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ABSTRACT Dysarthria, a speech disorder stemming from neurological conditions, affects communication
and life quality. Precise classification and severity assessment are pivotal for therapy but are often
subjective in traditional speech-language pathologist evaluations. Machine learning models offer objective
assessment potential, enhancing diagnostic precision. This systematic review aims to comprehensively
analyze current methodologies for classifying dysarthria based on severity levels, highlighting effective
features for automatic classification and optimal AI techniques. We systematically reviewed the literature
on the automatic classification of dysarthria severity levels. Sources of information will include electronic
databases and grey literature. Selection criteria will be established based on relevance to the research
questions. The findings of this systematic review will contribute to the current understanding of dysarthria
classification, inform future research, and support the development of improved diagnostic tools. The
implications of these findings could be significant in advancing patient care and improving therapeutic
outcomes for individuals affected by dysarthria.

INDEX TERMS Dysarthria, classification, severity levels, artificial intelligence (AI)-based models,
intelligibility.

I. INTRODUCTION
Speech is a distinctive, intricate, dynamic motor activity
that enables us to articulate our thoughts and emotions and
interact with and regulate our surroundings. Furthermore,
it constitutes one of the five heritable verbal traits, encom-
passing speech, language, reading, writing, and spelling.
Speech involves integrating neurocognitive processes for
organizing thoughts into language, motor speech planning
for executing verbal messages, and neuromuscular execution
for coordinating speech muscles. Together, these processes
constitute motor speech activities.

When neurologic impairments affect these motor speech
activities, a speech disorder will result, which can also be
known as Motor speech disorder (MSD) [1], [2].
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There are two main types of MSD: dysarthrias and apraxia
of speech. Dysarthria is a group of neurological speech
disorders involving abnormalities in speech production and
movement. These disorders manifest as changes in strength,
speed, range, steadiness, tone, or accuracy of movements
required for breathing, phonation, resonance, articulation,
or prosody. Sensorimotor abnormalities, such as weakness,
spasticity, incoordination, involuntary movements, or varia-
tions in muscle tone, underlie dysarthria. The condition is
specifically neurologic and can be categorized into distinct
types based on perceptual characteristics and underlying
neuropathophysiology. It is essential to define dysarthria
accurately to differentiate it from other speech and language
disorders and to ensure its meaningful application in research
and clinical settings [2]. Verbal apraxia, also known as
apraxia of speech, is a contentious condition that some view
as a deficit in the motor planning of speech. This disorder
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is marked by ‘‘higher order’’ errors, including metathesis
and segment addition, alongside errors that suggest a lack of
coordination in articulation. These characteristics suggest a
relatively significant level of damage to the neural system [3].
Traditionally, dysarthria is classified into several subtypes,

including spastic, flaccid, hypokinetic, hyperkinetic, ataxic,
and mixed. More recently, additional subtypes such as
unilateral upper motor neuron dysarthria and undetermined
dysarthria have been recognized [4]. Dysarthria can occur at
any stage of life. Common causes encompass stroke, severe
head injury, brain tumors, Parkinson’s disease, multiple
sclerosis, motor neuron disease, cerebral palsy, Down’s
syndrome, and certain medications, including those used
to treat epilepsy, which may induce a side effect [2].
The severity of dysarthria is determined by the degree
of involvement in the affected body regions caused by
the underlying condition. Assessment of dysarthria means
mainly grading its severity. This is typically performed by
speech-language pathologists (SLPs) using some descriptive
terms, but it can be a time-consuming and labor-intensive
process with variations between different SLPs. Thus, it is
essential to have objective methods of evaluating the level
of intelligibility in dysarthria cases [5]. For this purpose,
machine learning-based models were developed for auto-
matic assessment of dysarthrias’ levels of severity to achieve
enhanced diagnostic accuracy, consistency, and reliability,
all while maintaining cost-effectiveness and expediency [6].
In both paths, features are extracted from the candidate
samples to help the underlying system for classification,
where there are specific sets of features for each type of
dysarthria. To our knowledge, this is the first comprehensive
review that analyzes the works of classifying dysarthria cases
based on the levels of severity. In the literature, several gaps
warrant further research in conducting a systematic review
on classifying dysarthria based on severity levels. These gaps
include the absence of a review focused explicitly on severity-
based classification, limited research on severity levels within
specific populations [7], [8] [9], [10] (population-specific
considerations), a lack of standardizedmeasures for assessing
severity [8], [11] [12], [13] (measurement challenges), the
integration of technology in severity classification [14]
(technological advancements), a need for a comparative
analysis of existing classification systems [15] (evaluation
of existing approaches), specific causes of dysarthria [16]
(etiological factors), general treatment helping clinicians for
stable dysarthria [17] (treatment approaches) and automated
intelligibility assessment [18] (technology-driven assessment
methods). Addressing these gaps through a systematic review
would offer valuable insights for clinicians, researchers,
and stakeholders involved in dysarthria assessment and
treatment.

In this systematic review, we aim to answer the below
research questions:

• What are the optimal set and type of features that
are consistently effective across various severity levels

of dysarthria, enabling automated classification of
patients?

• Which artificial intelligence techniques are most suit-
able for accurately classifying dysarthria patients, con-
sidering factors such as training time efficiency and high
accuracy?

The rest of the paper is organized as follows: Section 2 will
show the strategy followed in our research, Section 3 presents
how dysarthric cases are classified based on clinical tech-
niques, Section 4 will show the same for Section 3, but based
on machine learning techniques, Section 5 discusses the
results shown in the two previous sections and analyses them.
Section 6 refers to some common limitations of the related
work. Section 7 suggests a few points to solve the gap in this
research area, and finally, the Conclusion in Section 8 will
summarize our work and highlight our findings in this
review.

