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A B S T R A C T

To understand the real world using various types of data, Artificial Intelligence (AI) is the most used technique
nowadays. While finding the pattern within the analyzed data represents the main task. This is performed
by extracting representative features step, which is proceeded using the statistical algorithms or using some
specific filters. However, the selection of useful features from large-scale data represented a crucial challenge.
Now, with the development of convolution neural networks (CNNs), feature extraction operation has become
more automatic and easier. CNNs allow to work on large-scale size of data, as well as cover different scenarios
for a specific task. For computer vision tasks, convolutional networks are used to extract features and also for
the other parts of a deep learning model. The selection of a suitable network for feature extraction or the other
parts of a DL model is not random work. So, the implementation of such a model can be related to the target
task as well as its computational complexity. Many networks have been proposed and become famous networks
used for any DL models in any AI task. These networks are exploited for feature extraction or at the beginning
of any DL model which is named backbones. A backbone is a known network trained and demonstrates its
effectiveness. In this paper, an overview of the existing backbones, e.g. VGGs, ResNets, DenseNet, etc, is given
with a detailed description. Also, a couple of computer vision tasks are discussed by providing a review of
each task regarding the backbones used. In addition, a comparison in terms of performance is also provided,
based on the backbone used for each task.
1. Introduction

Artificial intelligence is one of the most research topics dedicated
to understanding the real world from various types of data. For time
series data, the classification, recognition of patterns, and then making
decisions become easier using AI techniques [1]. On image/video data,
the processing purpose is to detect or recognize an object, classify
the behaviors of a person, analyze and understand a monitored scene,
prevent abnormal actions in an event, etc. This is performed using
different features which are used to improve the performance of each
task. These features are exploited by various techniques starting from
traditional statistical methods, passing by neural networks and deep
learning, to deep reinforcement learning.

Before, Statistical-based methods were suffering from the finding
of patterns, due to the different scenarios of a task, the variation of
different aspects, and the data content that should be analyzed. With
Machine learning (ML) techniques most of these challenges still exist
but learning from various features leads to an improvement in terms of
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performance. Due to the large-scale datasets that need to be analyzed,
ML algorithms cannot process these among of data which prohibits
the analyzing of a set of situations that can be contained in it. With
the introduction of deep learning techniques including convolutional
neural networks (CNNs), the processing of large-scale datasets becomes
doable [2]. Also, automatic learning from a large set leads to good
learning from a large-scale of features. Nowadays, the use of deep
learning models and the combination of deep learning and Reinforce-
ment learning (RL) techniques, which is known under the name of
Deep Reinforcement Learning (DRL), lead to a real improvement. While
Reinforcement learning (RL) is one of the modern machine learning
technologies in which learning is carried out through interaction with
the environment and allows taking into account the results of decisions
and further actions based on solutions of corresponding tasks [3].
With DL and DRL, data analysis overcomes many challenges with the
possibility to learn from large-scale datasets as well as the processing
of different scenarios which can lead to generic learning, then robust
vailable online 7 June 2024
574-0137/© 2024 Published by Elsevier Inc.

https://doi.org/10.1016/j.cosrev.2024.100645
Received 6 September 2021; Received in revised form 4 April 2024; Accepted 23 M
ay 2024

https://www.elsevier.com/locate/cosrev
https://www.elsevier.com/locate/cosrev
mailto:elharrouss.omar@gmail.com
mailto:omar.elharrouss@uaeu.ac.ae
mailto:younes.akbari@qu.edu.qa
mailto:akbari_younes@yahoo.com
mailto:n.alali@qu.edu.qa
mailto:S_alali@qu.edu.qa
https://doi.org/10.1016/j.cosrev.2024.100645
https://doi.org/10.1016/j.cosrev.2024.100645
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2024.100645&domain=pdf


Computer Science Review 53 (2024) 100645O. Elharrouss et al.
Fig. 1. AlexNet architectures.

methods that can work in different environments [4]. For computer vi-
sion tasks, features are extracted using different convolutional networks
(backbones), while the processing of images/videos can be reached
with multi-task learning that can handle scale variations, positions of
objects, low resolutions, etc.

In the literature, there is a lack of papers that compare the proposed
feature extraction networks for deep-learning-based techniques. The
previous works in like in [24,25] provide a broader exploration of
deep learning (DL) as the gold standard in machine learning (ML),
including the techniques used, challenges, and applications across var-
ious domains. While, this work we focused on the solutions used for
feature extraction as well as the development of each model based on
the limitations compared with the others for the same purpose. For
computer vision tasks, the choice of a suitable network (Backbone)
for feature extraction can be costly, due to the fact that some tasks
are used specific backbones and not suitable for others. In this paper,
we attempted to collect and describe various existing backbones used
for feature extraction. Presenting the specific backbones used for each
task is provided also. For that, a set of backbones are described in this
paper including AlexNet, GoogleNet, VGGs, ResNet, Inceptions, Xcep-
tion, DenseNet, Inception-ResNet, ResNeXt, SqueezeNet, MobileNet,
EfficientNet, and many others. Some of the computer vision tasks that
used these backbones for feature extraction have also been discussed
such as image classification, object detection, face recognition, panoptic
segmentation, action recognition, etc. Accordingly, this paper presents
a set of contributions that can be summarized as follows:
2

Table 1
Summarization of crowd counting methods.

Backbone Year # of
parameters

Trained task

AlexNet [5] 2012 60M Img-class
VGG-16 [6] 2014 138M Img-class
VGG-19 [6] 2014 144M Img-class
ResNet-18 [7] 2015 11.7M Img-class
ResNet-34 [7] 2015 25.6M Img-class
ResNet-50 [7] 2015 26M Img-class
ResNet-101 [7] 2015 44.6M Img-class
ResNet-152 [7] 2015 230M Img-class
Inception-V1 (GoogleNet) [8] 2014 5M Img-class
Inception-v2 [9] 2015 21.8M Img-class
Inception-v3 [9] 2015 21.8M Img-class
Inception-ResNet-V2 [10] 2015 55M Img-class, obj-det
Darknet-19 2015 [11] 2015 20.8M Obj-det
Xception [12] 2017 22.9M Img-class
SqueezeNet 2016 [13] 2016 1.24M Img-class
ShuffleNet [14](g = 1) 2017 143M Img-class, obj-det
ShuffleNet-v2[15] (g = 1) 2018 2.3M Img-class, obj-det
DenseNet-100 (k = 12) [16] 2018 7.0M Img-class
DenseNet-100 (k = 24) [16] 2018 27.2M Img-class
DenseNet-250 (k = 24) [16] 2018 15.3M Img-class
DenseNet-190 (k = 40) [16] 2018 25.6M Img-class
DetNet [17] 2018 – Img-class, obj-det
EfficientNet B0-B7 [18] 2020 5.3M–66M Img-class, obj-det
MobileNet [19] 2017 4.2M Img-class, obj-det
MobileNet-v2 [20] 2017 3.4M Img-class, obj-det
WideResNet-40-4 [21] 2016 8.9M Img-class, obj-det
WideResNet-16-8 [21] 2016 11M Img-class, obj-det
WideResNet-28-10 [21] 2016 36.5M Img-class, obj-det
SWideRNet (𝑤1 = 0.25, 𝑤2 =
0.25, 𝑙 = 0.75) [22]

2020 7.77M Panoptic-seg

SWideRNet (𝑤1 = 1, 𝑤2 = 1,
𝑙 = 1) [22]

2020 168.77M Panoptic-seg

SWideRNet (𝑤1 = 1, 𝑤2 = 1,
𝑙 = 6) [22]

2020 836.59M Panoptic-seg

SWideRNet (𝑤1 = 1, 𝑤2 =
1.5, 𝑙 = 3) [22]

2020 946.69M Panoptic-seg

HRNet W32, W48 [23] 2019 28.5M,
63.6M

Human-Pose- est

HRNet V2 [23] 2020 – Semantic-seg

• Presentation of various networks used as backbone for deep learn-
ing (DL) and Deep Reinforcement Learning (DRL) techniques.

• An overview of some computer vision tasks based on the back-
bones used.

• Evaluation and comparison study of each task based on the
backbone used.

• Summarization of the most backbones used for each task.
• Presentation of deep learning challenges as well as some future

directions.

The remainder of this paper is organized as follows. An overview
of the existing backbones is presented in Section 2. The computer
vision tasks that used these backbones are presented in Section 3.
Comparison and discussion of each task according to the backbone used
in Section 4. Challenges and future directions are provided in Section 5.
The conclusion is provided in Section 6.

2. Backbone families

feature extraction is the main step in data analysis domains. Before
the feature extraction was provided using statistical algorithms or some
filter applied to the input data to be used in the next processing steps.
With the introduction of machine and deep learning (DL) techniques,
the use of neural networks makes a revolutionary evolution in terms of
performance and the number of data that can be processed. Then, the
development of convolution neural networks (CNNs) makes the work
on the large-scale size of data possible and is also used for feature
extraction. The selection of a CNN network for feature extraction or the
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Table 2
Summarization of crowd counting methods.

Backbone Advantage Disadvantage

AlexNet [5] Architecture with 8 layers, is able to extract features and
worked well for the time with color images.

Small depth which takes more time to achieve higher
accuracy results.

VGG [6] Improved in terms of depth compared to AlexNet model and
also introducing pre-trained models

The model experiences the vanishing gradient problem

ResNet [7] Large number of layers can be trained easily without
increasing the training error percentage. Help in tackling the
vanishing gradient problem using identity mapping

Require a large-scale dataset to train the model as well as
more complexity cost due to the use of residual connections.

Inception [9] Interested in finding a solution to scale up neural nets
without increasing computational cost. while 5 × 5 CONV is
used for capturing global features and 3 × 3 CONV is used
for capturing small and distributed features. The 1 × 1
CONV is used for depth reduction.

Performance decreases with the increasing number of
neurons per fully connected layer.

Inception-ResNet [10] Introduction of residual connections led to dramatically
improved training speed for the Inception architecture

If the number of filters exceeded 1000, the residual variants
started to exhibit instabilities and the network has just
‘‘died’’ early in the training,

Xception [12] Has the Same number of parameters as Inception, but with
greater computational efficiency. Also, it can be used for
mobile applications

The same like Inception network, the performance decreases
with the increasing number of neurons per fully connected
layer

SqueezeNet [13] The intuition is that large activation maps (due to delayed
downsampling) can lead to higher classification accuracy

The lightweight network provides less accuracy than other
state-of-the-art networks except AlextNet network.

ShuffleNet [15] Network with reduced computation cost, suitable for mobile
device applications with very limited computing power.

Less accurate than the other networks

DenseNet [16] Strong Gradient Flow. Much smaller in size than ResNet Each layer receive all preceding layers as input which
augments the network cost

EfficientNet [18] Ability to capture relevant features and extract complex
patterns in images

MobileNet [19] Reduced network size. Reduced number of parameters. Faster
in performance and useful for mobile applications. Small,
low-latency convolutional neural network.

Less accurate than other state-of-the-art networks

WideResNet [21] Wide Residual Networks have 50 times fewer layers and are
2 times faster, Faster to train while they converge to the
optimal solution much faster than standard ResNets

The number of parameters is the highest compared with the
other methods.

