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Abstract
With the proliferation of fifth-generation (5G) mobile communication wireless networks, 
the investigation into the performance of physical layer secrecy is increasingly becoming 
the center of attention of recent studies. Physical layer security (PLS) is the pivotal notion 
of enhancing the secrecy of mobile communication wireless networks against eavesdrop-
ping by utilizing the intrinsic randomness of the wireless channel. In this study, we focus 
on the information-theoretic secrecy perspective in which authorized users convey their 
information to each other through a quasi-static channel and adversary users are obtain-
ing this secret information through illegitimate wiretap quasi-static channel, where it is 
assumed that all the channels are represented as double shadowed Rician distributed. In 
this context, analytical solutions for the expressions of various physical layer secrecy met-
rics include the strictly positive secrecy capacity (SPSC) and the lower bound on secure 
outage probability (SOPL) are procured in closed-form. In addition, another physical layer 
secrecy metric, i.e., average secrecy capacity (ASC) is also investigated and determined 
in analytical closed-form. The effect of double shadowing on the performance of PLS is 
investigated. It is found that severer shadowing improves the secrecy performance. Our 
results also show that the legitimate users can communicate secretly when the legitimate 
channel link is superior to illegitimate channel link.
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1  Introduction

Recently, physical layer security (PLS) of fifth-generation (5G) enabled mobile com-
munication wireless networks have captivated considerable research attention since 
these approaches make wireless communication more invulnerable against eavesdrop-
ping without relying on different conventional encryption algorithms such as advanced 
encryption standard (AES), twofish encryption algorithm, blowfish encryption algo-
rithm, and Rivest–Shamir–Adleman (RSA) [1–5]. Unlike these conventional algorithms, 
PLS is an information-theoretic based approach which exploits the intrinsic random 
behavior of wireless channels to provide secure communication in the strictest form. 
Numerous works exist that explore the secrecy performance of PLS in diverse small-
scale fading scenarios such as Rayleigh, Nakagami-q, Rician, Weibull, α-µ and κ-µ, etc. 
in [6–11]. On the other hand, none of these traditional fading conditions characterize 
the new emerging mobile communication wireless networks scenarios such as Internet 
of Things (IoT), indoor-to-outdoor propagation, Ultra-dense networks, body area net-
works, and device-to-device (D2D) communication [12–14]. It is found in recent litera-
ture that these applications utilize long-term wireless medium that may be impacted by 
the shadowing. Hence, various works have been devoted to examining the behavioral 
performance of PLS over composite multipath/shadowed fading channels.

The repercussions of fading parameters on the performance of secure transmis-
sion through composite multipath/shadowed fading was studied in [15–20]. Lei et  al. 
[15] anatomized the PLS performance of wireless systems in generalized-K (GK) fad-
ing channels. They derived closed-form solutions for the expressions of various PLS 
metrics, including average secrecy capacity (ASC), strictly positive secrecy capacity 
(SPSC), and secure outage probability (SOP) by using mixtures of gamma (MG) distri-
bution. Further, this work was extended in [16]. The authors modelled the instantaneous 
signal-to-noise ratio (SNR) of legitimate users’ channel and eavesdropper’s channel as 
MG distributed. In [17], SOP, SPSC, and ASC were determined with help of Meijer-G 
function for correlated Nakagami-m/Gamma fading channels. This Meijer-G function is 
defined by using Mellins-Bernas’ integral representation. A similar analysis for Fisher-
Snedecor F fading conditions was presented in [18]. Ai et al. [19] analyzed the secure 
communication for PLS over double shadowed Rician fading channels. They derived 
SOP and SPSC expressions in closed-form using moment generating function (MGF) 
method. In [20], the authors studied secrecy characteristics for PLS over composite 
Weibull/lognormal fading channels with diversity analysis. They derived the PLS met-
rics for both the scenarios such as single eavesdropper and two eavesdroppers.

Recently, Simmons et al. [21] have developed a new comprehensive and unified fad-
ing distribution, called double shadowed Rician distribution. This unified fading dis-
tribution encompasses different fading models such as Rayleigh, Rician, Nakagami-q, 
shadowed Rician, and shadowed Rayleigh. This double shadowed Rician fading model 
comes from the scenarios where a Rician fading channel encounters double shadowing, 
which is resulted due to the combined effect of the line-of-sight (LOS) and the com-
posite components. This fading distribution is very useful to model the scenario, where 
SNR of the channel link between transmitter and receiver follows varying shadowing 
levels, while the secondary round of shadowing is resulted because of moving obstacles. 
Moreover, this distribution is potentially suitable for modelling the channels in under-
water acoustic communication, high-speed train communication and land mobile satel-
lite systems.
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Motivated by the recent advances in security issues in mobile communication wireless net-
works and aiming at investigating secure performance metrics include the SOP, SPSC, and 
ASC for analyzing PLS performance, we adopt a double shadowed Rician fading channel 
model for legitimate users’ and eavesdropper’s channels. In this paper, physical layer secrecy 
of double shadowed Rician fading environments is investigated and the expressions for dif-
ferent PLS performance metrics, including SOP, SPSC, and ASC are derived in closed-form 
using information-theoretic formulation based Wyner’s wiretap model.