II. SEARCH STRATEGY
A comprehensive exploration was conducted on various elec-
tronic databases, including ACM, EMBASE, SpringerLink,
PubMed, Scopus, IEEE,MDPI, Elsevier, and some other con-
ferences popular in the area, based on the search keywords:
‘‘classification’’ AND ‘‘Dysarthria’’ AND ‘‘severity levels’’
or ‘‘Assessment’’ AND ‘‘Dysarthria’’ AND ‘‘Intelligibility.’’
Figure 1 shows the search strategy process.

A total of 978 publications were found. After deleting
the duplicates, 733 publications passed through a screening
process where only the articles that contained the keywords
in their titles, abstracts, and keywords were selected, and
the excluded publications were based on the following
criteria:(1) reviews and surveys are not considered, (2)
articles do not have the main keywords in their titles
and abstracts, (3) general chapters related to motor speech
disorders are not considered, and (4) other types of disorders
like Dysphagia or Dementia.

The second stage of the study search is knowing the
eligibility of each publication to be selected for the analysis
later on in this study. The exclusion criteria in this stage
are (1) The tools or software for rehabilitation or therapy,
(2) automatic recognition systems or the identification of
dysarthria, (3) reviews and surveys related to dysarthria or
one of its specific types or causes, (4) the impact of specific
features of dysarthric cases, and (5) the binary classification
of dysarthria.

The final publications are 44 articles mainly related to
classifying dysarthria patients based on severity levels and
assessing the intelligibility factor as severity levels.

As our primary goal is to classify dysarthric cases based
on severity levels, we will refer to both types: clinical or
human-based and AI or machine learning-based techniques.
We will highlight the methods, extracted features, and the
datasets they evaluated the models on. Figure 2 shows the
taxonomy of our review in classifying dysarthria based on
the severity levels.
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FIGURE 1. Search study process.

III. CLASSIFICATION BASED ON CLINICAL TECHNIQUES
When a dysarthric patient is admitted to the hospital,
a specific procedure will be followed based on the clinical
setting, available resources, and individual needs. The main
points regarding each procedure are explained in the sub-
sections below:

A. METHODS
As a clinical procedure, speech-language pathologists (SLPs)
follow up on dysarthrias cases. Other rehabilitation pro-
fessionals, physicians, and nurses may also be involved in
such treatment. Each SLPs will search for some descriptive
patterns in the patient to confirm his diagnosis and decide the
type of treatment based on the severity of the case [19].
The procedure followed by speech-language pathologists

(SLPs) to measure the severity of dysarthria in a patient
typically involves employing a comprehensive approach to
assess dysarthria in patients. This process includes gathering
the patient’s medical history to provide context, visually
observing their speech and oral motor movements, making
perceptual assessments of speech characteristics and severity,
evaluating speech intelligibility through tests and measure-
ments, assessing the impact of dysarthria on functional
communication abilities, and collaborating with patients,
family members, and healthcare professionals to gain a
comprehensive understanding of the condition. By following
this systematic approach, SLPs can develop tailored treatment
plans to address the specific challenges faced by each patient
[2], [20].

B. FEATURES
Speech-language pathologists (SLPs) use various features to
assess the severity of dysarthria in patients. These features
include articulation, by assessing the accuracy and precision
of speech sound production; phonation, by evaluating voice
quality, pitch, loudness, and presence of abnormalities;
resonance, by examining the control of the velopharyn-
geal mechanism for speech clarity; prosody, by analyzing
rhythm, stress, intonation, and melodic contour; speech rate,

by observing speed, pacing, and pauses; and intelligibility,
by determining the percentage of intelligible speech.

SLPs employ clinical observation, perceptual judgments,
and instrumental assessments like acoustic analysis to
assess these features. By considering these aspects, SLPs
can determine dysarthria severity and develop customized
treatment plans to address patients’ specific speech
challenges [19], [21].

C. EVALUATION
Several standardized rating scales and perceptual judg-
ments are commonly used to assess dysarthria’s severity
and specific features. These include formal and informal
assessments. The formal ones are represented by the most
famous Frenchay Dysarthria Assessment (FDA) [22], which
evaluates respiration, phonation, articulation, and prosody;
other measurements like the Assessment of Intelligibility of
Dysarthric Speech (AIDS), which measures overall speech
intelligibility [23] and dysarthria profile [24]; the and Voice
Physical Disability Index [25]. Informal assessments, such
as oral motor examinations [26], are often used with formal
assessments. Perceptual assessment [27] is used by speech-
language pathologists, relying on their expertise in active
listening and analyzing speech. It’s important to note that
these perceptual judgments are subjective, emphasizing the
need for skilled clinicians to accurately assess and interpret
the speech characteristics of individuals with dysarthria.
Finally, Communication Activities of Daily Living-Second
Edition (CADL-2) [28], Although not specific to dysarthria,
this assessment measures functional communication abilities
in daily life situations. It evaluates the impact of dysarthria
on communication in various contexts [29].
The inclusion of the section on clinical assessment in our

review serves two essential purposes. Firstly, it provides a
comprehensive understanding of the traditional approaches
and methods used in dysarthria classification based on
severity levels. By examining the techniques clinicians
employ and the features they consider, we gain insights
into the established practices and evaluation tools that have
been relied upon for decades. This knowledge is crucial for
contextualizing and appreciating the advancements brought
by AI-based techniques.