HRNet [23] It keeps the dimensions for the output. maintains
high-resolution representations by connecting
high-to-low-resolution convolutions in parallel, where there
are repeated multiscale fusions across parallel convolutions.

The calculation allocation among high and low resolution
branches are not optimized, and the low-resolution branches
with strong semantic representation should be paid more
attention
l

p

other part of a DL model is not random work. So, the implementation of
a such model can be related to the target task as well as its complexity.
Some proposed networks become famous networks used for different
data analysis domains. These networks are used now for feature ex-
traction or at the beginning of any DL model and its named backbones.
A backbone is the recognized architecture or network used for feature
extraction and its trained in many other tasks before and demonstrate
its effectiveness. In this section, a detailed description of each backbone
used in deep learning models is provided. A summarization of each
Backbone is presented in Table 1. In addition, the advantages and
disadvantages of each Backbone network in provided in Table 2

2.1. AlexNet

AlexNet is a CNN architecture developed by Krizhevsky et al. [5]
in 2012 for image classification. The model consists of a set of con-
volutional and max-pooling layers ended by 3 fully connected layers.
The proposed network contains 5 convolutions layers which makes it
a simple network as presented in Fig. 1. In addition, it is trained using
Rectified Linear Units (ReLUs) as activation. While the regularization
function or Dropout is introduced to reduce overfitting in the fully-
connected layers. Dropout proved its effectiveness for AlexNet and also
for the deep learning model after. AlexNet has 60 million parameters
and 650,000 neurons. This network is used for image classification
3

on the ImageNet dataset. Also, it is used as a backbone for many p
object detection and segmentation models such as R-CNN [26] and
HyperNet [27].

2.2. VGGs

The VGG family, which includes VGG-16 and VGG-19 [6], is one of
the famous backbone used for computer vision and computer sciences
tasks. The VGG architectures are proven their effectiveness in many
tasks including image classification and object detection, and many
other tasks. While it is widely used for many other architectures as
backbone (for feature extraction) for many other recognized models
like R-CNN [28], Faster R-CNN [29], and SSD [30].

For VGG-16 [6]1 in one of the fundamental deep learning backbones
developed in 2014. VGG-16 contains 16 layers with 13 convolutional
layers and 5 max-pooling layers and 3 fully connected layers. In ad-
dition, ReLU is used as activation. Compared to AlexNet architecture,
VGG has 8 more layers. It has 138 million parameters.

For VGG-192 is a deeper version of VGG-16. It contains 3 more
ayers with 16 convolutional layers, 5 max-pooling layers, and 3 fully

1 https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.
y.

2 https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.
y.

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
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Fig. 2. VGG and ResNet architectures.
connected layers.VGG-19 architecture has 144 million parameters. The
architectures of VGG-16 and VGG-19 are presented in Fig. 2(a).

2.3. ResNets

Unlike the previous CNN architecture, Residual Neural Network
(ResNet) [7]3 is a CNN-based model while the residual networks are
introduced. ResNet or Residual neural networks consists of some skip-
connections or recurrent units between blocks of convolutional and
pooling layers. Also, the block is followed by a batch normaliza-
tion [31]. Like the VGG family, ResNet has many versions including
ResNet-34 (Fig. 2(b)) and ResNet-50 with 26M parameters, ResNet-101
with 44M, and ResNet-152 which is deeper with 152 layers presented in
Table 1. ResNet-50 and ResNet-101 are used widely for object detection
and semantic segmentation. ResNet is also used for other deep learning
architectures like Faster R-CNN [29] and R-FCN [32], etc.

2.4. Inception-v1 (GoogleNet)

Inception-V1 or GoogleNet4 is one of the most used convolutional
neural networks as backbone for many computer science applica-
tions [8]. It is developed based on blocks of inception. Each block is a
set of convolution layers, while the filters used vary from 1 × 1, 3 × 3 to
5 × 5, which allows multi-scale learning. The size of each filter makes

3 https://github.com/pytorch/vision/blob/master/torchvision/models/
resnet.py.

4 https://github.com/Lornatang/GoogLeNet-PyTorch.
4

the variation of dimension between blocks. Also, GoogleNet uses global
average pooling instead of the Max-pooling used in AlexNet and VGG.
Inception-v1 block is illustrated in Fig. 3(a).

2.5. DenseNet

In traditional CNNs the number of layers 𝐿 is the same as the num-
ber of connections. While the connection between layers can have an
impact on the learning. For that, the authors in [16],5 introduced a new
convolutional neural network architecture named DenseNet with 𝐿(𝐿+
1)∕2 connections. For each layer, the outputs (feature maps) of all pre-
vious layers are used as input to the next layer as presented in Fig. 3(b).
The network could work with very small output channel depths (ie. 12
filters per layer), which reduces the number of parameters. The number
of filters used in each convolutional layer is initialized, and after each
layer, they used more filters than the previous layers with a constant
of 𝑘 or named ‘‘growth rate’’. This makes the number of parameters
depend on 𝑘. Many versions of DenseNet have been proposed with
variations in the number of layers, such as DenseNet-121, DenseNet-
169, DenseNet-201, DenseNet-264. The network has an image input
size of 224 × 224.

2.6. BN-Inception, Inception-v2, and Inception-v3

The computational cost is the most challenge in any deep learning
model. The changes of the parameters between the consecutive layers

5 https://github.com/liuzhuang13/DenseNet.

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/Lornatang/GoogLeNet-PyTorch
https://github.com/liuzhuang13/DenseNet
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Fig. 3. GoogleNet, DenseNet, and Inception-v3 architectures.
and the initialization of it as well as the selection of required learning
rates, during the training, make the training slow. The researchers
attempted to solve this by normalizing input layers and applying this
normalization in all network blocks. This operation is named Batch
Normalization (BN) which minimizes the impact of parameters initial-
ization and permits the use of higher learning rates [33]. BN is applied
to the Inception network (BN-Inception6) and tested on ImageNet for
image classification [33]. The obtained results are close to the Inception
results on the same dataset with a lower computational time.

The development of deep convolutional networks for a variety of
computer vision tasks is often prohibited by the challenges of computa-
tional cost caused by the size of these models. For that, the implementa-
tion of networks with low number parameters is a real need especially
to be able to use them in machines of low performance like mobiles
and Raspberry-Pis. In order to implement an efficient network with a
low number of parameters, also using the architecture of Inception-v1
the authors in [9] developed Inception-v27 and Inception-v3 networks
by replacing n × n convolutional kernels in Inception-v1 by 3 × 3
convolutional kernels as well as using 1 × 1 convolutional kernel with
a proposed concatenation method. The architecture of Inception-v3 is
illustrated in Fig. 3(c). This strategy used less than 25 million param-
eters. The two networks are trained and tested on image classification
datasets like ImageNet and CIFAR-100.

6 https://github.com/Cadene/pretrained-models.pytorch/blob/master/
pretrainedmodels/models/bninception.py.

7 https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/
inceptionv3.py.
5

2.7. Inception-ResNet-V2

Combining ResNet and inception architecture, Szegedy et al. devel-
oped Inception-ResNet-V2 [10]8 in 2016. Using residual connections
(skip-connections between blocks of layers) Inception-ResNet-V2 is
composed of 164 layers of 4 max-pooling and 160 convolutional lay-
ers, and about 55 million parameters. The Inception-ResNet network
have led to better accuracy performance at shorter epochs. Inception-
ResNet-V2 is used by many other architectures such as Faster R-CNN
G-RMI [34], and Faster R-CNN with TDM [35].

2.8. DarkNet

In order to develop an efficient network with small size, the de-
veloper in [11] introduced Darknet-199 architecture based on some
existing notions like inception and batch normalization [31] used in
GoogleNet and ResNet as well as on the notions of network In net-
work [11]. Darknet network is composed of a set of convolutional-max-
pooling layers while the DarkNet-19 contains 19 convolutional. In order
to reduce the number of parameters, a set of 1 × 1 convolutional kernels
is used, while 3 × 3 convolutional kernels are not used much like in
VGG of ResNet. DarkNet-19 is used for many object detection methods
including YOLO-V2, YOLO-v3-v4 [36].

8 https://github.com/zhulf0804/Inceptionv4_and_Inception-ResNetv2.
PyTorch.

9 https://github.com/visionNoob/pytorch-darknet19.

https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/bninception.py
https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/bninception.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/inceptionv3.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/inceptionv3.py
https://github.com/zhulf0804/Inceptionv4_and_Inception-ResNetv2.PyTorch
https://github.com/zhulf0804/Inceptionv4_and_Inception-ResNetv2.PyTorch
https://github.com/visionNoob/pytorch-darknet19
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2.9. Detnet

In the literature, we can find many object detection architectures
that are based on pre-trained models to detect objects. This includes
SSD, YOLO family, Faster R-CNN, etc. Some of the works are specif-
ically designed for object detection. For the luck of backbones intro-
duced for object detection, the authors in [17]10 proposed a deep-
learning-based network. The same architecture is used also for image
classification on ImageNet dataset and compared with the other famous
network. For object detection, object localization as well as the recog-
nition of it make the process different from the image classification
process. For that, DetNet is introduced as an object detection backbone
that consists of maintaining high spatial resolution using a dilation
added to each part of the network, as illustrated in Fig. 4(a).

2.10. ShuffleNet

In order to reduce the computation cost as well as conserve the
accuracy, ShuffleNet [14]11 proposed in [15] is a computation-efficient
CNN architecture introduced for mobile devices that have limited com-
putational power. ShuffleNet consists of point-wise group convolution
and channel shuffle notions as presented in Fig. 4(b). The group con-
volution of depth-wise separable convolutions has been introduced in
AlexNet for distributing the model over two GPUs, also used in ResNeXt
to demonstrate its robustness. For that, point-wise group convolution is
exploited by ShuffleNet to reduce the computation complexity of 1 × 1
convolutions. A Group of convolution layers can affect the accuracy of
the network, for that, the authors of ShuffleNet used channel shuffle
operation to share the information across feature channels. Besides
image classification and object detection, ShuffleNet has been used as
backbone for many other tasks. Also, ShuffleNet has two versions, while
the second version is proposed in [15].

2.11. ResNeXt

ResNet architecture contains blocks of consecutive convolutional
layers while each block is connected with the previous block output.
The authors in [37]12 developed a new architecture based on ResNet
architecture by replacing consecutive layers in each block with a set of
branches of parallel layers like illustrated in Fig. 4(c). This model can
be presented as the complex version of ResNet, which increases the
model size with more parameters. But, in terms of learning, ResNeXt
allows the model to learn from a set of features concatenated at the
end of each block and using a variety of transformations with the same
block. ResNeXt model has trained on image classification ImageNet
dataset, as well as on object detection MS COCO dataset. The results
are compared with ResNet results, and the obtained ResNeXt results
outperform ResNet on COCO and ImageNet datasets.

