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Abstract: Numerous conventional methods are available for analyzing various water quality param-
eters to determine the water quality index. However, ongoing surveillance is necessary for large
bodies of water. A water quality monitoring system supports a robust surface and groundwater
ecosystem. Various tactics are used to improve aquatic habitats: identification of the precise chemical
pollutants released into the aquatic environment; advancements in assessing ecological effects; and
working on ways to enhance water quality through informing the public, communities, businesses,
etc. In order to save the marine ecosystem and those who entirely depend on these enormous bodies
of water, it is also crucial to continuously handle many data sets of water quality metrics. To predict
the water quality index, this review paper provides an overview of water quality monitoring, the
modeling and numerous sensors employed, and various artificial intelligence approaches. Various
water quality models were proposed to assess pH, a few components, and alkalinity. Additionally,
handling raw information for surface and groundwater quality metrics was studied using artificial
intelligence techniques like neural networks.

Keywords: water quality parameters; water quality index; surface water; groundwater; monitoring;
modeling; artificial intelligence

1. Introduction

Humans depend most heavily on water as a renewable capital, but finding safe water
is getting harder and harder. Two key causes of the global water crisis are an increase in
population and a temperature rise. According to its availability, water can be divided into
surface water and groundwater [1]. These two forms of water are contaminated due to
household, industrial, and agricultural processes that can release various contaminants [2].
Chemical and biological contaminants in drinking water cause chronic and acute health
problems when present in excess concentrations. Apart from the basic water testing meth-
ods, such as taste, odor, turbidity, color, and hardness, many other micro-approaches,
such as microbial contamination; inorganic constituents, such as heavy metals; pesticides;
fertilizers; organic compounds; and disinfectants contribute to major concerns for water
quality. To increase the amount of freshwater available for human consumption, desali-
nating and treating salty water from a lake, estuary, sea, or underground aquifers is an
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option. Managing water storage, delivery, or quality significantly harms human health and
ecosystems. Water quality can be categorized into palatable, potable, contaminated, and
infected water [3,4].

In 1984–1985, the initial version of the WHO Guidelines for Drinking Water Quality
(GDWQ) was issued in a three-part series and subsequently updated. Comprehending
and following these benchmarks is crucial to ensure that water quality remains within
permissible boundaries, safeguarding human health and the ecosystem. The primary
rationale behind advocating for guideline adoption rather than global benchmarks for
drinking water quality is the favorable outcome achieved by embracing a risk–benefit
strategy, whether in quantity or quality. This approach emphasizes preventive management
throughout the entire water supply chain, from the source to the end user. This review
article encompasses a broad spectrum of subjects related to monitoring water quality,
modeling, using sensors, and applying artificial intelligence methodologies. This extensive
coverage is distinctive because it is a comprehensive resource for individuals interested
in this field. Its distinctive quality lies in its particular emphasis on artificial intelligence.
This review paper thoroughly explores the integration of artificial intelligence techniques
in the realms of water quality monitoring and modeling. This dedicated focus on this
emerging technology stands out as a significant improvement compared with prior reviews,
which may not have highlighted artificial intelligence to the same degree. Furthermore,
this review article delves into advanced models for assessing water quality, particularly in
relation to parameters such as pH and alkalinity. This represents an original contribution,
as these models incorporate the most up-to-date research findings and offer a more precise
evaluation of water quality compared with older models.

2. Water Quality Monitoring

The broad concept of pollutant-free water involves several methods for analyzing
water quality, including sample collection, sample preparation, measurements, and evalua-
tion (Figure 1). For the analysis of water samples, suspended solids, and bottom material
for the presence of organic and inorganic elements, techniques such as colorimeters, gas
chromatography, AAS, ICP-MS, and photometers are used. Water quality is tested reg-
ularly to ensure safe drinking water for domestic, agricultural, and industrial purposes.
Conventional methods such as qualitative analysis are used widely in laboratories and
other organizations to identify these water parameters and determine the water quality
index. However, these methods are laborious, time-consuming, and expensive over modern
instrumental analytical techniques.
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A water quality monitoring system is vital in supporting a healthy ecosystem related
to surface water and groundwater. To enhance aquatic ecosystems, particular strategies
are adopted. This involves identifying the chemical pollutants that are disposed into the
aquatic environment; improving the diagnostics of ecological impacts; and working on
solutions to improve water quality by educating the public, communities, industrialists, etc.
Water quality monitoring can be done by collecting and analyzing water samples through
laboratory examination or with sensors recording data simultaneously. The cornerstone
of water quality management is water quality monitoring. The water quality monitoring
program follows local water quality guidelines. Water quality monitoring schemes are
based on water, surface water, households, wastewater management in industrial and
other applications, sewage water treatment, etc. The water quality parameters are selected
according to the specific use of the water in irrigation, industries, and domestic and water
bodies [4].