Secondly, incorporating the clinical assessment perspec-
tive allows for a comparative analysis between human-based
approaches and AI-based methods. By juxtaposing the
strengths and limitations of clinical judgment with the capa-
bilities of AI models, we can critically evaluate the potential
of AI to augment and enhance dysarthria classification.
This comparative analysis enables us to identify the unique
contributions of AI techniques, such as increased objectivity,
scalability, and potential for automated assessment.

IV. CLASSIFICATION BASED ON AI TECHNIQUES
Despite the effectiveness of SLPs’ efforts, this process
is time-consuming, mainly subjective, and suffers from
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FIGURE 2. Taxonomy of the study.

differences among individual opinions. This gap inspired the
researchers to seek more accurate models, away from the
subjective perspective, using AI-based models, as explained
below.

A. METHODS
Machine learning and deep learning-based models have
shown promise in assessing the severity of dysarthria,
offering alternative approaches to traditional assessments
conducted by SLPs. These models leverage the power of
artificial intelligence to analyze speech patterns and extract
meaningful information for severity evaluation [30].
Several common machine learning approaches, such as

support vector machines (SVM), Random Forests (RF),
or Artificial Neural Networks (ANN), have been utilized to
develop predictive models [31]. These models are trained
on a dataset of acoustic features or other forms of acoustic
features extracted from speech samples of individuals with
dysarthria and corresponding severity ratings provided by
SLPs. The models learn patterns and relationships between
these features and the severity ratings, enabling them to
predict/classify the severity of dysarthria in new, unseen
cases.

Deep learning, a subset of machine learning, has gained
attention in dysarthria severity assessment. Deep Neural
Networks (DNN), specifically Long-Short Term Memory
(LSTM) [32] and convolutional neural networks (CNNs)
[33], have been employed to analyze speech signals and
capture intricate temporal and spectral patterns. Thesemodels
can process raw speech data directly or extract features
automatically through multiple layers of computation. They
can learn complex representations and make predictions
based on the learned patterns, allowing for more accurate
severity assessment.

Research studies have demonstrated the potential of these
machine learning and deep learning models in objectively
quantifying the severity of dysarthria. These models offer
advantages such as increased efficiency, consistency, and
potential for remote or self-administered assessments. How-
ever, it is essential to note that these models are still evolving.
Their performance may vary depending on factors such as the
quality and diversity of training data, feature selection, and
the complexity of the dysarthria cases [34], [35].

B. FEATURES
Machine learning and deep learning models for assessing the
severity of dysarthria utilize a range of features extracted
from speech signals. These features capture different aspects
of speech production and can provide valuable information
for severity assessment. We can categorize these features into
four main groups: audio-based, image-based, video-based,
and text-based. Let’s break it down:

1) AUDIO-BASED FEATURES
Audio-based features for dysarthria classification based on
severity can be broadly categorized into acoustic, prosodic,
and spectral features [36], [37], [38], [39].
Acoustic features include the fundamental frequency (F0),

which corresponds to the pitch of the speech, as well as
measures of variability such as jitter and shimmer, reflecting
the stability of vocal fold vibration. The Harmonics-to-Noise
Ratio (HNR) is another acoustic feature that indicates the
ratio of energy in the harmonics of the speech signal to the
energy in the noise. Lower HNR values may indicate poor
voice quality.
Prosodic features play a role in dysarthria classification.

Speech rate, which refers to the number of syllables per unit
of time, can be affected by the severity of dysarthria. Pause
duration, or the length of pauses between speech segments,
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can provide insights into difficulties in speech production or
planning. Additionally, changes in stress patterns, including
variations in intensity, duration, and pitch of syllables, can
indicate the presence of dysarthria.
Spectral features offer valuable information for dysarthria

classification.Mel-FrequencyCepstral Coefficients (MFCCs)
capture the speech signal’s short-term power spectrum,
providing insights into the speaker’s vocal tract shape
and function. Linear Predictive Coding (LPC) coefficients
represent the spectral envelope of the speech signal, offering
information about the vocal tract shape and articulatory
movements. Formant frequencies, such as F1, F2, F3, etc.,
represent the resonant frequencies of the vocal tract during
speech production, revealing details about the shape and
position of the articulators (tongue, lips, etc.).

The audio-based features mentioned above are not the
only types in each group. They represent typical features for
dysarthria classification, but additional features can be within
each category [26], [40]. Table 11 summarizes some studies
that used this type of feature for classifying dysarthria based
on severity levels or estimating intelligibility for severity
classification of dysarthria.

2) IMAGE-BASED FEATURES
Image-based features in the context of dysarthria analysis
involve spectrograms, which are visual representations of the
frequency content of an audio signal over time.

Spectrograms provide a 2D visual representation of the
frequency content of an audio signal over time. They are com-
monly used in speech and audio analysis, including dysarthria
classification. By analyzing spectrograms, various features
can be extracted to characterize dysarthric speech. These
features include spectral envelope, spectral patterns, spectral
variations, and spectral entropy. Spectrograms offer valuable
insights into the frequency components and dynamics of
speech signals [41].
Mel spectrograms, also known as Mel-frequency spectro-

grams or Mel-scaled spectrograms, are a type of spectro-
gram that uses the Mel scale to warp the frequency axis
perceptually. The mel scale better aligns with the human
auditory system’s frequency perception. To generate a mel
spectrogram, the audio signal is divided into frames, and
the power spectrum is calculated using techniques like
the Fast Fourier Transform (FFT). The resulting power
spectrum is then transformed to the mel scale using triangular
filter banks. Mel spectrograms are particularly useful in
speech analysis tasks, including dysarthria classification.
They capture essential spectral information, such as formant
frequencies and spectral patterns, while aligning with human
perception. Mel spectrograms can be used as image-based
features for dysarthria analysis or further processed to
extract specific characteristics [42]. Additionally, log Mel
spectrograms, obtained by taking the logarithm of the values
in the Mel spectrogram, can compress the dynamic range and
enhance the visualization and analysis of the mel-frequency
content of the audio signal [43].