2.12. SqueezeNet

To reduce the number of parameters, the authors in [13]13 de-
veloped a convolutional neural network named SqueezeNet consist of
using 1 × 1 filter in almost layers instead of 3 × 3 filter since the number
of parameters with 1 × 1 filters is 9x fewer. Also, the input channels
are decreased to 3 × 3 filters, and delayed down-sampling of large
activation maps leads to higher classification accuracy. The SqueezeNet
layers are a set of consecutive fire modules as illustrated in Figure

10 https://github.com/yumoxu/detnet.
11 https://github.com/kuangliu/pytorch-cifar/blob/master/models/

shufflenet.py.
12 https://github.com/facebookresearch/ResNeXt.
13 https://github.com/pytorch/vision/blob/master/torchvision/models/

squeezenet.py.
6

Fig. 4. DetNet, ShuffleNet, and ResNeXt block architectures.

Fig. 5. SqueezeNet and MobileNet-V2 architectures.

https://github.com/yumoxu/detnet
https://github.com/kuangliu/pytorch-cifar/blob/master/models/shufflenet.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/shufflenet.py
https://github.com/facebookresearch/ResNeXt
https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py
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Fig. 6. WideResNet and EfficientNet architectures.

Fig. 5(a). A Fire module is comprised of: a squeeze convolution layer
(which has only 1 × 1 filters), feeding into an expand layer that has a
mix of 1 × 1 and 3 × 3. Like ResNet, SqueezeNet architecture has the
same connection method between layers or fire modules. SqueezeNet
contains 1.24M parameters which is the small backbone compared with
the other networks.

2.13. MobileNet

In order to implement a deep learning model suitable to use for
low machine performance like mobile devices, the authors in [19]
developed a model named MobileNet.14 Depth-wise separable convo-
lutions are used to implement MobileNet architecture which can be
represented as a lightweight model. Here two global hyper-parameters
are introduced to make the developers choose the suitable sized model
for their problem. MobileNet is trained and tested on ImageNet for
image classification.

Another version of MobileNet which is MobileNet-v2 proposed
in [20] for object detection purposes. Here, the authors introduced
an invented residual block that allows a shortcut connection directly
between the bottleneck layers as illustrated in Fig. 5(b). Also, depth-
wise separable convolutions are used in this version to filter features
as a source of non-linearity. the architecture is trained and tested for
object detection and image classification (see Fig. 6).

14 https://github.com/tensorflow/tfjs-models/tree/master/mobilenet.
7

2.14. WideResNet

Improving the accuracy of a residual network means increasing the
number of layers which make the training very slow. The researcher
in [21]15 attempted to solve this limitation by proposing a new ar-
chitecture named WideResNet based on ResNet blocks, but instead of
increasing the depth of the network they increase the width of the
network and decrease the depth Fig. 6(a). This technique allows for to
reduction of the number of layers as well as minimizing the number of
parameters. The number of parameters in WideResNet depends on the
number of residual layers (total number of convolutional layers) and
on the widening factor 𝑘. WideResNet is trained and tested on CIFAR
dataset, unlike the other backbones which are trained and tested on
ImageNet. WideResNet has demonstrated outstanding performance in
image classification, object detection, and semantic segmentation.

2.15. EfficientNet

EfficientNet [18]16 Networks which are a recent family of archi-
tectures have been shown to significantly outperform other networks
in classification tasks while having fewer parameters and FLOPs. It
employs compound scaling to uniformly scale the width, depth, and
resolution of the network efficiently Fig. 6(b). EfficientNet parameters
are 8.4x smaller and 6.1x faster on inference than the best existing
networks. Many versions of EfficientNet start from B0 to B7. While
EfficientNet-B0 is the baseline network, while Efficient-B1 to B7 are
obtained by scaling up the baseline network. This can be easily replaced
with any of the EfficientNet models based on the capacity of the
resources that are available and the computational cost. EfficientNet-B0
contains 5.3 million parameters while the last version EfficientNet-B7
has 66M parameters.

2.16. SWideRNet

Scaling Wide Residual Network (SWideResNet) is a new network
developed for image segmentation [22], obtained by incorporating the
simple and effective Squeeze-and-Excitation (SE) and Switchable Atrous
Convolution. Using the same principle of WideResNet, SWideResNet
also adjusts the number of layers as well as the channel size (depth)
of the network. In addition, SWideResNet used a SAC block instead
of simple convolutional layers like WideResNet. Also, the Squeeze-
and-Excitation block is added after each stage of the network. The
number of parameters of SWideResNet is dependent on the scales of
channels of the first two stages(𝑤1) of the network and of the remaining
stages(𝑤2, 𝑙) as presented in Table 1.

2.17. Xception

Inspired by the Inception network, Xception [12] is another back-
bone used for feature extraction. Xception is a depth-wise separable
convolution added to the Inception module with a maximally large
number of towers. Where Inception V3 modules have been replaced
with depth-wise separable convolutions. The proposed network is used
in many computer science and vision tasks including object detection
crowd counting, image segmentation, etc.

2.18. HRNet

[38] To maintain the high resolution of an image during the training
process, the authors in [23] proposed a High-Resolution Net (HRNet)

15 https://github.com/xternalz/WideResNet-pytorch.
16 https://github.com/tensorflow/tpu/tree/master/models/official/

efficientnet.

https://github.com/tensorflow/tfjs-models/tree/master/mobilenet
https://github.com/xternalz/WideResNet-pytorch
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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Fig. 7. HRNetV2 architecture.
Fig. 8. HRNetV1 and HRNetV2 representation of the fusion strategy.

that consists of starting by high-resolution sub-network then moving to
to-low resolution sub-network and so on, using multiple stages with
the same scenario. The multi-resolution sub-networks are connected
parallelly before the fusion operation. HRNet is implemented for human
pose estimation then the second version of HRNet-v2 is proposed and
used for semantic segmentation. For the HRNetV2 the difference is in
fusion operation between multi-resolution sub-networks presented in
Figs. 8 and 7. While for HRNet-v1, the representation from the high-
resolution convolution stream is taken into account. For HRNetV2:
Concatenate the (up-sampled) representations that are from all the
resolutions.

3. Tasks related to backbones

3.1. Image classification

Image classification was and still is one of the hot topics in com-
puter vision using deep-learning-based techniques. It was an evaluation
subject of many deep-learning-based models. Due to the evolution of
deep convolutional neural networks (CNNs), the performance of image
classification methods has become more accurate and also faster. The
evaluation of CNN-based image classification methods used the famous
dataset in this task which is ImageNet. These networks have also been
references for other topics due to the novelty of each one of them, as
well as the evaluation of these networks on many datasets. From these
backbones or reference networks, we can find all the cited networks
including VGGs, ResNets, DenseNet, and others.

The efficiency of such a network is generally related to its per-
formance accuracy. Here the image classification evaluation has been
performed on ImageNet for all these proposed networks. But, we can
find also another characteristic that can be considered for compar-
ing the models, which is the computational complexity. For image
classification, Floating Point Operations Per Second (FLOPs) is the per-
formance measurement metric for computing the complexity in terms
8

of the speed and latency of a model. The existing models that have
the best accuracy, in general, have high FLOPs values. For example,
the researcher implemented some models used by devices with limited
computing power. From these models, we can find MobileNet imple-
mented for smartphones as well as ShuffleNet and Xception. Another
factor that can affect the speed of a model is parallelism. For example,
under the same FLOPs a model can be faster than another while the
degree of parallelism is higher.

Image classification task can be considered as simplest computer
vision task in terms of information extracted from the images. This is
compared with other computer vision tasks like panoptic segmentation,
object tracking, Action recognition, etc. But, it can presented also as the
test room of any deep-learning-based model. A comparison between the
famous networks for image classification is presented in the discussion
section.

3.2. Object detection

Object detection and recognition is one of the hot topics in computer
vision. Many challenges can be found in detecting the objects in images
including the scale of the objects, the similarity between some objects,
and the overlapping between them. Object detection models that are
optimal for detection need to have a higher input network size for the
smaller objects. Multiple layers are needed to cover the increased size
of the input network for a higher receptive field. To detect multiple
objects there is a need for different sizes in a single image [13]. The
following are different models used for object detection literature [39].

3.2.1. YOLOV3
YOLO-v3 is from the series of YOLO object detection models where

YOLO-v3 is the third version. YOLO is a short form for ‘‘You Only
Look Once’’. YOLO detects multiple objects at a time. It is based on
a Convolutional Neural Network and predicts classes as well as the
localization of the objects. Applying a single Neural Network divides
the image into grid cells and from this cell probabilities are generated.
It predicts the bounding boxes using anchor boxes and outputs the
best bounding box on the object. YOLO-v3 over here consists of 53
convolutional layers also called Darknet-53, for detection it has 53
more layers having a total of 106 layers. The detection happens at
layers 82, 94, and 106 [40]. Images are often resized in YOLO according
to input network size to improve detection at various resolutions. It
predicts offsets to bounding boxes by normalizing the bounding box
coordinates to the width and height of the image to eliminate gradients.
The score represents the probability of predicting the object inside the
bounding box. Predicted probability to the Intersection of the union
that is a measure of the predicted bounding box to the ground truth
bounding box [13,39]. This model was extensively used in many forms
by [39] for training and testing and as a detector in the YOLOv4
architecture.

3.2.2. YOLO-v4
YOLO-v4 produces optimal speed and accuracy compared to YOLO-

v3. It is a predictor with a backbone, neck, dense prediction, and
sparse prediction. In the backbone several architectures can be used
like Resnet, VGG16 and Darknet-53 [41]. The neck enhances feature
discriminability by methods like Feature pyramid network (FPN), PAN
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and RFB. The head handles the dense prediction using either RPN,
YOLO, or SSD. For the backbone, Darknet-53 was tested to be the
most superior model [41]. YOLO-v3 is commonly used as the head
for YOLO-v4. To optimize training, data augmentation happens in the
backbone. It is proven to be faster and more accurate than YOLO-
v3 with MS COCO dataset. The advantage of YOLO-v4 is that it runs
on a single GPU, enabling less computation. With its wide variety of
features. It achieved 43.5% for the mAP metric on the COCO dataset
with approximately 65 FPS.

3.2.3. YOLO-v4-tiny
YOLO-v4-tiny is a compressed version of YOLO-v4 with its network

size decreased having a lesser number of convolutional layers with
CSPDarknet backbone. The layers are reduced to three and anchor
boxes for prediction are also reduced enabling faster detection.

3.2.4. Detectron
Detectron is Facebook AI Research’s software system that imple-

ments state-of-the-art object detection algorithms, including Mask R-
CNN. The input goes through a CNN backbone to extract features,
which are used to predict region proposals. Regional features and image
features are used to predict bounding boxes [42]. The scalability of this
model and region proposal feature enables accurate detection.

3.2.5. YOLO-v5
YOLO-v5 is a PyTorch implementation of an improved version of

YOLO-v3, published in May 2020 by Glenn Jocher of Ultralytics LLC5
on GitHub6 [43]. It is an improved version of YOLO-v3 implementa-
tion for PyTorch. It has a similar implementation to YOLO-v4, where
it incorporates several techniques like data augmentation and changes
to activation function with post-processing to the YOLO architecture.
It combines images for training and uses self-adversarial training (SAT)
claiming an accelerated inference [43,44].