3. Water Quality Index and Parameters

Chemical, physical, and biological characteristics are the three categories of water
quality parameters [5,6]. Below is Table 1, which lists them all.

Table 1. Parameters of water quality.

Physical Chemical Biological Radioactive

Turbidity pH, acidity, alkalinity Bacteria Alpha emitter
Temperature Chloride and chlorine Algae Beta emitter
Color Elements Virus
Taste Hardness, Protozoa
Solids DO, BOD, COD
Electrical conductivity Toxic substances

An environmental monitoring program monitors the analyzed water quality parame-
ters and compares them with the established criteria and permissible limits set by governing
regional, national, and worldwide organizations (Table 2).

Table 2. WHO established standards for water quality parameters [7,8].

Parameters Maximum Permissible Limit
(mg/L)

TDSs 500

pH 8.50

Temperature (◦C) 25.0

Iron 0.30

Nitrate 50.0

Chromium 0.05

Lead 0.01

Ammonia 0.20

Turbidity (NTU) 5.00

Copper 1.00

Arsenic 0.01

Ammonia 0.50

Phosphate 5.00

Sulfate 400
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4. Modern Water Quality Sensors

Water quality monitoring sensors are necessary to identify diverse biological and
chemical pollutants in water. Additionally, factors such as size, speed, sensitivity, selec-
tivity, chemical nature, and response time of potential sensors are considered to detect
pollutants efficiently and selectively [9]. Industrial operations that release products related
to agrochemical, plastic, textile, pharmaceutical, fuel, pesticide, and chemical processes
are discharged into the environment and may damage the environment and living things
because they contain poisonous chemical substances. Consequently, the creation of sensors
for the detection of wastewater elements has drawn the attention of numerous scientists
over the past ten years. Among these sensor technologies, chemical sensors are pivotal.

Many varieties of sensors are available in the market to measure water quality param-
eters, such as dissolved oxygen, suspended solids, salinity, BOD, COD, residual chlorine,
conductivity, pH, and turbidity, where sensors such as a turbidity sensor, pH sensor,
chlorine sensor, biosensor, dissolved oxygen sensor, nucleic-acid-based sensor, residual
conductivity sensor, and salinity sensor are used [10] for water quality monitoring systems.
Table 3 describes the types of sensors used in wastewater quality management.

Table 3. The types of sensors used in wastewater quality management.

Sensor Types of Material Parameters LOD
(µg/L)

Additional
Information Reference

Electrochemical

Graphite carbon Lead and
cadmium ions 0.006 Toxic free [11]

Carbon with
immobilized silver
hexacyanoferrate

nanoparticles

Cyanide ions 0.025 Lower detection
limit [12]

Nanocomposite of CTAB Chlorophenol 0.178 Sensitive reading [13]

Nickel-based materials Phosphate 0.008 Poor electric
conductivity [14]

Optical

4-hydroxy salophen
cellulose membrane Cd(II) ions 0.053 Lower time response [15]

PDMS with fibre-optic Cu(II) 0.116 Minimum sample [16]

Optical fluorescent Fe(III), Zinc ion,
Hg(II) 0.187 Low-cost techniques [17]

Tri acetyl cellulose
membrane Cu(II) 0.005 Long lifetime [18,19]

Tri acetyl cellulose
membrane pH 0.178 High stability [20,21]

Piezophototronic Methylene blue 0.087 Solar energy [22]

Ultrasonics
Methylene blue,
phenol red, and

eosin dyes
0.147 Highly stable [23]

Monochromatic
ultrasonic

Water surface
position 0.167 Remote

measurement [24]

ADCP Temperature and
salinity 0.547

Limited response
due to complicated

patterns
[25]

Magnetite Fe3O4
Temperature

transition 0.541 Compose of
polyester polymer [26]

Magnetic nanocarbon
hybrids Temperature decay 0.008 Compose of

graphene oxide [27]
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Water plants’ embedded sensors and smart gadgets need proactive monitoring to
operate at their best. The above table gives information about some sensors used in water
quality monitoring and management [24].