Table 2 summarizes some of the studies in the literature
within the collected papers for this review that have utilized
image-based features to classify dysarthria based on severity
levels.

3) VIDEO-BASED FEATURES
Video-based features in dysarthria analysis involve analyzing
the movement of the lips during speech. Lip Movement
Analysis aims to extract visual features that provide informa-
tion about lip shape, lip dynamics, and lip synchronization.
By analyzing the visual cues from lipmovements, researchers
can gain insights into the articulatory aspects of speech pro-
duction [44]. However, it is essential to note that classifying
the severity of dysarthria solely based on video-based features
can be challenging. Dysarthria affects speech mechanisms,
including articulation, phonation, resonance, and respiration,
which may not be directly observable in video footage. While
lip movements can provide valuable information [45], they
may not capture the complete picture of dysarthria symptoms.

It is worth mentioning that research and advancements in
computer vision techniques, such as facial landmark tracking
and optical flow analysis, continue to improve the estimation
of video-based features for dysarthria. These techniques
enable more precise extraction and interpretation of lip
movements and other facial cues, enhancing the potential for
video-based research in dysarthria assessment.

4) TEXT-RELATED FEATURES
Text-related features play a crucial role in classifying
dysarthria, providing valuable insights into the phonetic char-
acteristics and speech production patterns of individuals with
this condition. These features are derived from the analysis of
voice signals and focus on the phonetic content of the speech
rather than the textual information. Phoneme-level intelligi-
bility serves as a prominent text-related feature, assessing
the accuracy of phoneme production by transcribing and
comparing the phonetic content of the speech. Additionally,
phonetic distance and articulation errors contribute to the
classification process, quantifying the dissimilarity between
intended and produced phonemes and identifying specific
articulation difficulties. By incorporating these text-related
features, dysarthria classification models can capture and
analyze the phonetic intricacies of speech, enabling improved
understanding and identification of different dysarthria
subtypes and severity levels. Such as in [46], [47], and
lexical frequency, phonological neighborhood, word class,
and lexical familiarity in [48].

C. EVALUATION
The evaluation techniques used in machine learning and
deep learning models play a crucial role in assessing their
performance and effectiveness. These techniques provide
insights into the model’s predictive capabilities and help
practitioners make informed decisions [49], [50], [51], [52].
These evaluation metrics include Accuracy, which measures
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the overall correctness of the model’s predictions. Precision
and Recall are commonly used in binary classification tasks,
where precision measures the proportion of correctly pre-
dicted positive instances and recall measures the proportion
of correctly predicted positive instances among all actual
positives. The F1 Score combines precision and recall into
a harmonic mean. Mean Squared Error (MSE) is used for
regression tasks and measures the average squared difference
between predicted and actual values. Area Under the Curve
(AUC) evaluates binary classifiers by calculating the area
under the ROC curve. Cross-Validation helps assess model
performance across multiple iterations and reduces the risk
of overfitting. The Confusion Matrix provides a detailed
evaluation of the model’s performance by showing true
positives, true negatives, false positives, and false negatives.
These evaluation techniques assist practitioners in assessing
model performance, identifying areas for improvement, and
comparing different models for a given task.

V. DISCUSSION
Let’s analyze these categories of features to compare the
effectiveness of different features for classifying dysarthria
based on severity levels.

Table 1 summarizes studies that have used audio-based
features for dysarthria classification based on severity levels.
The studies utilize various audio-based features such as
fundamental frequency (F0), jitter, shimmer, harmonics-
to-noise ratio (HNR), speech rate, pause duration, stress
patterns, Mel-Frequency Cepstral Coefficients (MFCCs),
Linear Predictive Coding (LPC) coefficients, and formant fre-
quencies (F1, F2, F3, etc.). Different classification techniques
have been used, including Random Forest (RF), Support
Vector Machine(SVM), Artificial Neural Network (ANN),
Classification and Regression Tree (CART), Naive Bayes
(NB), DNN, CNN, LSTM, Residual Networks (ResNet),
multi-layer perception(MLP), Extreme Gradient Boosting
(XGBoost), Gaussian Mixture Model(GMM), Probabilistic
linear discriminant analysis (PLDA), Hidden Markov Model
(HMM), and k-nearest neighbor(KNN).

It can be seen that most of the researchers’ works were
evaluated based on standard publicly available datasets such
as TORGO [79], UA Speech [80], Qolt [81], and Numours
datasets [82], as well as some other locally collected datasets
or other less common foreign languages datasets.

Figure 3 shows the distribution of the included papers
chosen for this study based on Categorized Features and
Dataset Groups. The figure reveals interesting patterns in the
distribution of papers across different categorized features
and dataset groups in dysarthria classification. Among the
featured categories, audio-based techniques demonstrate the
highest representation across all dataset groups, including
TORGO, UA Speech, Nemours, Qolt, and others. This
indicates the prevalent use of audio features in dysarthria clas-
sification research across diverse datasets. The prominence
of audio-based techniques suggests that researchers prioritize

capturing the acoustic characteristics of dysarthric speech for
accurate classification.