3.3. Crowd counting

Crowd counting is the operation of estimating the number of peo-
ple or objects in a surveillance scene. For people counting in the
crowd, many works have been proposed for estimating the crowded
mass. The proposed methods can be divided into many categories
such as regression-based methods, density estimation-based methods,
detection-based methods, and deep-learning-based methods. Compar-
ing the accuracy of each one of these categories the CNN-based methods
are the most effective methods.

The introduction of deep learning techniques makes computer vi-
sion tasks more effective and the Convolutional Neural Network (CNN)
improves the performance accuracy of each task, especially those per-
formed on large-scale datasets. On crowd counting, the use of deep
learning techniques allows the estimation of crowd density more accu-
rate compared with the traditional and sequential methods in terms of
accuracy and the computational cost [45,46]. Also, the used backbones
and the interconnection between the part of a network has an impact
on the accuracy of a CNN model. Different backbones including VGG-
16, VGG-19, ResNet-101, and others have been used in different crowd
counting models, but the most used backbone for crowd counting is
VGG-16. The use of these backbones can increase the consumption
cost, especially on large-scale datasets. Also using VGG-16 for feature
extraction, the authors in [47] proposed a crowd counting method
named DENet composed of two-stage networks: detection network
(DNet) and estimation network (ENet). Detection network counts the
people in each region and the estimation network ENet work on the
complex and crowded regions in the images. Using the same backbone,
another method has been proposed named CANNet for estimating the
crowd density map [48].

Also in [49] the authors based on the contextual and spatial infor-
mation of the image as well as VGG-16 for crowd counting method
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implementation. The method named SCAR consists of a Spatial-wise at-
tention module and a Channel-wise Attention module before combining
the results of each module for the final estimation. In the same context,
the authors in [50] proposed an adaptive dilated self-correction model
(ADNet) which estimates the density. Using a multitask model that con-
sists of two proposed networks — Density Attention Network (DANet)
and Attention Scaling Network (ASNet) [51]. The authors estimate the
attention map which is a segmentation of the crowd regions before
using this result to estimate the density of the crowd. For the two
methods, [50,50] VGG-16 is also used as backbone.

Using another version of VGG family which is VGG-19, the authors
in [52] proposed a method based on density probabilities construction
and Bayesian loss function (BL) to estimate the crowd density maps.
In the same context, the authors in [53] proposed a crowd counting
dataset as well as a crowd counting method based on a Special FCN
model (SFCN). This method used ResNet-101 as a backbone, which is
from a few crowd counting methods that used ResNet.

In order to reduce the number of parameters and the size of a net-
work, the authors used the MobileNet-v2 backbone to reduce the FLOPs
and model a Lightweight encoder–decoder crowd counting model [54].

3.4. Video summarization

Currently, real-time useful information extraction from video is a
challenge for different computer vision applications, especially from
large videos. The extracted information allows for reducing the time
of searching as well as allowing for detecting and identifying some
useful features for other tasks. The summarization of videos is one of
the techniques applied to extract this information. Summarizing useful
information from videos has been the main purpose of many recent
studies [55]. It is considered as an important step to improve video
surveillance systems in terms of reducing the searching time for a spe-
cific event as well as simplifying the analysis of a huge number of data.
To do this, many aspects can be considered for a good summarization
such as the type of scene analyzed (Private or public, indoor or outdoor,
crowded or not). Also, the pre-processing can be used for enhancing
the summarization process which is supposed to be with less space for
storage in less computational time [56].

Using deep learning and deep reinforcement learning techniques
many methods have been proposed. These methods used many back-
bones in their models for feature extraction. For example, in [57]
the authors proposed a language-guided video summarization using a
conditional CNN-based model while GoogleNet and ResNet backbones
are used for feature extraction. The same backbone GoogleNet and
ResNet-50 are used in [58] for multi-stage networks for video summa-
rization. In the same context, and using Sparse Autoencoders network
with Random Forest Classifier, the authors in [59] proposed a CNN-
based model for key-frames selection. A set of backbones, including
AlexNet, GoogleNet, VGG-16, and Inception-ResNet-v2, have been used
then compared the impact of each one on the summarization results
using VSUMM and OVP datasets. In [60], the ConvNet network is used
for feature extraction of the proposed video summarization model. By
scene classification for video summarization, the authors in [61] used
many backbones for feature extraction including VGG-16, VGG-19,
Inception-v3, and ResNet-50. To summarize the daily human behaviors,
the authors in [62] proposed a deep learning method using ResNet-152
backbones. Using the same backbone, object-based video summariza-
tion with a DRL model has been proposed in [63] to summarize the
video based on the detected object in it. The objects are tracked using
an encoder–decoder network before selecting the target object to be
summarized.

Using deep reinforcement learning, many methods have been pro-
posed for video summarization using different backbones [64–70].
Highlighting or summarizing a video can be different from one user
(person) to another. Existing deep learning methods attempted to sum-

marize the videos using different models but with one point of view.
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In other to overcome this limitation, as well as to detect different
highlights according to different user preferences, deep reinforcement
learning has been used in [64]. The algorithm used a reward function
to detect each user’s performance as a highlight candidate and also used
ResNet-50 as backbone.

An effective video summarization method should analyze the se-
mantic information in the videos. By using DRL for selecting the most
distinguishable frames in a video, the authors in [65] cut the videos
using the Action parsing technique. Here, AlexNet has been used for
feature extraction. Using a weakly supervised hierarchical reinforce-
ment learning architecture exploited GoogleNet for feature extraction,
the authors in [66] select the representative video key-frames as sum-
marization results which represents also a video shot after collecting
them together. In addition to the content-based video summarization,
some researchers proposed a query-conditioned video summarization
to summarize the video based on a given query [67]. The proposed
method named Mapping Network (MapNet) used two users query as
inputs and the DRL-based framework provide two different summaries
for the requested queries. For feature extraction, ResNet-152 is used.
For summarizing a video into key-frames that represents the contextual
meaning of the video, the authors in [68,69] proposed Deep Summa-
rization Network(DSN) method based on a new deep reinforcement
learning reward function that accounts for the representativeness and
diversity of each frame of the video. Two methods used GoogleNet as
a backbone. In the same context, using the semantics of the videos the
authors in [70] proposed Summary Generation Sub-Network (SGSN) to
select the key-frames from a given video using a DRL reward function
and Inception-v3 as a backbone.

3.5. Action recognition

Action recognition aims to recognize various actions from a video
sequence under different scenarios and distinct environmental condi-
tions. This is a very challenging topic in computer vision due to (i)
its wide range of applications, including video surveillance, tracking,
health care, and human–computer interaction, and (ii) its correspond-
ing issues that require powerful learning methods to achieve a high
recognition accuracy. To that end, deep learning (DL) and deep rein-
forcement learning (DRL) has been investigated in several frameworks
for different purposes, e.g. action predictability to perform early action
recognition (EAR), video captioning, and trajectory forecasting.

For deep-learning-based methods, many architectures have been
proposed using different backbones for feature extraction. For example,
the authors in [71] proposed a temporal pyramid network for recog-
nizing human action. The proposed method consists of classifying the
same action that has variant tempos. This method is implemented using
3D ResNet. The same backbone has been used in [72] for an action
recognition named Temporal Excitation and Aggregation (TEA). For the
same purpose, BN-inception and Inception-v3 backbone have been used
in [73], while the authors proposed an action recognition method for
learning the powerful representations in the joint spatiotemporal fea-
ture space in a video. Using a multi-modal action recognition method
on skeleton data, the authors in [74] used 3D ConvNet as a backbone.
The same backbone has been investigated in [75] for the same purpose.
For action detection and recognition, the authors in [76] proposed a
Spatiotemporal attention model using ResNet-152 backbone for feature
extraction.

Action recognition DRL-based methods are also exploited different
backbones for feature extraction. For example in [77], the authors used
ConvNet for extraction features exploited for the proposed action recog-
nition DRL-based method. Accordingly, because of the absence of fine-
grained supervision, the authors in [78] use a DRL-based technique for
optimizing the evaluator, which is fostered by recognizability rewards
and early rewards. In this context, EAR is achieved using predictability
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computed by the evaluator, where the classifier learns discriminative
representations of subsequences. In this method, BN-Inception is used
as a backbone.

In [79], due to the fact that (i) using the evolution of overall
video frames for modeling actions cannot avoid the noise of the cur-
rent action, and (ii) losing structural information of the human body
reduces the feature capability for describing actions; the authors intro-
duced a part-activated DRL approach to predict actions using VGG-16
backbone.

On the other hand, some works have focused on the use of visual
attention to perform action recognition due to its benefit of reducing
noise interference. This is possible by concentrating on the pertinent
regions of the image and neglecting the irrelevant parts. Accordingly,
in [80], a deep visual attention framework is proposed using DRL and
GoogleNet for feature extraction, in which RNN with LSTM units are
deployed as a learning agent, while DRL is utilized for learning the
agent’s decision policy. In the same manner, in [81], the irrelevant
frames are ignored and only the most discriminative ones are preserved
by using an attention-aware sampling scheme. Indeed, the mechanism
of the key-frames extraction from videos is formulated as a Markov
decision process. In this method, two backbone has been used such as
BN-Inception and ConvNet. On the other side, in [82], starting from
the fact that the attention mechanism might mimic the human drawing
attention process before selecting the next location to focus(i.e. ob-
serve analyze, and jump instead of describing continuous features), the
authors present a framework relying on designing a recurrent neural
network-based agent with GoogleNet backbone, which selects attention
regions using DRL at every timestamp.

3.6. Face recognition

The last decades have shown an increased interest in computer vi-
sion tasks including face recognition due to the technical development
in video surveillance and monitoring. Face recognition is able to rec-
ognize uncooperative subjects in a nonintrusive manner compared with
other biometrics like fingerprint, iris, and retina recognition. Thus, it is
applicable in different sectors, including border control, airports, train
stations, and indoors like in companies or offices. Many works have
been reported with high performance. Some of these methods have
been incorporated with surveillance cameras for person identification
exploiting large-scale datasets. Also, analyzing the face is the main
task for several biometric and non-biometric applications including the
recognition of facial expression [83], face identification in images un-
der low-resolution [84], and face identification and verification under
pose variations, which represents the most subjects focusing on the
analysis of the face.

The data structure can be considered to improve learning, which
is not the case for almost all face recognition proposed methods.
Deep face recognition methods use different loss functions to im-
prove the classification results [85–91]. Softmax loss is one of the
effective models for CNN-based face recognition. Other methods, com-
bine different features of Softmax to enhance the recognition, includ-
ing Sofmax+contrastive, Softmax Loss+Contrastive, L-Softmax Loss,
Softmax+Center Loss, and Center Loss. Whereas other approaches used
some loss function methods like Triplet Loss, Range loss [86], Cos-
Face(LMCL) [85], and FairLoss [90]. Our method provides a new data
structure on which the proposed method can be performed with any
loss function while maintaining high accuracy.