5. Online Water Quality Monitoring System

To monitor the water quality in various distribution systems and water sources in
real time, online water quality monitoring (OWQM) is used. These OWQM systems use
online instrumentation technologies. These technologies have allowed for significant
progress in water treatment plant operation and surveillance of source waters. A recent
study assessed real-time water quality monitoring with chemical sensors for long-term use
consideration [28–30].

The systems can access real-time monitoring of the water quality parameters on
computers and mobile devices, if applicable, through the cloud server. The electronic
devices will immediately receive a warning if the wastewater quality exceeds a set of
values, allowing them to cease the effluent discharge. Hence, the problem can be fixed.
In Figure 2 below, an online water analysis system is presented; fourteen buoys were
installed in a freshwater lake, where each one was equipped with three ion-selective
electrodes that detect the concentration of ammonium ions, along with nitrate and chloride.
Wireless connection between the buoys was implemented using global system for mobile
communications (GSM) and general packet radio services (GPRS) protocols. The data
was accumulated in a single place. The data was accessible via the Internet, allowing for
real-time control of the system performance.
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Various management decisions are made using data from water quality sensors. These
include determining compliance with statutory water quality requirements, organizing
hydrant flushing, confirming water quality modeling, and implementing a contamina-
tion warning system (CWS). These include identifying compliance with regulatory water
quality requirements, verifying water quality modeling, planning hydrant flushing, and
implementing a CWS.

6. Water Quality Modeling

Pollutant fate, transport, and degradation in a natural water body system are rep-
resented mathematically in water quality modeling. Natural water systems are very
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complicated and highly organized systems. When a pollutant is added to a water body, the
concentration may increase or decrease within the system due to the interaction between
mass transfer and kinetic processes. A range of chemical, physical, and biological processes
govern the transport and modification of the water quality parameters in water bodies [32].
Water quality models vary regarding waterbodies, such as rivers, lakes, estuaries, oceans,
and groundwater; complexity; and suspended sediment, metals, dissolved oxygen, nu-
trients, chlorophyll, organic chemicals (SVOCs, persistent, bioaccumulative chemicals),
and pollutants.

Water quality modeling comprises a larger management process. The criteria for
selecting water quality modeling are applicability, cost, familiarity [32], waterbody type,
water quality simulation capabilities, ease of access to the software source code [33], etc.
To achieve a satisfactory result, each model must be calibrated and validated. Each water
quality model (Figure 3) has its characteristics and is designed according to the require-
ment, as given in Figure 4. Over time, various models have been created, including BASIN,
QUAL, EFDC, QUASAR, OTIS, and Streeter-Phelps, which are intended to simulate the
mechanisms regulating the water quality of surface waters. Although useful, none of these
models was truly created to represent the water quality in rivers affected by acidifica-
tion [33]. PHREEQ C and OTIS can simulate the mixing and movement of non-conservative
contaminants in streams. When simulating mixing, PHREEQ C considers dilution’s effects.
It can also equilibrate the mixed solution to a specific solid or gas phase [34].
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To estimate the pH and alkalinity in river water, the model in [35] calculates the pH
and the associated alkalinity in the mixing zone when acidic water is dumped into a river,
as shown in Figure 5. The velocity, pH, alkalinity, and temperature of the river water
and the acid discharge serve as the model’s inputs. There were two simulated situations:
first, assuming a constant flow when there is a change of pH in acidic discharge, and
second, when pH is constant, assuming an altered flow of the acidic discharge. The model
considers the impact of carbonic acid, and the investigator stated that the calculated values
agree with the laboratory’s findings. The outcome of the Zambezi River contamination in
Mozambique was predicted using the model configuration. Also, the investigator disclosed
that the model might be applied to foresee the potential effects of acid releases in rivers
that were not previously well-monitored [36].
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7. Artificial Intelligence in Water Quality Management