In contrast, image-based and text-based features have a
limited presence, with only a few studies exploring their
potential within the UA Speech and other dataset groups.
This highlights a potential research gap and suggests the
need for further investigation into the utilization of visual
information for improved dysarthria classification. Video-
based features, on the other hand, are not extensively explored
in the selected papers, indicating a less prominent role in
dysarthria classification across all dataset groups. We added
the mixed category as well, which incorporates multiple
feature types and shows a moderate presence in some dataset
groups, underscoring the potential benefits of integrating
different modalities to enhance classification performance

The majority of audio-based features are used due to sev-
eral advantages. Firstly, they provide a direct measurement of
speech by capturing important properties of speech signals,
including pitch, intensity, and spectral characteristics. These
features are essential in evaluating dysarthria, primarily
affecting a person’s ability to produce clear and intelligible
speech.

Secondly, acoustic features allow for objective and quan-
titative analysis through signal-processing techniques. This
objectivity and quantifiability enhance the consistency and
reliability of dysarthria severity assessments. By relying
on concrete acoustic properties of speech, these measures
provide a more robust evaluation of the condition.

Another benefit is that acoustic analysis is non-invasive
and accessible. It can be conducted using standard methods
such as recording speech samples with a microphone. This
practicality makes acoustic analysis suitable for various
settings, including clinics, research studies, and telemedicine.
It eliminates the need for invasive procedures or specialized
equipment, increasing the ease of implementation.

Furthermore, acoustic features enable longitudinal mon-
itoring of dysarthria progression and treatment outcomes.
By analyzing changes in the acoustic properties of speech
over time, clinicians and researchers can assess the effec-
tiveness of interventions and track the impact of dysarthria
on an individual’s communication abilities. This longitudinal
perspective provides valuable insights into the management
and prognosis of dysarthria [83], [84], [85].

While using acoustic features in dysarthria assessment
offers several advantages, there are some limitations to
consider. Acoustic features partially represent dysarthric
speech, as dysarthria encompasses various communication
aspects beyond acoustic properties, such as articulation and
prosody. Additionally, acoustic analysis lacks the broader
context of communication, failing to capture factors like
facial expressions or situational cues that influence speech
intelligibility.

The generalizability of acoustic features is limited, as they
are derived from controlled environments and may not
account for real-world variations in acoustic conditions.
The acoustic analysis also primarily focuses on objective
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TABLE 1. Summary of the related works used the audio-based features for classifying dysarthria based on the severity levels.

measures, potentially overlooking subjective experiences
and perceptions of individuals with dysarthria. Moreover,
distinguishing between dysarthria subtypes solely based on
acoustic analysis can be challenging due to shared acoustic

characteristics [86], [87]. Despite the promising results of
the studies in Table 1, it shows some limitations due to the
above-mentioned drawbacks of the audio-based features and
other reasons related to the type and size of the dataset used
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FIGURE 3. The percentage of each feature’s category.

for their training and evaluation and the type of the classifiers
used.

To overcome these limitations, researchers and clinicians
often explore multimodal approaches incorporating other
data types, such as images, videos, linguistic features,
or perceptual assessments. Integrating multiple modalities
can provide a more holistic understanding of dysarthria
and improve the accuracy and robustness of the assessment
process. As can be seen, some of these attempts are shown
in Table 2 for studies that have used image-based features,
where most achieved high accuracies around 90% and above.
Despite the high performance in most studies in Table 2, there
are still some limitations, including data scarcity, challenges
in collecting dysarthric speech data, lower accuracy due to
limited datasets, and confinement to isolated utterances.

Some researchers have derived benefits from employing
text-based features within the feature types discussed earlier.
These features, extracted from the patient’s voice signal and
converted into text, have demonstrated promising outcomes.
However, their usage has significant limitations, rendering
exclusive reliance on these types impractical. These limita-
tions are represented by the sound quality, which plays a
crucial role in the transcription process.

Despite sophisticated speech models employed by Speech-
to-Text applications, accuracy can be compromised by the
type and specifications of the microphones used. Audio input
quality might be degraded if users speak too close to or too
far from the microphone, which can subsequently impact the
transcription’s precision. Another fundamental limitation is
the presence of background and environmental noise in the
audio input. Non-speech sounds can interfere with the audio,
leading to less accurate transcriptions. The complexity of
transcription can also escalate when multiple speakers speak
simultaneously or when there is background speech while
the primary user is speaking. Specialized vocabulary presents
another challenge. Even though Speech-to-Text models can
recognize a wide variety of words, they may stumble upon
unique terms or industry-specific jargon not included in the
model’s vocabulary, resulting in potential transcription errors.
Accents and dialects within the same language can pose

another difficulty. If a speaker’s accent deviates substantially
from the norm the model has been trained on; transcription
accuracy might decline. Finally, language mismatch can
considerably affect transcription accuracy. If the language the
user speaks differs from what the Speech-to-Text application
expects, the transcription will likely be less accurate. For
example, if the system is set to transcribe English, but the
user speaks Arabic, the output will likely be flawed [88].

Some approaches may combine audio with image or video
features to capture a more comprehensive representation of
dysarthric speech, such as in [6] where audio-visual joint
features are used as input to the CNN and evaluated on
UA Speech dataset with an accuracy up to 99.5%. Despite
the high performance of their work, their techniques face
a few limitations related to manual data pre-processing
and high computational power requirements. In [89], the
authors applied several types of features rather than mixing
them as one input to the classifier to check which type is
more effective in classifying dysarthria based on severity
levels, where they used Generalized Morse Wavelet (GMW)-
based scalogram features (for low-frequency areas) and
Mel spectrogram-based features with CNN. They evaluated
their work on the UA Speech dataset and achieved the
highest accuracy using Scalgram features at 95.17%. Another
work where the same has been done in [90] where several
experiments on MFCC, the audio combination of features
including( ZCR (Zero Crossing Rate), Spectral centroid,
spectral roll-off) and Mel spectrogram using KNN, and SVM
classifiers and evaluated their work on Torgowith an accuracy
of 95% using SVM for mel spectrogram.