Using DRL-based techniques face recognition was the subject of
many studies. For example, to use DRL for recognizing the face, the
authors in [92] proposed an Attention-aware-DRL-based approach to
verify the face in a video. To find the face in a video, the proposed
model is formulated as a Markov decision process. The image space
and the feature space are used to train the proposed model, unlike the
existing deep learning models that used one of them. Another research
paper that exploited DRL techniques is proposed in [93]. The method

introduced margin-aware RL techniques exploiting three loss functions
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including angular softmax loss (SphereFace), large margin cosine loss
(CosFace), and additive angular margin loss (ArcFace). LFW and YTF
datasets are used to train the proposed Fair-Loss method. In the same
context, Wang et al. [94] introduced Rl-race-balance-network (RL-RBN)
for face recognition. Finding the optimal margins for non-Caucasians
is a process formulated as a Markov decision process and exploits Q-
learning to make agents learn the selection of the appropriate margin.
The proposed method used ResNet34 as a backbone and RFW dataset
for their learning process.

3.7. COVID-19 detection

Early work in COVID-19 detection is to extract images of patient
lungs using ultrasound technology, a technique to identify and monitor
patients affected by viruses. Therefore, the development of detection
and recognition techniques is needed which are capable of automating
the process without needing the help of skilled specialists. From these
techniques, we can find computer vision-based techniques that help in
detection using images and videos. The study [118], demonstrated how
deep learning could be utilized to detect COVID-19 using images no
matter what is the source, X-ray, Ultrasound, or CT scan. They built a
CNN model based on a comparison of several known CNN models. Their
approach aimed to minimize the noises so that deep learning uses the
image features to detect the diseases. This study showed better results
in ultrasound images compared to CT scans and x-ray images. They
used VGG19 network as the backbone of their detection model. In the
same context, Horry et al. [115] proposed a model to detect COVID-19.
The system consists of four backbone such as VGG, Xception, Inception,
and ResNet.

The accuracy of such a method is related to the annotated data by
the experts and the deep learning models used which have the potential
for COVID-19 detection. For that, techniques to detect COVID-19 using
the concept of transfer learning were proposed with five variants of
CNNs. VGG-19, MobileNet-v2, Inception, Xception, and ResNet-v2 are
used in the first experiment and MobileNet-v2 in a second assay [119].
Minaee et al. [122] proposed a method named Deep-COVID based
on the concept of deep transfer learning to detect COVID-19 from x-
ray images. The authors used different backbones such as ResNet-18,
ResNet50, SqueezeNet, and DenseNet-121. SqueezeNet technique gives
the best performance in their experiment.

In another research paper, Moutounet et al. [116] developed a DL
schema to differentiate between COVID-19 and other pneumonia from
x-ray images. While VGG-16, VGG-19, Inception-ResNet-v22, Incep-
tionV3, and Xception techniques are invested in their diagnosis. The
best performance was obtained using VGG-16. Recently, the authors
in [120] developed a CNN variants schema to detect COVID-19 from
X-ray images. The experiments proved that the VGG-19 and DenseNet
were the best networks to detect Covid-19. In the same context, and
to identify COVID-19, Maguolo and Nanni [129] tested the AlexNet
technique with 10-fold cross-validation for training and testing. While
Chowdhury et al. [121] used transfer learning with image augmen-
tation techniques to train and validate some pre-trained networks.
Furthermore, it was proposed [131] a modified CNN to detect coro-
navirus from x-ray images. They combined Xception, and ResNet50-V2
techniques and applied 5-fold cross-validation techniques to classify
three classes including COVID-19.

Loey et al. [123] presented a deep transfer learning model with
Generative Adversarial Network (GAN) to detect COVID-19. Three
backbones were tested such as AlexNet, GoogleNet, and ResNet-18. Fur-
thermore, the authors in [125] concatenated Xception and ResNet50V2
and used 5-fold cross-validation techniques to detect the COVID-19
virus. In another study, Ucar et al. [130] used Bayes-SqueezeNet to
develop a schema named COVIDiagnosis-Net to detect coronavirus
using x-ray images. In another study, [132] the authors, presented
a network called DarkCovidNet based on DarkNet backbone to de-
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tect the COVID-19 virus using x-ray images. In another study, Punn
et al. [126] used ResNet, Inception-v3, Inception ResNet-v2, DenseNet-
169, and NASNetLarge as a pre-trained CNN to detect COVID-19 virus
from X-ray images. While, Narin et al. [127] used pre-trained models
including Inception-v3, ResNet50, and Inception-ResNet-V2 to detect
the COVID-19 virus with 5-fold cross-validation in the dataset partition.
The authors of another research work [124] combined three pre-
trained models such as ResNet-18, ResNet-50, and GoogleNet. While
the authors in [117] used MobileNet, ResNet-50, VGG-16, and VGG-19
backbones for the COVID-19 detection method. In another study, [128]
the authors proposed a deep learning technique using ResNet50 to
detect COVID-19.

3.8. Panoptic segmentation

Panoptic segmentation is a new direction in image segmentation
and also is the developed version of instance and semantic segmenta-
tion. While segmentation is made for things and stuff, unlike instance
segmentation which segments the things only. The panoptic segmenta-
tion models generate segmentation masks by holding the information
from the backbone to the final density map without any explicit con-
nections [133]. Many Backbones are used for image segmentation in
general and for panoptic segmentation also, but the most used is the
ResNet family including ResNet-50 and ResNet-101.

Many methods have been proposed to segment the images using
the panoptic presentation. From these works, we can find the method
in [99] which is named fast panoptic segmentation network (FPSNet). It
is a panoptic method while the instance segmentation and the merging
heuristic part have been replaced with a CNN model called panoptic
head. A feature map used to perform dense segmentation exploited
the ResNet-50 backbone. Moreover, the authors in [100] employ a
position-sensitive attention layer which adds less computational cost
instead of the panoptic head. It utilizes a stand-alone method based
on the use of Deep-lab as backbone. While in [101] a deep panoptic
segmentation based on the bi-directional learning pipeline is utilized.
Intrinsic interaction between semantic segmentation and instance seg-
mentation is modeled using a bidirectional aggregation network called
as BANet to perform a panoptic segmentation. The Backbone used
here is ResNet-50. In the same context, some authors worked on video
instead of images. In [102], video panoptic segmentation (VPSnet),
which is a new video extension of panoptic segmentation is introduced,
in which two types of video panoptic datasets have been used. The
authors used as Backbone ResNet50 with FPN to extract feature maps
for the rest of the network blocks. A holistic understanding of an
image in the panoptic segmentation task can be achieved by modeling
the correlation between the object and background. For this purpose,
a bidirectional graph reasoning network for panoptic segmentation
(BGRNet) is proposed in [103] Using ResNet-50 as well as the architec-
ture in [104,105]. Using the same backbone in [106], the foreground
things and background stuff have been dealt with in the attention-
guided unified network (AUNet). Also using ResNet-50, an end-to-end
occlusion-aware network (OANet) is introduced in [107] to perform a
panoptic segmentation, which uses a single network to predict instance
and semantic segmentation. Without unifying the instance and seman-
tic segmentation to get the panoptic segmentation, Hwang et al. [109]
exploited the blocks and pathways integration that allow unified fea-
ture maps that represent the final panoptic outcome. Finally, in [110],
aiming at visualizing the hidden enemies in a scene, a panoptic segmen-
tation method is proposed. ResNet-101 is another Backbone used for
panoptic segmentation in [111] where the authors attempted to resolve
overlaps using a scene overlap graph network (SOGnet). In the same
context, and using RestNet-101, a unified method named DR1Mask has
been proposed in [112] based on a shared feature map for both instance
and semantic segmentation for panoptic segmentation.

While in [134], ResNeXt-101 for implementing the architecture of
the DetectoRS method. DetectoRS is a panoptic segmentation method

that consists of two levels: macro level and micro level. At the macro
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Table 3
Various methods and backbone used for each task.

Task Method Backbone Task Method Backbone

Image
classification

AlexNet [5] AlexNet

Object
detection

MobileNet [19] MobileNet
GoogLeNet GoogLeNet ShuffleNet [14] ShuffleNet
VGG [6] VGG Xception [12] Xception
ResNet [7] ResNet MobileNet-v2 [19] MobileNet-v2
DenseNet [16] DenseNet DetNet [17] DetNet
DetNet [17] DetNet SSD [30] VGG-16
SqueezeNet [13] SqueezeNet ShuffleNet-v2 [15] ShuffleNet-v2
ResNeXt [37] ResNeXt WideResNet [21] WideResNet
Xception [12] Xception RetinaNet [95] ResNet-101
BN-Inception [33] BN-Inception RetinaNet [95] ResNeXt-101
Inception-v2 [9] Inception-v2 Faster R-CNN G-RMI [34] Inception-ResNet-v2
Inception-v3 [9] Inception-v3 Faster R-CNN TDM [35] Inception-ResNet-v2
Inception-ResNet-v1 [10] Inception-ResNet YOLOV2 [36] DarkNet-19
Inception-v4 [10] Inception-v4 YOLO-V3 [96] DarkNet-19
Inception-ResNet-v2 [10] Inception-ResNet-v2 YOLO-V4 [41] CSPDarknet53
WideResNet [21] WideResNet EfficientDet [97] EfficientNet
MobileNet [19] MobileNet DetectoRS [98] ResNet-50
ShuffleNet-v2 [15] ShuffleNet-v2 DetectoRS [98] ResNeXt-101

Panoptic
segmentation

FPSNet [99] ResNet-50

Crowd
counting

CSRNet [45] (2018) VGG-16
Axial-DeepLab [100] DeepLab SPN [46] (2019) VGG-16
BANet [101] ResNet-50 DENet [47] VGG-16
VSPNet [102] ResNet-50 CANNet [48] VGG-16
BGRNet [103] ResNet50 SCAR [49] VGG-16
SpatialFlow [104] ResNet50 ADNet [50] VGG-16
Weber et al. [105] ResNet50 ADSCNet [50] VGG-16
AUNet [106] ResNet50 ASNet [51] VGG-16
OANet [107] ResNet50 SCNet [108] VGG-16
SPINet [109] ResNet50 BL [52] VGG-19
Son et al. [110] ResNet-50 MobileCount [54] MobileNet-V2
SOGNet [111] ResNet101 SFCN [53] ResNet-101

DR1Mask [112] ResNet101

Video
summarization

GoogleNet+Transformer [57] GoogleNet
DetectoRS [98] ResNeXt-101 ResNet+Transformer [57] ResNet

EfficientPS [113] EfficientNet MCSF [58] GoogleNet
EffPS-b1bs4-RVC [114] EfficientNet-B5 ResNet

Action
recognition

Yang et al. [71] ResNet-50

Nair et al. [59]

AlexNet
TEA [72] ResNet-50 GoogleNet

Sudhakaran et al. [73] BN-Inception VGG-16
Inception-v3 Inception-ResNet-v2

MM-SADA [74] 3D ConvNet

Rafiq et al. [60]

VGG-16
I3D [75] 3D ConvNet VGG-19

Li et al. [82]
ResNeXt-101 Inception-v3
ResNet-18 ResNet-50

ResNet-152 Zhang et al. [61] ResNet-152

Wu et al. [77] ConvNet Wang et al. [64] ResNet50
PEAR [78] BN-Inception Lei et al. [65] AlextNet
Chen et al. [79] VGG-16 Chen et al. [66] GoogleNet
Li et al. [80] GoogleNet Zhang et al. [67] ResNet-152