Water quality models end up with a huge collection of mathematical, chemical, and
statistical data. Due to the large amount of data obtained from various water bodies to
predict water quality index from the water quality parameters, predicting, modeling, and
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making relevant data-based decisions is complex. Hence, artificial intelligence (AI) plays a
major role. Hence, the analysis and prediction of water quality models must use artificial
intelligence. Artificial intelligence models examine the architecture for device management
and monitoring water quality trends (Figure 6).
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AI models can be used for surface water quality monitoring and assessment in lakes,
rivers, seas, and water reservoirs. The significant advantages of AI in water quality
monitoring and assessment are that it is fast, efficient, low-cost, and can be used for the
real-time monitoring and prediction of water quality. According to a recent study and
literature analysis, machine learning models perform well in examining the quality of
surface waters. Data collection, suitable algorithm selection, model training, and model
validation must be done before implementing machine learning [37].

8. Pros and Cons of Artificial Intelligence in Water Quality Monitoring and Modeling

Monitoring and modeling water quality are crucial components of environmental
supervision, and using artificial intelligence (AI) techniques holds the promise of com-
pletely transforming these domains. Figure 7 illustrates the advantages and disadvantages
associated with the application of AI techniques in the realms of water quality monitoring
and modeling.

AI techniques, particularly those encompassing machine learning algorithms, can
examine extensive datasets with remarkable accuracy and precision, pinpointing subtle
shifts in water quality that might elude traditional methods. Through real-time monitoring,
AI facilitates the swift identification of alterations in water quality parameters, enabling
prompt responses to pollution incidents or shifts in environmental circumstances. The
deployment of AI algorithms can automate data collection, processing, and analysis, mini-
mizing reliance on manual labor and heightening the efficiency of monitoring initiatives.
Predicting trends in water quality and issuing early alerts concerning potential pollution
occurrences are among the capabilities of AI models, aiding authorities in adopting preemp-
tive measures to thwart contamination. These methodologies excel at detecting intricate
patterns in water quality data that could pose challenges for human analysts to decipher,
assisting in pinpointing pollution origins and factors influencing water quality. As AI
models amass more data, they evolve and enhance their predictive capabilities, resulting in
improved forecasts and more refined models. Although the initial setup expenses for AI
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systems can be substantial, they ultimately pave the way for cost savings by streamlining
monitoring procedures and diminishing the need for constant manual intervention.
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Beyond these benefits, certain drawbacks accompany using AI techniques in water
quality monitoring and modeling. AI models are heavily reliant on precise and representa-
tive data. If the input data is erroneous or biased, the predictions and analyses generated
by AI models may also lack reliability. Numerous AI methods, particularly those involving
deep learning models, necessitate substantial data for effective training. Situations might
arise where an adequate historical dataset is not accessible. Certain AI models, like deep
neural networks, possess complexity that requires intricate interpretation. This complex-
ity could impede comprehension and trust in outcomes, especially within regulatory or
decision-making contexts. AI methods exhibit a deficiency in contextual understanding
and domain expertise, possibly resulting in the misconstruction of specific data patterns
or occurrences. Without meticulous design and rigorous testing, AI algorithms might
inherit biases embedded in the training data, potentially resulting in unjust or inaccurate
evaluations, particularly in applications with social sensitivities. Implementing AI methods
requires individuals possessing specialized proficiencies in water quality management and
AI technologies, which is a resource that might not be readily accessible in all geographic
areas. There exists a risk of overfitting, whereby AI models excel when using training data
but struggle to generalize to novel, unseen data. Additionally, AI models can be sensitive
to external variables, such as alterations in climate, land use, or infrastructure, which might
not be adequately represented in the training data.

9. Machine Learning in Surface Water Quality Management

As a powerful data analysis approach, machine learning is widely used to identify
patterns or make predictions based on big data generated from different scenarios. A recent
review article on the application of machine learning in water quality evaluation states that
machine learning is widely used as a powerful tool to predict water quality, optimize water
resource allocation, manage water resource shortages, etc. Table 4 gives information about
a series of AI models for surface water quality prediction.
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Table 4. Summary of application of different types of neural networks in water quality monitoring.