The remnant of this work is composed in the following manner. In Sect. 2, the channel and 
system model contemplated in this study is reviewed. In Sect. 3, the novel expressions for PLS 
metrics, including SOP, SPSC, and ASC are derived in closed-form. In Sect. 4, the obtained 
results are demonstrated with detailed discussion. Finally, Sect. 5 fruitions this work with con-
cluding remarks.

2 � Channel and System Model

In this study, we are considering single-input-single-output (SISO) mobile communication 
wireless network model illustrated in Fig.  1, which includes legitimate mobile source (A), 
legitimate destination (B), and illegitimate mobile eavesdropper (E). A is trying to communi-
cate secretly with B in the presence of E, which is trying to hear the secret information through 
eavesdropper’s channel. In order to investigate the secrecy performance of the system under 
consideration, it is supposed that all communicating channels are subject to double shadowed 
Rician fading. The definitions of the parameters with their notations are provided in Table 1. 
If 1received signals at B and E are denoted by rM and rE , respectively, then, rM and rE can be 
written as

(1)rM(t) = hM(t)s(t) + nM(t)

(2)rE(t) = hE(t)s(t) + nE(t)

Legitimate User (A)

Legitimate User (B)

Eavesdropper (E)

Eve’s Channel

Main Channel

Fig. 1   Mobile communication single-hop wireless network model
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where hi(t) is representing the coefficients of quasi-static (i.e. hi(t) = hi  ∀i ) double shad-
owed Rician fading channel between A and B (or A and E), i ∈ (M,E) . nM(t) and nE(t) 
represent the complex Gaussian noise at B and E with E

[
NM

]
= E

[
NE

]
= 0 , E

[
NM

]
= �2

M
 , 

and E
[
NE

]
= �2

E
.

The corresponding SNR’s at B and E are given by �M and �E , respectively. The probability 
density functions (PDFs) of �M and �E can be expressed as [22],

By using [23], (3) can also be expressed as

which can be expressed in Meijer’s G-function representation with the help of equations in 
[24, Eq. (8.4.2.5)] and [24, Eq. (8.2.2.15)] as

where

Also, the corresponding cumulative distribution functions (CDFs) can be obtained from (5) 
as
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Table 1   Notations for parameters Parameters Description

b Representing subscript b ∈ {M,E}

(a)n Pochhamer symbol [23, Eq. (06.10.02.0001.01)]
ms Fading parameters of inverse Nakagami-m
md Fading parameters of Nakagami-m
k Rician parameter
Gm.n

p,q
(⋅) Meijer’s G-function [24, Eq. (8.2.1.1)]

G
m.n∶r,s∶w,x
p,q∶t,u∶y,z [⋅] Extended generalized bivariate Meijer-G func-

tion [EGBMGF] [25, Eq. (1)]
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where

In order to highlight the critical insights, the asymptotic CDF can be derived from (7) 
using [39, (07.34.06.0006.01)] as

3 � Secrecy Capacity Analysis

Here, the exact analytical expressions of secrecy performance metrics for PLS, including 
lower bound of SOP (SOPL), SPSC, and ASC are derived. For the sake of analysis, it is 
presumed that transmitter has full channel state information (CSI) of legitimate receiver 
and adversary receiver to ensure perfect secrecy. If the legitimate transmitter has full CSI of 
both the channel links, then the channel capacities can be estimated as CM = log2(1 + �M) 
and CE = log2(1 + �E) for the main channel and eavesdropper’s channel, respectively. For 
one realization pair of SNRs 

(
�M , �E

)
 , the secrecy capacity,CS , of quasi-static wiretap chan-

nel can be defined from [5] as

3.1 � SOP Analysis

The SOP is one of the useful PLS performance metrics and defined as a probability, which 
is defined for the event when instantaneous secrecy capacity fewer than the predetermined 
secrecy rate, RS ≥ 0 . Therefore, SOP can be formulated mathematically as [6]

where �th is denoting the threshold SNR. In terms of �th , RS can be expressed as 
RS = log2(1 + �th).