Dong et al. [81] BN-Inception Zhang et al. [63] ResNet-152
ConvNet DR-DSN [68] GoogleNet

Wang et al. [82] GoogleNet DR-DSN-s [68] GoogleNet

COVID-19
detection

[115–117] VGG16 Wang et al. [69] GoogleNet
[115,118–121] VGG19 SGSN [70] Inception-V3

[116,121–124] ResNet-18

Face
recognition

CosFace(LMCL) [85] ConvNet
[122,125–128] ResNet-50 Range loss [86] VGG-19
[115,116,120,126,127] Inception-v3 NRA+CD [87] ResNet-50
[120,127] Inception-ResNet-v2 RegularFace [88] ResNet-20
[115,116,119,120,125] Xception Range loss [86] VGG-19
[123,129] AlexNet ArcFace [89] ResNet-100
[123,124,126] GoogleNet FairLoss [90] ResNet-50
[120–122,126] DenseNet Attention-aware-DRL [92] ResNet
[117,119–121] MobileNet-v2 Margin-aware-DRL [93] ResNet-50
[121,122,130] SqueezeNet Skewness-aware-DRL [94] ResNet-34
level, a recursive feature pyramid (RFP) is used to incorporate extra
feedback connections from FPNs into the bottom-up backbone layers.
While at the micro-level, a switchable atrous convolution (SAC) is
exploited to convolve the features with different atrous rates and gather
12

the results using switch functions. Using the EfficientNet backbone,
a variant of the Mask R-CNN as well as the KITTI panoptic dataset
that has panoptic ground truth annotations are proposed in [113].
The method is named Efficient panoptic segmentation (EfficientPS).
Also, a unified network named EffPS-b1bs4-RVC, which is a lightweight

version of EfficientPS architecture is introduced in [114].
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Fig. 9. Timeline and performance accuracies of the proposed networks on ImageNet.
3.9. Used backbones for each task

In order to present the backbone used in each task, we attempted in
this paper to collect the proposed methods and their feature extraction
networks exploited. Table 3 presents the proposed methods for each
task as well as the backbones used for each method. From the tables,
we can find that in some tasks some specific backbones are used widely
for a task while are not exploited for others. For example, crowd
counting methods used VGG-16 network, while just some of them used
VGG-19, MobileNet-v2, and ResNet-101. For Panoptic segmentation,
ResNet-50 is the backbone that is widely used for segmenting the object
in a panoptic way. GoogleNet and ResNeXt are exploited for video
summarization. For the others tasks, all the backbones are invested.

Fig. 10 illustrate the computer vision tasks and the used backbones
for each task. The used backbones have been presented by taking into
account the number of papers used for each backbone in a task. For ex-
ample, for crowd counting, VGG is the most used backbone for counting
the people or the object in the monitored scene. The same observation
for face recognition, while the almost proposed method exploits ResNet
for extracting features. ResNet is also the most used backbone for action
recognition with GoogleNet. The same Backbone ResNet is the most
used for panoptic segmentation and video summarization tasks. For
object detection and COVID-19 detection tasks, all the backbones are
used equally unlike the other tasks we can find a specific backbone
widely used.

4. Critical discussion

In order to present the impact of backbones on each task, some
performance results are presented for image classification, object detec-
tion, action recognition, face recognition, panoptic segmentation, and
video summarization. A comparison between the obtained results is
performed using the evaluation metrics used for each task as well as
the datasets used for training and evaluation.

4.1. Image classification evaluation

Image classification is the most frequent task used for evaluating
the new proposed CNN-based architecture. The most used dataset for
this is ImageNet. The CNN-based architectures have been evaluated
using generally three metrics including Top-1 error, Top-5 error, and
the computational complexity of the model using the number of Flops.
These metrics are used for comparing the effectiveness of the proposed
models presented in Table 4. From the table, we can see that some of
13
Table 4
Image classification performance results on ImageNet. The bold and underline fonts
respectively represent the first and second place.

Backbone Complexity
(GFLOPs)

Top-1 err
(%)

Top-5 err
(%)

AlexNet [5] 0.72 42.8 19.7
GoogLeNet 1.5 – 7.89
VGG-16 [6] 15.3 28.5 9.9
ResNet-101 [7] 7.6 19.87 4.60
ResNet-152 [7] 11.3 19.38 4.49
DenseNet-121 [16] 0.525 25.02 7.71
DenseNet-264 [16] 1.125 22.15 6.12
DetNet-50 [17] 3.8 24.1 –
DetNet-59 [17] 4.8 23.5 –
DetNet-101 [17] 7.6 23.0 –
SqueezeNet [13] 0.861 42.5 19.7
ResNeXt-50 [37] 4.1 22.2 –
ResNeXt-101 (32 × 4d) [37] 7.8 21.2 5.6
ResNeXt-101 (64 × 4d) [37] 15.6 20.4 –
Xception [12] 11 21.0 5.5
BN-Inception [33] 2 22.0 5.8
Inception-v2 [9] – 21.2 5.6
Inception-v3 [9] 5.72 18.7 4.2
Inception-ResNet-v1 [10] – 21.3 5.5
Inception-v4 [10] 12.27 20.0 5.0
Inception-ResNet-v2 [10] 13.1 19.9 4.9
WideResNet-50 [21] – 21.9 5.79
MobileNet-224 [19] 0.569 29.4 –
ShuffleNet-v1-50 [14] 2.3 25.2 –
ShuffleNet-v2-50 [15] 2.3 22.8 –
EfficientNet-B0 [18] 0.39 22.9 6.7
EfficientNet-B7 [18] 37 15.7 3.0

the models evaluated just by Top-1 error and others just using Top-
5 error. Also, the models that have high complexity reached good
results. For example, EfficientNet-B7 [18] have 37G for Flops which
is generally high but reached minimum values of Top-1 and Top-5
error rates compared with Inception-v3 [9] that has the second best
results with a difference of 3% in terms of Top-1 error rate and 1,2%
for Top-5 error rate. The same observation for the other models like
Inception-ResNet-v2 [10], ResNet-152 [7], and Inception-v4 [10]. For
the low-complexity methods, we can find that the Top-1 and Top-5
error rates are higher than the others. For example, MobileNet has low
complexity Folps, but the Top-1 error rate is high with a value of 29.4,
as well as AlexNet. Some of the methods do not give the Flops number
for their evaluation on ImageNet like WideResNet-50 [21], Inception-
v2 [9], and Inception-ResNet-v1 [10]. From Table 4 and Fig. 9 we can
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Fig. 10. Used backbones for each task. In some tasks, some backbones are used more than others and are illustrated with a large scale in the figure.
Table 5
Object detection performance results on MS COCO. The bold and underline fonts
respectively represent the first and second place.

Type Method Backbone mAP

Backbone

MobileNet-224 [19] MobileNet 19.8
ShuffleNet [14] 2 × (g = 3) ShuffleNet 25.0
Xception [12] Xception 32.9
MobileNet-v2 [20] MobileNet-v2 30.6
DetNet-50 [17] DetNet 37.9
DetNet-59 [17] DetNet 40.2
DetNet-101 [17] DetNet 39.8
ShuffleNet-v2 [15] ShuffleNet-v2 34.2
WideResNet-34 (tset) [21] WideResNet 35.2

Backbone+
Network

RetinaNet [95] ResNet-101-FPN 39.1
RetinaNet [95] ResNeXt-101-FPN 40.8
Faster R-CNN G-RMI [34] Inception-ResNet-v2 34.7
Faster R-CNN TDM [35] Inception-ResNet-v2-TDM 36.8
YOLOV2 [36] DarkNet-19 20.6
YOLO-V3-spp [96] DarkNet-19 60.6
YOLO-V4-P7 [41] CSPDarknet53 55.7
EfficientDet-D7 [97] EfficientNet-B7 55.1
DetectoRS [98] ResNet-50 53.0
DetectoRS [98] ResNeXt-101-64 × 4d 55.7

find that the number of parameters and complexity of a model have an
impact on its accuracy. Also, the development of the different versions
of the same model increased the accuracy but with more complexity
like in Inception-v3 [9] and Inception-v4 [10].

4.2. Object detection evaluation

The proposed deep learning methods for object detection are eval-
uated using the mean Average Precision (mAP) metric on different
14
datasets. The proposed DL-based methods used MS COCO for perfor-
mance evaluation. This dataset has been taken into consideration due
to its wide usage for all the proposed object detection methods.

The evaluation of proposed methods on the MS-COCO dataset was
performed on the validation set using the mAP metric. For that, we
attempted to present the obtained results for each method in Table 5.
In this table, we attempted to separate the methods into backbone
methods and the backbones+Network methods. We mean by back-
bone methods, those pre-trained models that used object detection
for proving the performance of the proposed networks then these
methods are used also as backbone for other object detection methods.
Backbones+Network denotes the proposed methods that used famous
backbones just for the feature extraction step and they implement other
blocks in their networks for detecting the objects. For the pre-trained
models that evaluated on MS COCO for detecting the objects, we can
see that DetNet-59 [17] achieved the best results with an mAP of 40.2
followed by DetNet-101 [17] by a difference of 0.4. While MobileNet-
v1 [19] is the lowest reached results of an mAP of 19.8. The others
method including ShuffleNet [14], Xception [12], MobileNet-v2 [19],
and ShuffleNet-v2 [15] reached close results.

For the backbone+Network methods, we can find from the table
that YOLO-V3-spp [96], YOLO-V4-P7 [41], and DetectoRS [98] reached
the first best results, while YOLO family used DarkNet as backbone and
DetectoRS used ResNet and ResNeXt as backbone. The results using
EfficientDet-D7 [97] are also good with a difference of 0.6 compared
with DetectoRS and YOLO-v3.

According to mAP values achieved, we can find that the perfor-
mance of these methods using DL still needs improvement even with
the number of works proposed. This is due to the complexity of scenes
that can contain many objects with different situations like small scales,
different positions, occlusion between objects, etc.
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Table 6
Face verification accuracy (%) on LFW and YTF datasets trained on WebFace dataset.
The bold and underline fonts respectively represent the first and second place.

Type Method Backbone LFW YTF

DL

CosFace(LMCL) [85] (2018) ConvNet 99.33 96.1
Range loss [86] VGG-19 99.52 93.7
NRA+CD [87] ResNet-50 99.53 96.04
RegularFace [88] ResNet-20 99.33 94.4
ArcFace [89] ResNet-100 99.83 98.02
FairLoss [90] ResNet-50 99.57 96.2

DRL Attention-aware-DRL [92] ResNet – 96.52
Margin-aware-DRL [93] ResNet-50 99.57 96.2

Table 7
Performance of action recognition methods on HMDB-51 and UCF-101 datasets. The
bold and underline fonts respectively represent the first and second place.

