAP
interaction effects of the analyzed features were negligible.

The consistent outcomes underscore the potential of EL approaches
in addressing the intricate task of predictive modeling for the annual
corrosion rate in suspension bridge main cables, especially when
leveraging the XGB model. This model can be seamlessly incorporated
into an interface to aid end users, such as operational engineers, in
predicting and assessing corrosion. However, it is crucial to highlight the
significance of data size and scale in any modeling endeavor employing
ML models. This latter present the main current limitation for all data-
driven methodologies. This means that the accuracy of the framework
will be heavily dependent on the amount and quality of the data upon
which it is implemented. Furthermore, the developed model can only be
used within the explored design space covered by the range of values of
the adopted parameters. Thus, results obtained from extrapolations to
different values on the input parameters beyond the ones contained
within the database used must be carefully interpreted. One strategy to
circumvent this constraint is to use deep learning (DL) algorithms like
Generative adversarial network (GAN) to generate more data based on
expert and physical guidance from the field, which can then be com-
bined with other DL techniques to produce more generalizable models in
the future.
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