It’s important to note that the choice of features depends on
the specific goals and requirements of the dysarthria severity
assessment task. Different features may carry different levels
of information and may be more or less suitable for various
applications. Researchers and practitioners often select and
combine features based on their relevance and effectiveness
in capturing the characteristics of dysarthric speech.

A. DISCUSSION OF RESEARCH QUESTION 1
Several types of features were used across the studies: The
most common type of feature is the Acoustic feature. These
includeMFCCs (Mel FrequencyCepstral Coefficients), voice
quality, and spectral and prosodic features (such as pitch
and rhythm). In a general analysis, most studies used a
combination of these features. Some studies focused on
features Domain-specific features of speech disorders, such
as breathiness features [5] and parameters related to glottal
function [53]. Hand-crafted and raw waveform features were
used by one study that combined these two approaches [54].
As shown in Figure 5, the mean accuracy obtained by

the most utilized classification techniques representing the
highest accuracy for each group of the datasets based on
audio features reached up to 90s. Let’s take, for example, how
different levels of severity are shown when pronouncing the
same sentence or the same word, as shown in Figure 4
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FIGURE 4. Audio signals vs their 40-MFCC features for pronouncing the
sentence: ‘Well, he is nearly ninety-three years old’ extracted from control
and three levels of dysarthria severity from TORGO dataset.

The dysarthric cases show variability in amplitude, with
the ‘‘Low level’’ having the most variability. As the severity
level increases from ‘‘Very Low’’ to ‘‘Medium,’’ the overall
amplitude of the waveform seems to increase, suggesting
louder vocal efforts or disruptions in speech. Concerning the
MFCCs, the ‘‘Very Low’’ and ‘‘Low’’ levels have MFCCs
that appear more diffuse, with fewer distinct patterns. The
‘‘Medium level’’ appears slightly more structured than the
other dysarthric cases but is still less defined than the normal
case. This indicates that relying solely on MFCCs might not
capture all the nuances associated with the different severity
levels of dysarthria, such that it can easily explore themedium
level but is difficult to differentiate the very low and low
levels. As the severity level progresses, the distinctiveness in
the MFCC patterns seems to decrease, which may indicate a
loss in speech clarity or more speech abnormalities. This fact
is applied to each feature extraction type where we cannot
guarantee catching all the distinct patterns among different
levels of severity.

As a proposed solution to differentiate these highly
diffused types of severity levels, using some specific features,
[53] like pitch features, temporal features, and specific
spectral features. Also, Complex, multidimensional feature
sets (a combination of features) tend to perform better and are
associated with high accuracy rates that could solve the issue
of variability among several levels of dysarthria severity. For
example, the study [55] used a mix of spectral, cepstral, and
frame-level features and achieved 99.9% with the UA Speech
dataset. While combining multiple features and techniques
can result in high accuracies, it can also introduce limitations
such as increased computational time [53] and difficulties in
interpreting feature importance [56].
Prosodic features, including articulation, often demon-

strate high performance in dysarthria classification. These
features capture essential aspects of speech production,
such as rhythm, intonation, and speech clarity, which are
crucial for assessing dysarthria severity. In [58] reported that

prosodic features are the best for classifying the mild cases
(which are better classified compared to severe and moderate
levels due to having more common features among speakers),
and the moderate cases over the spectral features, which
achieved remarkable results for classifying severe cases.
Cepstral features are less effective for classifying severity
levels. This is also approved by [57] and [76].

Some other techniques explored individual features for the
classification purposes of ineligibility levels or dysarthria
severity levels and discovered some significant features that
can achieve a high accuracy rate, such as in [5], which
relied on several types of breathiness features represented by
Jitter, Shimmer, Harmonic-to-Noise Ratio, Harmonic Energy,
Harmonic Energy of Residue, Harmonic-to-Signal Ratio,
and Glottal-to-Noise Excitation Ratio and reached 96%.
In their work, they discovered that Harmonic-related features
could distinguish intelligibility levels and achieve the highest
accuracy compared to other features but struggled with mild
dysarthria. Also, in [67], where the authors rely only on the
MFCC features set and achieved up to 99% accuracy rate after
experiencing several trails with different utterances lengths,
50, 200, and 300 and found that increasing the length of
utterances will lead to better performance. A similar attempt
relying on MFCC is in [91].
Concerning image-based features, the Mel spectrograms

and their log or derivatives are the primary types of features
and are primarily evaluated on TORGO and UA Speech
datasets, as shown in Figure 6. This is a benefit of using only
one type to save the preparation and extraction of too many
features, as the network is responsible for achieving this task.

The mean accuracies for classifying dysarthria based on
severity levels varied across different datasets. Among the
selected datasets, the TORGO dataset exhibited moderate
mean accuracies ranging from 73.99% (KNN) to 92.47%
(DL), with a notable performance from CNN (88.15%). The
UA Speech dataset showed higher mean accuracies, with
MLP achieving 98.17% accuracy, followed closely by LSTM
(96.94%) and CNN (96.23%). The Qolt dataset had lower
mean accuracies, with SVM and RF achieving approximately
70% accuracy. Notably, the Numours dataset demonstrated
highmean accuracies of 94.45% (SVM) and 95.8% (RF). The
Others dataset had an outstanding performance, with SVM
and CNN achieving mean accuracies of 96% and 91.8%,
respectively.