Type Method Backbone HMDB-51 UCF-101

DL
TEA [72] ResNet-50 73.3 96.9
I3D [75] 3D ConvNet 66.4 93.4
Li et al. [76] ResNeXt-101 75.0 95.0

DRL

PEAR [78] BN-Inception – 84.99
PA-DRL [79] VGG-16 – 87.7
Li et al. [80] GoogleNet 66.8 93.2
TSN-AS [81] BN-Inception 71.2 94.6
Wang et al. [82] GoogleNet 60.6 –

4.3. Face recognition evaluation

In order to evaluate the proposed face recognition methods, many
datasets are used. The most used datasets include LFW and YTF which
are common face recognition datasets. For that, we collected some of
DL and DRL-based methods tested on the same datasets by mentioning
the backbones used as feature extraction models. Table 6 represents
some obtained results by face recognition approaches on LFW and
YTF datasets. From the table, we can observe that the performance
accuracies are close for DL and DRL-based approaches. For example, the
DL-based methods ArcFace [89] and FairLoss [90] come in first place
with an accuracy of 99.83 and 99.75 on LFW and 98.02 and 96.2 for
YTF respectively. The others methods are also in the same range, while
we can find the difference between the accuracies not exceeding 0.5%
for LFW and 5% for YTF. The same observation for DRL-based methods
reached more than 99% on LFW and 96% for YTF.

Another observation for DL and DRL-based approaches, the same
backbone family is used for almost all methods while the depth of
the networks varies. For these backbones, we can find ResNet-20,
ResNet-50, and ResNet-100. While VGG is used by Range loss [86].

4.4. Action recognition evaluation

Action recognition methods based on Deep learning (DL) and Deep
reinforcement learning (DRL) are presented in 7. These methods are
collected based on the backbones and datasets used. For example, we
choose for comparison the dataset used by more than two DL and
DRL-based methods, because some datasets are used in just one paper.
The results presented in this comparison are on UCF-101 and HMDB51
datasets. In order to evaluate their methods the performance accuracy
is invested by the proposed architectures on UCF-101 and HMDB51.

The obtained results on each dataset are presented in Table 7. On
HMDB-51 dataset, the DL-based method in [76] that exploited ResNeXt-
101 as backbone reached the highest accuracy, while [72] is the second
best result by an accuracy of 73.3. The same method [72] achieved the
best performance accuracy on UCF-101, while [76] results comes in the
second place by a difference of 1.9 point. For [76] they used ResNet-
50 as backbone. For I3D [76] method, ConvNet is used as backbone
while the obtained results is less than [76] by 8.6 point for on HMDB-51
dataset and 2.4 points for UCF-101 dataset.
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For DRL-based methods, the performance evaluations are performed
on the same two datasets and presented in 7. For example, TSN-As [81]
is the highest accuracy on HMDB-51 followed by [80] with a difference
of 4.4 points using BN-Inception and GoogleNet respectively. The same
observation on UCF-101, while the same methods [80,81] achieved the
highest accuracy values of 94.6 and 93.2 respectively.

From the table, We can observe that the DL and DRL-based action
recognition methods tested on different datasets using different back-
bones have a difference in terms of performance accuracies reached.
While the DL-based method achieved better results than the DRL-based
method. Also for DL-based methods, we found that the method that
used ResNet and ResNeXt reached higher accuracies than the other used
GoogleNet or VGG. which means the use of specific backbones for a
specific task can make the difference in terms of performance.

4.5. Panoptic segmentation evaluation

Cityscapes and COCO datasets are the most commonly preferred
datasets for experimenting with the efficiency of panoptic segmentation
solutions. A detailed report on the methods that used these datasets
with the evaluation metrics is given in Table 8. In addition, the ob-
tained results have been presented considering the backbones used.
Though it is common to use the validation set for reporting the results.
Here we presented just the evaluation on the validation set. All the
models are representative, and the results listed in Table 8 have been
published in the reference documents.

On Cityscapes, we can observe that different methods, such as [110,
112] have evaluated their results using the three metrics, i.e. PQ, SQ,
and RQ. While some approaches have also been evaluated using these
metrics on things (𝑃𝑄𝑡ℎ, 𝑆𝑄𝑡ℎ, and 𝑅𝑄𝑡ℎ) and stuff (𝑃𝑄𝑠𝑡, 𝑆𝑄𝑠𝑡, and
𝑅𝑄𝑠𝑡), e.g. EfficientPS [113]. Moreover, from the results in Table 8,

xial-DeepLab [100] reaches the highest PQ values, with an improve-
ent of 2.6% than the second-best result obtained by EfficientPS
ulti-scale [113]. Regarding the SQ metric, EFFIcientPS achieves the

est result using single-scale and multi-scale, by a difference of 0.7%.
he same thing Uses SQ metric, EfficientPS provides the best accuracy
esults. The difference between EfficientPS and other methods is that it
tilizes a pre-trained model on the Vistas dataset, whereas the schemes
o not use any pre-training. In addition, EfficientPS uses EfficientNet
s backbone while the most of discussed techniques have exploited
estNet-50 except Axial-Deeplab, which uses DeepLab as a backbone.

On the COCO validation set, the evaluation results are slightly
ifferent from the obtained results on the Cityscapes dataset although
here are some frameworks that have reached the highest performance,
uch as DR1Mask [112] for PQ, 𝑃𝑄𝑠𝑡, and SQ, Axial-DeepLab [100]
or 𝑃𝑄𝑠𝑡, BANet [101] for 𝑆𝑄𝑠𝑡, 𝑅𝑄𝑠𝑡, and 𝑆𝑄𝑡ℎ, OANet [107] for
𝑄𝑡ℎ. For example, using DR1Mask, the performance rate for using
Q and PQ𝑡ℎ metrics has reached 46.1% and 53.1%, respectively. The
ifference between the methods that reach the highest results and those
n the second and third places, is around 1%–4%, which demonstrates
he effectiveness of these panoptic segmentation schemes.

.6. Crowd counting evaluation

The obtained results using MAE and MSE metrics are presented
n Table 9. We can observe that many methods succeed to estimate
he number of people in the crowd with promising results especially
or the ShanTech_Part_B dataset due to simple crowd density in this
ataset and all the images contains the same depth of the crowd and
he same distribution of the people in the scenes. We can find also
hat the ShanTech_Part_A comes in the second place in terms of MAE
eached due to the same reasons as ShanTech_Part_B but here the
mages are more crowded that the images in ShanTech_Part_B. For
he other datasets such as UCF_QNRF and UCF_CC_50, the images are

ore crowded and can reach 4000 people per image with make the
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Table 8
Performance comparison of existing panoptic segmentation schemes on the val set under Cityscapes and COCO datasets. The bold and underline fonts respectively represent the
first and second place.

Dataset Method/Backbone PQ SQ RQ

PQ PQ𝑠𝑡 PQ𝑡ℎ SQ SQ𝑠𝑡 SQ𝑡ℎ RQ RQ𝑠𝑡 RQ𝑡ℎ

Cityscapes

FPSNet [99]/ResNet-50 55.1 60.1 48.3 – – – – – –
Axial-DeepLab [100]/DeepLab 67.7 – – – – – – – –
EfficientPS Single-scale [113]/EfficientNet 63.9 66.2 60.7 81.5 81.8 81.2 77.1 79.2 74.1
EfficientPS Multi-scale [113]/EfficientNet 65.1 67.7 61.5 82.2 82.8 81.4 79.0 81.7 75.4
VPSNet [102]/ResNet-50 62.2 65.3 58.0 – – – – – –
SpatialFlow [104]/ResNet-50 58.6 61.4 54.9 – – – – – –
SPINet [109]/ResNet-50 63.0 67.3 57.0 – – – – – –
Son et al. [110]/ResNet-50 58.0 – – 79.4 – – 71.4 – –

COCO

Axial-DeepLab [100]/DeepLab 43.9 36.8 48.6 – – – – – –
BANet [101]/ResNet-50 43.0 31.8 50.5 79.0 75.9 81.1 52.8 39.4 61.5
BGRNet [103]/ResNet-50 43.2 33.4 49.8 – – – – – –
SpatialFlow [104]/ResNet-50 40.9 31.9 46.8 – – – – – –
Weber et al. [105]/ResNet-50 32.4 28.6 34.8 – – – – – –
SOGNet [111]/ResNet-102 43.7 33.2 50.6 – – – – – –
OANet [107]/ResNet-50 40.7 26.6 50.0 78.2 72.5 82.0 49.6 34.5 59.7
SPINet [109]/ResNet-50 42.2 31.4 49.3 – – – – – –
DR1Mask [112]/ResNet-101 46.1 35.5 53.1 81.5 – – 55.3 – –
Table 9
The performance of each method on the existing crowd counting dataset. The bold and underline fonts respectively represent the first and second place .

Method Backbone ShanTech_A ShanTech_B UCF_QNRF UCF_CC_50

MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet [45] (2018) VGG-16 68.2 115.0 10.6 16.0 – – 266.1 397.5
SPN [46] (2019) VGG-16 61.7 99.5 9.4 14.4 – – 259.2 335.9
DENet [47] (2020) VGG-16 65.5 101.2 9.6 15.4 – – 241.9 345.4
CANNet [48](2019) VGG-16 62.3 100.0 7.8 12.2 107.0 183.0 212.2 243.7
SCAR [49] (2019) VGG-16 66.3 114.1 9.5 15.2 – – 259.0 374.0
ADNet [50] (2020) VGG-16 61.3 103.9 7.6 12.1 90.1 147.1 245.4 327.3
ADSCNet [50] (2020) VGG-16 55.4 97.7 6.4 11.3 71.3 132.5 198.4 267.3
ASNet [51] (2020) VGG-16 57.7 90.1 – – 91.5 159.7 174.8 251.6
SCNet [108] (2021) VGG-16 58.5 99.1 8.5 13.4 93.9 150.8 197.0 231.6
BL [52] (2019) VGG-19 62.8 101.8 7.7 12.7 88.7 154.8 229.3 308.2
MobileCount [54] (2020) MobileNet-V2 84.8 135.1 8.6 13.8 127.7 216.5 284.5 421.2
SFCN [53] (2019) ResNet-101 64.8 107.5 7.6 13.0 102.0 171.4 214.2 318.2
estimation of the density maps more complex. Also, the scale and shape
variations in these datasets affect the performance of each method.

For the obtained MAE and MSE of each method, the results in the ta-
ble show that each method reaches good results in a dataset better than
the others. And this comes from the treatment used for each method
as well as the backbone exploited for feature extraction. For example,
some methods are working on the scale variation while others used
segmentation of the crowd region before estimating the crowd density.
For the ADSCNet method, we can see that it outperforms the others
method in three datasets including ShanTech_Part_A, ShanTech_Part_B,
and UCF_QNRF with an MAE of 55.4 on ShanTech_Part_A and less
by 2.3 points than the ASNet method which come in the second
place. While we can find that the SPN, SCAR, and CANNet methods
reached close results of MAE values. On the UCF_CC_50 dataset, SCNet
achieved fewer MSE results better than ASNet with 20 points. For
these results, we can conclude that the methods used VGG-16 are the
most effective methods compared with the method used MobileNet
and ResNet-101 as backbones. Also, some proposed architectures can
be better in some cases while it is not in others like ADSCNet on
hanTech_Part_A, ShanTech_Part_B, and UCF_QNRF datasets and AsNet
and SCNet on UCF_CC_50 dataset.