Using basic probability theory, (11) can be formulated as
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The solution of integral in (13) seems not to be obtainable in closed-form due to the 
complexity. Therefore, we focus on deriving the lower bound of SOP in this paper. SOPL 
can be expressed from [6, Eq. (15)] as follows

Now, (12) can be rewritten for SOPL as

On substitution of (5) and (7) into (15), the expression of SOPL is given as

The solution of resultant integral in (16) can be procured with the help of [26, 
Eq. (7.811.5)] as

Although the expression in (17) is obtained in terms of infinite series, the final results 
converge quickly for finite values of 
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}
 . This can be justified from the numeri-

cal results in Fig. 1. In order to reveal the behavior of SOPL, the asymptotic expression of 
SOPL at high SNR �M → ∞ is derived by substituting (5) and (9) into (15) and using the 
[23, Eq. (07.34.21.0009.01)] as

Additionally, the secrecy diversity order (SDO) of the proposed system can be evaluated 
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As discussed in Sect. 1, the double shadowed Rician distribution includes other well-
known fading distributions. The values of the fading parameters i.e., 

{
ms,md, k

}
 for the 

special cases of double shadowed Rician distribution are provided in Table 2. Thus, the 
SOPL in (17) can be reduced to the special case of Rayleigh fading condition as

with the help of [24, Eqs.  (8.2.2.8) and  (8.2.2.9)] and [23, Eqs.  (07.34.25.0005.01) and 
(07.34.25.0007.01)] by setting 
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}
 in (17). It is noteworthy that 

the derived expression in (19) is similar to the SOPL in [28, Eq. (9)].
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3.2 � SPSC Analysis

The SPSC is an indispensable paradigm on the PLS secrecy performance, which can 
be defined using (14) as 1 − Pout(0) . The SPSC refers to the probability which can be 
calculated for the scenario when positive secrecy capacity, i.e.,CS > 0 is achieved. The 
expression of SPSC can be evaluated by substituting �th = 0 into (17) as

3.3 � ASC Analysis

According to [20], the ASC can be written from (9) as CS = I1 + I2 − I3 , where

On substituting (5) and (7) into (21), we obtain

To obtain the solution of (24), we express log2 (⋅) in Meijer-G representation using 
[24, Eq. (8.4.6.5)], then using the following integral from [23]
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Table 2   Fading parameters for 
special cases of double shadowed 
Rician distribution

Fading parameters Fading models

ms → ∞ md k Shadowed Rician
ms → ∞ md → 0 k Shadowed Rayleigh
ms → ∞ md → 0.5 k Nakagami-q
ms → ∞ md → ∞ k Rician
ms → ∞ md → ∞ k → 0 Rayleigh
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we have integral I1 in closed-form as

Similarly, I2 can be obtained by replacing msM
,mdM

,kM and �M  in (26) with msE
,mdE

,kE and 
�E and vice-versa, as

Furthermore, the integral I3 can be rewritten by substituting (5) into (23) as

which can be simplified by expressing log2 (⋅) in Meijer-G representation from [24, 
Eq. (8.4.6.5)] and using following integral from [23]

we obtain I3 in a closed-form as

Finally, by substituting I1 , I2 and I3 into the expression of CS , ASC can be evaluated 
straightforward.

4 � Numerical Results
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capacity of the system even by increasing the average SNR of the main channel. It is also 
noted that the increasing �M  provides sufficient improvement in the secrecy performance 
for a fixed value of RS . This is because increasing �M  improves the quality of the main 
channel and result in a higher secrecy capacity. In addition, the tightness of the derived 
results can be observed by the perfect match between asymptotic results with the analyti-
cal results at the high SNR regime. Moreover, the SOPL is also compared with the result in 
[28] to show the consistency of the derived results.

Figure 3 illustrates the consequences of 
{
ms,md

}
 on the lower bound on SOP for dif-

ferent scenarios. It is pronounced from the analytical results shown in Fig. 3 that superior 
main channel 

(
𝛾M > 𝛾E

)
 provides better secrecy with compared to superior eavesdropper’s 

channel 
(
𝛾M < 𝛾E

)
 . The reason for this behavior is that a higher value of �M  improves the 

Fig. 2   SOPL versus �
M

 when 
m

s
= 1.7 , m

d
= 1.3k = 1.2 , and 

�
E
= 2dB

Fig. 3   SOPL versus 
{
m

s
,m

d

}
 

when k = 3.2 and �
th
= 2dB



2308	 R. Singh et al.

1 3

quality of the main channel, which results in an enhanced capacity of the main channel, 
while the higher value of �E improve the quality of the wiretap channel and results in a 
higher capacity of eavesdropper’s link. It can also be noticed that low values of multiplica-
tive shadowing parameter ms can enhance secrecy. This is because, in severe shadowing, 
the legitimate users can communicate secretly in comparison to the low fading regime. 
This observation is summarized in Table 3.