These mean accuracies provide insights into the effective-
ness of classifiers for different datasets in the context of
severity-based dysarthria classification. It is important to note
that the performance of classifiers can vary depending on the
dataset characteristics, such as the number of samples, data
quality, and diversity of dysarthria types.

B. DISCUSSION OF RESEARCH QUESTION 2
Regarding the classification techniques, advanced algorithms
such as Support Vector Machines (SVM), Discriminant
analysis, and deep learning models (DNN, CNN, LSTM)
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TABLE 2. Summary of the related works used image-based features for classifying dysarthria based on the severity levels.

were frequently seen and generally delivered a strong
performance. For example, SVM was widely utilized across
various studies, including [31], [40], [54], [56], [57], [58],
[60], [63], [66], [72], [74], and [76].

ANN-based models, seen in studies such as [31], [55],
[56], [58], [59], and [60]. RF showed in [31], [58], [60],
and [76], and Deep learning techniques (CNN, DNN, LSTM,
etc.), applied in studies [53], [61], [71], [77], yielded high
accuracies, typically above 90%.

Newer techniques like self-supervised learning with
Wav2vec 2.0 XLS-R, as seen in [54], didn’t perform as well,
achieving only a 65.52% accuracy rate. This highlights the
potential challenges in adapting these models for dysarthria
severity classification.

From Figure 4 , audio-based classification, SVM and RF
demonstrated relatively high mean accuracies across most
datasets. In the TORGO dataset, SVM achieved a mean
accuracy of 77.28%, while RF achieved 79.17% of mean
accuracy. In the UA Speech dataset, both SVM and RF
achieved accuracies above 80%, with SVM reaching 80.25%
and RF reaching 82.69%. However, in the Qolt dataset, the
mean accuracies for SVM and RF dropped to 70% and
70%, respectively. It’s important to note that RF achieved a
high accuracy of 95.8% in the Numours dataset, while SVM
achieved a remarkable accuracy of 96% in the Others dataset.

For image-based classification in Figure 5, CNN and
LSTM were the prominent techniques, as deep learning
techniques is a direct way to extract features and classify
them into several severity levels using their different layers

functions. In the TORGO dataset, CNN achieved an accuracy
of 88.15%, while LSTM achieved 99.2% accuracy. In the
UA Speech dataset, CNN demonstrated a high accuracy of
96.23%, and LSTM achieved 96.94% accuracy. Notably,
ResNet only yields accuracy for the UA Speech datasets
around 97%.

These results suggest that SVM and RF show consis-
tent performance across various datasets for audio-based
classification. Despite the effectiveness of using SVM,
it is reported in kadi2016fully that it is not adequate to
process utterances with diverse time lengths and needs
to unify the time lengths for all speech utterances. For
image-based classification, CNN and LSTM exhibit high
accuracies. However, further investigation and evaluation
are needed to determine these techniques’ generalizability
and performance on more extensive and diverse dysarthria
datasets.

The mean accuracies presented in the tables were obtained
by calculating the average of the highest accuracies reported
in the original papers for each dataset group. To ensure
accuracy and reliability, only the highest accuracy value
from each paper was considered. This approach allows
for a comprehensive analysis of the performance of the
classification techniques across different datasets, taking into
account the number of papers that reported the respective
accuracies. By aggregating the highest accuracies, we provide
a representative measure of the overall performance of the
techniques for each dataset group, considering the number of
papers that contributed to calculating the mean accuracies.
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FIGURE 5. Mean accuracy for audio-based features for common datasets.

FIGURE 6. Mean accuracy for image-based features for common datasets.

VI. LIMITATIONS
The audio-based features used in dysarthria classification
have certain limitations, which can be compared to image-
based features. By analyzing these limitations, we can gain
insights into the techniques and accuracies associated with
each feature type.

Regarding audio-based features, one limitation mentioned
in [5] is the struggle to accurately classify cases with mild
dysarthria. This implies that audio-based features might be
more effective in capturing severe dysarthria characteristics,
while their discriminatory power decreases with milder
cases. Additionally, there are difficulties in interpreting the
features and handling data diversity [31]. This suggests that
some audio-based features may lack clear interpretability
and may not be robust enough to handle the diverse
dysarthria characteristics. Furthermore, there are limitations
related to small datasets and the focus on a single type of
dysarthria [58], which can hinder the generalizability of the
findings.

On the other hand, image-based features also have their
limitations. For instance, inter-subject variability and gender
bias can impact the performance of image-based models [92].
These limitations suggest that certain image-based features
might be more influenced by individual differences, making
them less reliable for general dysarthria classification.

Another limitation is the computational time required for
specific image-based techniques [93], which can hinder their
real-time application.

When comparing the techniques and accuracies, it is
essential to note that the performance varies across different
studies and datasets. Audio-based features have reported
accuracies ranging from 40.41% to 95.80% [58], whereas
image-based features have achieved accuracies ranging from
72% to 99.20% [93], [96]. These variations highlight the
influence of the chosen techniques and datasets on the
achieved accuracies.

In summary, both audio-based and image-based features
are limited in the classification of dysarthria. Audio-based
features struggle with mild dysarthria cases, interpretation
difficulties, and limited datasets, while image-based features
face challenges related to inter-subject variability, gender
bias, and computational time. These limitations influence
the techniques used with these features and the resulting
accuracies, emphasizing the need to carefully consider the
feature type, technique selection, and dataset characteristics
in dysarthria classification research.