4.7. Video summarization evaluation

To show the performance of each video summarization method
using DL and DRL, The obtained results using state-of-the-art methods
on SumMe and TVSum datasets are presented in Table 10. From the
table, we can find that GoogleNet and ResNet are the most used
feature extraction backbones For deep learning and deep reinforce-
16

ment learning-based approaches. For DL-based approaches, the method
Table 10
Comparison of the performance of video summarization methods. The bold and
underline fonts respectively represent the first and second place.

Type Method Backbone SumMe TVSum

DL

GoogleNet+Transf [57] GoogleNet 51.6 64.2
ResNet+Transf [57] ResNet 52.8 65.0
MCSF [58] GoogleNet 48.1 56.4
Zhang et al. [63] ResNet-152 37.7 51.1

DRL

Lei et al. [65] AlextNet 41.2 51.3
Chen et al. [66] GoogleNet 43.6 58.4
DR-DSN [68] GoogleNet 41.4 57.6
DR-DSN-s [68] GoogleNet 42.1 58.1
Wang et al. [69] GoogleNet 43.4 58.5
SGSN [70] Inception-V3 41.5 55.7

in [57] achieved the best results on SumMe and TVSum datasets. While
ResNet+Transformer [57] comes in the first place by values of 52.8%
and 65.0% on SumME and TVSum, and GoogleNet+Transformer [57]
reached the second best results by a difference of 1.2% for the two
datasets. For the other approaches like MCSF [58,63] the obtained
results achieved close results with a difference of 9.6% for SumMe and
5.3% for TVSum. Generally, all the methods are in the same range in
terms of accuracy reached on the two datasets.

For DRL-based methods including [65,66], DR-DSN [68], DR-DSN-
s [68,69], and SGSN [70], the obtained results are close while we can
find the difference between the Best and worst result on SumMe dataset
not exceed 2.4% and 7.1% for TVSum. On SumMe dataset, the method
in [66] reached 43.6% which is the best result, followed by [69] with a
value of 43.4%. We can observe that the two methods used GoogleNet

as backbone. The same methods reached the best results on TVSum but
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Table 11
COVID-19 detection techniques using different methods that are based on cited backbones. The bold and underline fonts respectively represent
the first and second place.

Authors Model Classes Accuracy Sensitivity Specificity

MobileNet-v2 3 96.22 96.22 97.80
Chowdhury et al.[121] Inception-v3 3 96.2 96.4 97.5

ResNet-101 3 96.22 96.2 97.8
DenseNet-201 3 97.9 97.9 98.8

Ucar et al. [130] SqueezeNet 3 98.3 98.3 99.1

Ozturk et al. [132] DarkNet 3 98.1 95.1 95.3

Inception-v2 3 88.0 79.0 89.0
Punn et al. [126] Inception-ResNet-v2 3 92.0 92.0 89.0

DenseNet-169 3 95.0 96.0 95.0

Inception-v3 3 99.5 100 100
ResNet-50 3 91.7 57.0 91.3

Narin et al. [127] ResNet-152 3 97.3 93.2 99.3
Inception-ResNet-v2 3 96.3 78.0 96.8

Ozcan et al. [124] ResNet-50 4 97.6 97.2 97.9
this time [69] reached the first best results and [66] comes in second
place with 58.5%.

From the presented results we can find that the performance of these
methods using DL and DRL is challenging according to the accuracy
rate achieved. In addition, the performance of these methods on TVSum
is improved than SumMe dataset.

4.8. COVID-19 detection evaluation

To demonstrate the performance of proposed COVID-19 detection
methods, many metrics have been used including accuracy, specificity,
and sensitivity. Some methods used transfer learning using many pre-
trained models. We collect a set of these methods to compare the impact
of each model on COVID-19 detection dataset. Table 11 represents a set
of methods providing the obtained results with the three metrics. From
the table, we can find that all the methods succeed in detection COVID-
19 from X-ray images with convincing accuracies. While [127] using
Inception-v3 reached the highest results of 100% for sensitivity and
specificity metrics and 99.5% for model accuracy. Using SqueezeNet
in [130] the obtained results come in the second place with a difference
from 1%–2% compared with [127] that used Inception-v3. We can find
also that, the used model has different results even using the same
architectures, due to the representation of data as well as the pre-
possessing operations performed before starting the training. Unlike the
other tasks like crowd counting and panoptic segmentation, COVID-19
proposed methods do not have any special backbone used for detection
and all the backbone have been used.

5. Challenges and future directions

5.1. Deep learning challenges

Deep learning is a trending technology for all computer science
and robotics tasks to help and assist human actions. Using artificial
neural networks, that are supposed to work like a human brain, deep
learning is an aspect of AI that consists of solving the classification
and recognition goals for making machines learn from specific data
for specific scenarios. Deep learning has many challenges even the
development reached in different tasks. For that, a list of deep learning
challenges will be discussed in this section. Some these challenges are
presented in Fig. 11. While the possible solution corresponding to each
challenge is summarized in Fig. 12.

Data Quantity for learning: A large-scale dataset is a necessary
ondition for a deep-learning model to work well. Also, the perfor-
ance of such a deep learning system is related to the size of the
ata used. For that, the annotation and availability of data are real
hallenges for deep learning methods [135]. For example, we can find
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many tasks while the data cannot be available to the public like for
industrial applications, or a task has few scenarios, also for medical
purposes times the data size is small due to the uniqueness of some
diseases.

Non-contextual Understanding: The capability of a deep learning
model is related to the architecture used which is deep and contains
many layers and levels, but it is not related to the level of understanding
of it [136]. For example, if a model is proficient in a specific task,
and to use this trained model in another close task, all the training
and the processing should be re-trained because this model does not
understand the context, but lean what it is trained on only. Also, with
the development in different domains, a deep learning model should be
maintained every time with new features and data to understand the
new scenarios.

Data labeling and annotation: In CV, the segmentation of scenes
and objects in an image or video represents a crucial challenge. For
automatic segmentation, data should be prepared first by annotating
and labeling the object or the scenes of interest before starting the
training of such a method. The annotations represent also a challenge,
due to the number of objects that should be labeled, also any changes to
the scenes require another labeling according to the types of the objects
and the categories of scenes [137].

Complexity of Architecture: In the literature the effective archi-
tectures used as feature extraction are generally complex which them
challenging to train, interpret, and optimize [138]. Balancing model
complexity with performance requirements is crucial but it can be
difficult to achieve, Due to the other parameters like computational re-
sources especially for large scale dataset, and the number of parameters
of each model (GFLOPS). In addition, training a complex architecture
on some specific tasks can cost in terms of time-consuming more than
others.

Overfitting: Deeper features extraction architectures, are sensitive
to overfitting, where the model memorizes the training data rather
than learning generalizable features [139]. While finding the best
parameters such as dropout and weight decay can minimize the impact
of this challenge, but finding the right combination require a lot of tests
and it can change from a task to another.

Data quality requirements: Training a CNN model requires large-
scale annotated datasets, which can be expensive, time-consuming, or
even unavailable for certain domains or applications. Data augmen-
tation techniques can help to handle this challenge to some cases
but may not address all the scenarios for a representative training
data. The quality of data represents also a challenge for deep learning
architecture, while using high resolution image for example can be
robust to obtains good results, but training its need a computational
resource which is another challenge.

Computational Resources: CNN-based models require significant

computational resources, including powerful GPUs or TPUs, for training
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Fig. 11. Challenges of selecting suitable backbone for computer vision tasks.
Fig. 12. The possible solution for each computer vision challenge.
and inference. Scaling CNNs to handle larger datasets or more complex
architectures increase computational resources demand and limit the
accessibility for researchers.

Domain Adaptation: CNNs trained on specific datasets or for a task
may not be suitable for different datasets or real-world environments
due to domain shifts or biases. While adapting pre-trained CNNs to new
domains or tasks with limited annotated data represent a challenge,
especially when the target domain differs significantly from the source
domain [140]. This is show in the feature extraction models used
for some specific tasks in previous section. For example, for panoptic
segmentation we can see that the backbones used as features extraction
are ResNet ad DeepLab, while VGG-16 and VGG-19 are the suitable
backbones from Crowd counting.

5.2. Future directions

Nowadays, DL and DRL techniques are used not just for analyzing
the content of images but also replacing the work of humans, like
making decisions and annotating the data. in this section, a couple of
future directions of DL and DRL are discussed.
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Data augmentation:
The lack of large-scale datasets for some tasks represents a challenge

for deep learning and deep reinforcement learning methods. For that,
the researchers started using DL and DRL techniques for data augmen-
tation, especially for medical imaging that suffer from the lack of data
for many diseases. For example, DRL is used for creating new images
to be used for training like in [141]. While the authors proposed a DRL
architecture for kidney Tumor segmentation. The proposed method
starts by augmenting the data before using it for segmentation.

Data annotations: Image and video annotation is a big challenge
for researchers specializing in computer vision tasks which need an
enormous effort for annotating the objects, labeling the scenes and ob-
ject for segmentation, or separating the classes for image classification.
Also, the format of the annotations can be different from one type of
method to another. For example, We can find that for object detection
many methods like DetectronV2, YOLO, or EfficientDet used several
formats including txt, XML, DarkNet, or JSON formats. A common
format for all the methods can be used to overcome this problem. Also,
in order to automatize the annotations process for object segmentation
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in a video sequence, the authors in [142] proposed a DRL method
using an extended version of Dueling DQN. The researchers also started
labeling the data for image segmentation using DRL-based techniques.
The obtained results using this method are not effective at this time
due to the complexity of the purpose, as well as it is the first method
that attempted to label the video and images instead of using manual
labeling by humans. But with the development of the DRL technique
in different computer vision applications, automatic data labeling and
annotations can be reached.

Vision Transformer (ViT): Vision Transformer (ViT) presents a
good solution to many challenges in deep learning. By replacing convo-
lutional layers with self-attention mechanisms, ViT simplifies architec-
ture and reduces complexity [143,144]. The self-attention mechanism
allows a better capturing of long-range dependencies, by learning more
robust representations. While ViT benefits from large-scale datasets
for pre-training [145]. However, its ability to capture global context
through self-attention makes it adaptable to different domains and
tasks. ViT introduces new hyperparameters, but automated methods
can efficiently optimize these parameters [146]. Overall, while ViT
offers promising capabilities that can help existing architectures to
improve the performance of deep learning models in terms of feature
extraction and robustness of the obtained results.

6. Conclusion

This paper presents an overview of deep learning networks used as
a backbone for many proposed architectures for computer vision tasks.
A detailed description is provided for each network. In addition, some
computer vision tasks are discussed regarding the backbone used for
extracting the features. We attempted also to collect the experimental
results for each method within each task and compare them based on
the backbone used. This review can help the researcher because it is a
detailed summarization and comparison of the famous backbones also
linked to the code-sources are given. In addition, a set of DL and DRL
challenges are presented with some future directions.
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