Figure 4 shows the lower bound on SOP against 
{
�M , �E

}
 under different double shad-

owing Rician fading conditions. As anticipated, an increasing average SNR �M  leads 
to deterioration in the security performance in context of the SOPL, whereas increas-
ing average SNR �E is incremental to the security performance. It is also observed 
that the greatest SOPL occurs for low values of multiplicative shadowing param-
eter ms , when compared to the LOS shadowing parameter md . For example, the SOPL 
observed when 

{
ms,md, k

}
= {2.5, 1.5, 3.2} is 0.1569 , while the SOPL observed when {

ms,md, k
}
= {1.5, 2.5, 1.2} is 0.0625 . This result is presented in Table 4. To obtain fur-

ther intuitions, Fig. 4 includes the SOPL for Rayleigh fading channels as a special case of 
double shadowed Rician fading channels. It is obvious to note that the profile of SOPL for 
Rayleigh fading channels is similar to SOPL for double shadowed Rician fading channels.

Figure  5 demonstrates the behavior of SPSC for various scenarios versus shadowing 
parameters 

{
ms,md

}
 . As expected, it can be noticed that superior main channel 

(
𝛾M > 𝛾E

)
 

provides an improvement in the SPSC, whereas deterioration in the SPSC can be observed 
for superior eavesdropper’s channel 

(
𝛾M < 𝛾E

)
 . The reason for this behavior is similar, as 

Table 3   Lower bound on SOP {
ms,md

}
= {2.5, 1.5}(

𝛾M > 𝛾E

)
{
ms,md

}
= {2.5, 1.5}(

𝛾M < 𝛾E

)
0.2023 0.5877{
ms,md

}
= {1.5, 2.5}(

𝛾M > 𝛾E

)
{
ms,md

}
= {1.5, 2.5}(

𝛾M < 𝛾E

)
0.2542 0.6759

Fig. 4   SOPL versus 
{
�
M
, �

E

}
 

when �
th
= 2dB
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discussed in Fig. 3. The result also shows that decreasing multiplicative shadowing parameter 
ms improves the SPSC. This is because a lower ms represents severe shadowing conditions 
resulting from the obstacles moving in the vicinity of either transmitter or receiver. Under 
the severe shadowing conditions, it becomes difficult for the eavesdropper to overhear secure 
communication between the intended users. This observation is consistent with the results in 
[20]. Similarly, one can also find the greatest SPSC for severe shadowing of LOS components 
(low values of md).

Figure 6 depicts the ASC versus for various values of 
{
�M , �E

}
 . It is demonstrated from 

the result that the behavioral performance of ASC improves as the average SNR �M increases, 
whereas the behavioral performance of ASC deteriorates as the average SNR �E increases. 
This is because the secrecy capacity depends on the channel capacities of the main channel 
and the eavesdropper’s link. The channel capacities of the main channel and eavesdropper’s 
link is higher and lower, respectively, for the higher �M and lower �E , respectively. This means 
that the difference between the two capacities (i.e., main channel and eavesdropper’s link) is 
enhanced and hence the secrecy capacity is improved. This observation can be justified from 
(10).

Table 4   Lower bound on SOP {
ms,md , k

}
= {2.5, 1.5, 3.2}{

�M , �E

}
= {15dB, 5dB}

{
ms,md , k

}
= {2.5, 1.5, 3.2}{

�M , �E

}
= {5dB, 15dB}

0.1559 0.7036{
ms,md , k

}
= {1.5, 2.5, 1.2}{

�M , �E

}
= {15dB, 5dB}

{
ms,md , k

}
= {1.5, 2.5, 1.2}{

�M , �E

}
= {5dB, 15dB}

0.0625 0.3368

Fig. 5   SPSC versus 
{
m

s
,m

d

}
 

when k = 3.2 and �
th
= 0dB
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5 � Conclusion

In this study, we have analyzed the secure transmission for PLS of a single-hop mobile com-
munication wireless network over double shadowed Rician fading channels in the presence 
of an eavesdropper for the first time. In particular, we have derived novel solutions for the 
expressions of different PLS metrics, including SOPL, SPSC, and ASC. It was shown that 
double shadowing has a significant impact on secrecy performance. Specifically, the results 
demonstrated that a superior main channel improves the PLS secrecy performance. Further-
more, it was found that severe shadowing conditions enhance PLS secrecy performance.
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