Location Model Size of Input Data Input Parameters References

Surabaya River,
Indonesia ANN 12 years (monthly) BOD, COD, DO, pH,

temperature [38]

Aiyi River, China ANN Unclear 12 parameters [39]

Yipin River, Huaxi River,
Wubu river, China MLP 2 years (monthly) Temperature, pH, PI, EC,

TP, NH3-N, TN and COD [40]

2 lakes, Tezpur
University, India ANN 4 months (every 5 days) TSSs, BOD [41]

Yamuna River, India ANFIS, BPNN, SVM,
ARIMA 14 years (monthly) DO [42]

Gorganrood Basin, Iran ANFIS 18 years (monthly) EC, SAR, TH [43]

Wadden Sea,
The Netherlands – Variable

Color, turbidity, TSSs,
salinity, temperature,
and chlorophyll

[44]

Hooghly River, India NN-CS, NN-GA,
NN-PSO –

pH, chlorides, TH, TA,
turbidity and residual
chlorine

[44]

Saint John River, Canada BPNN –
Turbidity, TSSs, TS, TDSs,
COD, BOD, DO, PH, EC,
temperature

[43]

Langat River and Klang
River, Malaysia RBF, BPNN 10 years (monthly) DO, BOD, COD, NH3-N,

TSSs, and pH [45]

In another review article based on AI for surface water quality monitoring and assessment,
literature analysis focused on the location of experiments, methods used, the input parameters,
and the output metrics applied. Figure 8 shows the last decade’s most frequently used neural
network models for surface water quality monitoring and assessment [43].
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In another comprehensive review [40] that stated that machine learning is widely used
in water quality monitoring and prediction, the performance of 45 machine learning algo-
rithms was evaluated in different water environments, such as surface water, groundwater,
drinking water, sewage, and seawater.
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10. Neural Network Models for Prediction of WQI

Artificial neural network models, specifically the long short-term memory (LSTM)
deep learning algorithm and nonlinear autoregressive neural network (NARNET), have
been created for WQI prediction (Figure 9).
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Figure 9. Different machine learning algorithms in different water management and treatment
systems. XG Boost, extreme gradient boosting; DO, dissolved oxygen; ANN, artificial neural network;
RF, random forest; SOM, self-organizing map; DT, decision tree; SVM, support vector machine; PCA,
principal component analysis; MP, micropollutant [46].

Three machine learning techniques have also been utilized for WQC forecasting:
support vector machine (SVM), naive Bayes, and K-nearest neighbor (K-NN) [47]. In
another study, researchers used 1679 samples and divided the data into 1119 samples for
training, 280 for testing, and 280 for validation. The datasets contained 1679 samples from
666 different rivers and lake sources acquired from different locations in India.

Artificial intelligence (AI) models were applied to predict and classify the WQI. An
alternative AI method is employed to predict water quality by using minimal and available
water quality parameters. The dataset includes seven important parameters: DO, BOD,
nitrate, pH, conductivity, fecal coliform, and total coliform. The FFNN algorithm was
used to classify the WQC data (Figure 10). The proposed methodology was statistically
evaluated and tested. The following conclusions were given.

An advanced AI ANFIS model could be developed to predict the WQI by selecting
important parameters from a standard dataset. Notably, prediction values were very close
to the observation values. Machine learning algorithms, namely, FFNN and KNN, were
developed for WQC. The FFNN outperformed KNN in WQC. The classification results of
the FFNN were superior to those of the KNN algorithm. In another study [35], for irrigation
purposes, the water quality of Ele River Nnewi, Anambra State, was analyzed for a year
for water quality index at four different locations regarded as points by using an artificial
neural network (ANN). The parameters comprised sodium (Na), electrical conductivity
(EC), pH, and TDSs. The investigator stated that a very good prediction was made using
an artificial neural network model of the real data set for water quality.

The feed-forward multi-layer neural network (FFMNN) model was used for perfor-
mance evaluation, as shown in Table 5. The model’s performance was assessed based
on the developed ANN model’s training, testing, and forecasting phases. The model’s
performance was examined by applying the coefficient of multiple determination R2 and
root-mean-squared error (RMSE). For the testing, training, and forecast models, the R2
values frequently seemed to differ in the second decimal place, correspondingly.
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Table 5. Statistical measurement of the trained, test, and forecast model with the parameters pH, total
dissolved solids (TDSs); sodium (Na; mg/L), and electrical conductivity (EC; decisiemens per meter).
P1, P2, P3, and P4 are the statistical trial numbers.