VII. FUTURE DIRECTIONS
Differentiating different dysarthria severity levels faces many
challenges, as discussed earlier. Researchers must follow
several directions to deal with different cases, which may
be shown with less variability, making classifying them
difficult or causing high false positive results. Some of these
directions:
Solving the Issue of Larger Data Size: Instead of utilizing

only the standard machine learning techniques or the
deep learning techniques which require large amounts of
the dataset, we suggest using rule-based models, which
outperform the other methods in terms of the necessity to
small data size for training either in terms of features or
samples, the more interpretable model explicitly compared
to deep learning, adaptable and generalized model due to the
generated rules which can be adjusted based on the specific
application, the used data nature and the non-linearity and
noise handling [99], [100].
Experiencing New Features: Some new features are

suggested to be used by researchers in this field, including
Nonlinear Dynamical Features, Vocal Tract Resonance
Estimation, Source-Filter Separation Features, Microprosody
Analysis, and Articulatory Kinematics.
Nonlinear Dynamical Features: Dysarthria affects the

coordination and control of speech production, resulting
in altered dynamics. Nonlinear dynamical features, such
as recurrence plots(can help visualize temporal patterns
in speech features that could indicate varying levels of
severity [101]), Variations in the fractal dimension of speech
signals could distinguish between different severity levels
of dysarthria [102], or entropy measures (e.g., permutation
entropy, sample entropy) (lower entropy indicates a less
complex, more predictable one, and dysarthria’s speech sig-
nals may become less complicated due to muscle weakness

VOLUME 12, 2024 48233



A. Al-Ali et al.: Detection of Dysarthria Severity Levels Using AI Models: A Review

and coordination difficulties, can capture the underlying
complexity and temporal organization of dysarthric speech
signals [103]). We know these features have not been utilized
to classify dysarthria. Still, it is used with speech analysis,
such as in [104], and it is helpful to be calculated and
combined with video-based features.
Vocal Tract Resonance Estimation: Investigate techniques

for estimating the vocal tract resonances directly from the
speech signal. This could involve formant tracking, subspace-
based analysis, or model-based estimation. This feature type
was utilized for classifying dysarthria subtypes in [105].
These features alone may not be sufficient for classifying
dysarthria based on severity levels. They primarily capture
information about the resonant characteristics of the vocal
tract, which can be influenced by various factors such as vocal
fold movement, articulatory precision, and vocal tract shape.
So, combining them with other acoustic features may help
build a successful classification model.
Source-Filter Separation Features: Dysarthria can affect

the speaker’s source (glottal excitation) and filter (vocal tract)
components. Extracting features that specifically focus on the
characteristics of the glottal source, such as measures related
to the glottal flow derivative or instantaneous frequency,
in combination with standard spectral features, can provide
a comprehensive representation for dysarthria classification.
These features have been utilized in [106] for automatic
dysarthric speech recognition and evaluated on the TORGO
dataset, which contains diverse severity samples. Still, there
is no specific classification model based on these features.
Microprosody Analysis: Investigate features that capture

fine-grained temporal variations within short speech seg-
ments, called microporosity. This could involve analyzing
pitch fluctuations, intensity modulations, or spectral changes
at very short time scales (e.g., using wavelet transforms or
time-frequency representations). These features can poten-
tially capture subtle dysarthric speech dynamics. These
types of features used mainly with speech synthesis and its
variations were also explored in many studies such as [107].
Articulatory Kinematics: Consider exploring articulatory

and kinematic features, such as lip or jaw motion tracking.
Using techniques like optical motion capture or electromag-
netic articulography, features can be extracted that describe
articulatory gestures’ spatial and temporal characteristics,
which may be informative for dysarthria classification. These
features have a notable correlation with the severity levels of
dysarthria as discussed in [108], and they have been used to
classify vocal segments into control, PD, and ALS, but still
no specific work on classifying dysarthria based on severity
utilizing this type of features.

VIII. CONCLUSION
Accurate classification of dysarthria according to its severity
levels holds significant implications for clinicians and
researchers. Such precision offers profound insights into
the ramifications of the disorder on one’s communicative

capabilities. Through this classification, clinicians can devise
bespoke therapeutic strategies, employ objective evaluation
metrics, and meticulously track progress, enhancing the
life quality of those with dysarthria. This comprehensive
review endeavored to critically evaluate the stratification of
dysarthria based on its severity, with particular emphasis
on the efficacy of diverse features and the prowess of
artificial intelligence methodologies. An in-depth perusal of
relevant literature revealed a marked preference for audio-
based features, predominantly in acoustic analysis, as the
principal modality in dysarthria classification. Nevertheless,
no isolated feature can delineate all gradations of dysarthria
severity. The most promising approach thus emerges as a
synergistic amalgamation of features designed to holistically
address all severity levels while mitigating the challenges
posed by limited data availability.

Interestingly, the selection of AI methodologies doesn’t
inherently guarantee superior accuracy. Both conventional
and cutting-edge techniques have demonstrated fluctuating
efficacies. Yet, it is noteworthy that deep learning algo-
rithms, especially when paired with image-based features,
have proven adept at extracting intricate, high-dimensional
features, thereby facilitating the facile classification of
diverse severity strata. As we gaze into the horizon of
dysarthria research, it becomes imperative to pivot towards
gender-agnostic and language-neutral models. Current lit-
erature indeed signals an inadvertent bias skewed towards
these dimensions, emphasizing the exigency of redressing
this oversight in future endeavors.
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