Parameters Stat. Measurement P1 P2 P3 P4

pH

RSQUAD TRAIN 0.981 0.983 0.982 0.990
RSQUAD TEST 0.956 0.955 0.959 0.955
RSQUAD
FORECAST 0.962 0.965 0.959 0.948

RMSE 0.048 0.022 0.026 0.043

TDSs

RSQUAD TRAIN 0.981 0.985 0.982 0.981
RSQUAD TEST 0.959 0.970 0.964 0.954
RSQUAD
FORECAST 0.947 0.965 0.949 0.945

RMSE 0.043 0.046 0.011 0.055

EC

RSQUAD TRAIN 0.989 0.982 0.984 0.982
RSQUAD TEST 0.967 0.959 0.951 0.954
RSQUAD
FORECAST 0.952 0.953 0.946 0.947

RMSE 0.015 0.017 0.028 0.080

Na

RSQUAD TRAIN 0.986 0.984 0.988 0.985

RSQUAD TEST 0.966 0.953 0.968 0.956
RSQUAD
FORECAST 0.961 0.958 0.950 0.949

RMSE 0.031 0.067 0.023 0.013
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11. AI Model for Estimation of Arsenic

In Figures 11 and 12 below describing a study on arsenic, the investigator [47,48] took
seven machine learning models—generalized regression neural network (GRNN), multi-
layer perceptron neural network (MLP), multivariate adaptive regression spline (MARS),
extreme gradient boosting (XGB), decision tree (DT), light gradient boosting (LGB), and
random forest (RF) (Figure 13)—and applied them to simulate the concentration of arsenic
(As) in several water sources (surface and groundwater) in Tarkwa, Ghana.
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The study’s findings suggested that the input variables copper (Cu), mercury (Hg),
cyanide (Cn), cadmium (Cd), arsenic (As), total dissolved solids (TDSs), total suspended
solids (TSSs), turbidity (TuB), electrical conductivity (EC), and pH were determined for a to-
tal of 387 water samples collected in 2015 from the study area’s surface water, groundwater,
and drinking water systems. The machine learning techniques employed were LGB, XGB,
and GRNN. The predictive performance was attained using DT and RF models. In this
study, machine learning techniques were employed to estimate the concentration of arsenic.

In another study, the physiochemical parameters and simple field measurements were
assessed by using ANNs for the estimation of nitrate (NO3−) concentrations in groundwater
(Figure 14). The simulation findings show that when the right input parameters and
the ANNs’ ideal structures are found, ANNs can be used to detect groundwater nitrate
pollution and for any different dataset in the same region. The models use meteorological,
location, land use, and hydrogeochemical data to predict pollution levels.
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A neural network, which is a subset of machine learning, consists of the input layer,
output layer, and a few hidden layers between the input and output layers. The experimen-
tal or observed data is considered the input layer (Figure 15). The results are summarized
in the output layer. This output layer is considered for summarizing parallel computa-
tion results in the middle layer. The results performed in each neuron are subsequently
considered the input for the next network layer.
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12. Neural Network Model for Estimation of Calcium

In an investigation [49] to predict the Tireh River’s (Iran) water quality components,
artificial intelligence methods, such as artificial neural network (ANN), group method of
data handling (GMDH), and support vector machine SVM, were employed.

A recent research study developed a new Android smartphone app for estimating
four water quality parameters: total dissolved solids (TDSs), electrical conductivity (EC),
pH, and turbidity in fishponds. An image capture from the samples using contact imaging
sensor techniques [16] is given in Figure 16. To estimate these four parameters, 12 features
were extracted from each image. The artificial neural network models were fed with
features as input.
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The RMSE and R2 parameters evaluated the models’ efficacy. The results state that the
network with a structure of 12–15–4 was selected as the best model. This approach was
effectively applied to an Android smartphone app called Water App. In order to test the
app on a smartphone, the model’s performance was evaluated once by using more recent
images. According to the results, R2 and RMSE values are given above in Table 6.

Table 6. The estimated and validation data from the water app for R2 and RMSE values.

Parameters R2 RMSE R2 from the Water App

pH 0.913 0.054 0.88
TDSs 0.993 1.835 0.884
EC 0.994 3.766 0.913
Turbidity 0.958 0.262 0.944

13. Machine Learning in Ground Water Quality Management

Like surface water, groundwater quality comprises biological, chemical, and physical
characteristics. Most of the time, researchers are most concerned about groundwater’s
biological and chemical characteristics, as it has no distinct flavor, odor, or color, and
the temperature remains constant most of the time. Mineral ions are naturally present
in groundwater. The groundwater, which is rich in mineral ions, slowly dissolves from
sediments, soil particles, and rocks when water flows over mineral surfaces in the aquifer’s
pores and the unsaturated zone (Figure 17).
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Figure 17. Evaluation of developed WaterApp for water quality parameters; included with permission
from [16] open access.

Groundwater contamination is a major problem that poses serious threats to human
health and environmental quality worldwide. It may be due to various human activities,
such as industrial, agricultural, and other related activities, leading to the leaching of
organic matter, pesticides, and nitrates deep into the aquifer. Human actions can lead to
groundwater pollution, altering its natural properties that influence the ease of groundwater
movement. To predict groundwater contamination, groundwater vulnerability assessment
is used.
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Numerous factors impact groundwater vulnerability, including anthropogenic activ-
ities (mining, the application of agricultural chemicals, land-use type, and other similar
activities in the region); natural influences, such as rainfall; and the intrinsic characteristics
of the aquifer system (depth to groundwater, topography) [17]. The groundwater vulnera-
bility assessment (GVA) methods can be categorized into four groups. The GVA methods
are further classified and are shown in Figure 18.
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An increase in nitrate concentration is a major groundwater quality issue that needs to
be assessed and monitored. In a research study [6] to map the groundwater vulnerability
of an urban aquifer for nitrate contamination, a fuzzy optimization model study was con-
ducted to determine the eight factors, where the impacts of the vadose zone, topography,
recharge, water table depth, aquifer media, soil media, land use, and hydraulic conductivity
were considered and rated. A fuzzy linear regression was generated using a modified ver-
sion of the DRASTIC methodology between the values of eight factors and corresponding
nitrate concentration in groundwater. The aquifer of Mashhad urban (northeast of Iran)
was chosen to evaluate the proposed model. Fuzzy linear regression (FLR) analysis was
conducted between the gridded rating of the eight parameters D, R, A, S, T, I, C, and L
as independent variables and the corresponding nitrate concentration (N) as dependent
variable (Figure 19).

Millions of people are affected by the natural occurrence of high fluoride concentra-
tions in groundwater, notably in the Global South. Since fluoride is odorless, tasteless, and
transparent, its presence in groundwater can remain undetected until the source is tested.
In an investigation to predict the fluorine contamination in groundwater in the Maku area
of northwest Iran, a comparative study was made with three machine learning algorithms,
namely, ELM, SVM, and MLP. The outcomes showed that the ELM models outperformed
the MLP and SVM models for the prediction of fluoride contamination (Figure 20) [11].

The study found that the SVM model with the RBF kernel function outperformed
the linear-, sigmoid- and polynomial-kernel-function-based models. The radial basis and
hard-limit functions, among the utilized activation functions, showed the best and worst
performances for ELM models, respectively. During model development trials, it was
observed that ELM models learned faster than the other models, while the SVM models
had the highest computation time.
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14. Directions of Further Research and Methods Development for Water Quality
Monitoring and Modeling

Prospective research directions and advancements in applying artificial intelligence
(AI) to water quality monitoring and modeling hold immense promise for advancing
environmental management. One notable avenue for exploration is integrating data from
diverse sources, such as satellite imagery, Internet of things (IoT) sensors, and contributions
from citizen science initiatives. This approach presents a bright outlook for improving
our understanding of water quality. As depicted in Figure 21, developing techniques to
amalgamate and harmonize these disparate datasets effectively can enhance the accuracy
and comprehensiveness of assessments related to water quality. By merging information
from these various origins, researchers can gain a more holistic view of environmental
conditions, allowing for more precise and informed decision-making in environmental
management.
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Another compelling research direction involves investigating strategies that enable AI
models, initially trained on a specific region or body of water, to generalize their knowledge
to similar yet previously unobserved areas. This approach is particularly valuable in situa-
tions where historical data is limited or unavailable. By devising methods for transferring
knowledge from one context to another, researchers can extend the applicability of AI
models, making them more versatile and adaptable to different environmental settings.

Additionally, there is a pressing need to focus on enhancing the interpretability of
AI models, particularly those based on deep learning architectures. AI systems, espe-
cially complex neural networks, often operate as “black boxes,” making it challenging to
understand the rationale behind their decisions. To foster greater trust and acceptance
of AI applications in water quality monitoring and modeling, it is essential to develop
methods that provide coherent explanations for the decisions made by these algorithms.
This transparency can help stakeholders, including environmental managers and the pub-
lic, to better comprehend AI-driven insights and recommendations, ultimately leading to
more effective and responsible environmental management practices. The future of AI in
water quality management lies in the integration of diverse data sources, the generaliza-
tion of AI models to new environments, and the enhancement of model interpretability.
These research directions hold the potential to significantly advance our ability to monitor,
model, and manage water quality, thereby contributing to more sustainable and informed
environmental stewardship.

The collaboration between artificial intelligence (AI) and water quality specialists,
with each contributing their unique strengths, offers the potential to achieve significantly
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improved and more precise modeling outcomes for water quality management. One
critical area of focus is the development of techniques to assess and quantify the uncertainty
associated with AI-generated forecasts. This step is of paramount importance for decision-
making processes and for establishing the reliability of insights generated by AI systems.
Uncertainty quantification helps decision-makers understand the confidence they can place
in AI-based predictions, which is crucial when making informed choices about water
quality management. It provides a way to communicate the level of risk or uncertainty
associated with specific AI-generated insights to stakeholders, enhancing transparency and
trust in the decision-making process.

Moreover, there is a need to explore AI methodologies that can adapt flexibly and in
real time to changing circumstances. In dynamic and rapidly evolving environments, such
as those found in water quality monitoring, the ability of AI systems to adjust their models
and predictions in response to new data or emerging trends is invaluable. This adaptability
enables more agile and responsive monitoring strategies, ensuring that decision-makers
can stay ahead of challenges and take timely actions to address water quality issues.

Another promising research direction involves the fusion of traditional physical mod-
els with AI-driven approaches. Integrating AI into existing modeling frameworks can offer
several advantages. It can enhance the accuracy of predictions by leveraging the data-
centric capabilities of AI, which can capture complex relationships that may be challenging
to represent using conventional physical models alone. Additionally, this integration allows
for a more comprehensive understanding of the underlying physical principles govern-
ing water quality. Through traditional modeling methods, AI can help identify patterns
and interactions that may not be readily apparent. By combining the strengths of both
approaches, researchers and water quality specialists can benefit from a more robust and
effective modeling framework. The synergy between AI and domain expertise in water
quality management can lead to superior modeling outcomes. Researchers should focus on
quantifying uncertainty, enabling real-time adaptability, and integrating AI with existing
physical models to enhance the accuracy and reliability of water quality predictions. These
efforts can contribute to more effective and informed decision-making in the field of water
quality management.

Addressing bias, equity, and ethical considerations within AI models is paramount,
especially in water quality management applications. First, ensuring that AI methods do
not perpetuate or exacerbate existing societal disparities is crucial. This entails rigorous
evaluation and mitigation of bias in AI algorithms to prevent them from unfairly impacting
certain communities or groups. Water quality management should prioritize fairness,
ensuring that the benefits and burdens of AI-driven solutions are equitably distributed
across populations. This includes addressing issues like environmental justice to ensure
that vulnerable communities are not disproportionately affected by water quality problems.
Second, developing AI systems that facilitate cooperation between automated algorithms
and human experts is essential. Interactive interfaces that allow experts to guide AI models
or make context-specific adjustments can enhance the synergy between human knowledge
and AI capabilities. This approach leverages the strengths of both AI and human expertise,
resulting in more effective and reliable decision-making in water quality management.

Another research direction involves using AI to optimize and manage sensor networks
for efficient data collection over vast water bodies. This can significantly reduce the cost
and resource requirements associated with monitoring water quality on a large scale.
AI-driven techniques can help in the strategic placement of sensors, ensuring that data
collection is maximized where it matters most. Additionally, the focus should be on
developing AI techniques capable of identifying and analyzing long-term trends in water
quality data. Understanding the effects of persistent phenomena like climate change and
urbanization over extended timeframes is critical for informed decision-making. AI can
assist in recognizing these trends, helping water quality specialists anticipate and address
long-term challenges.
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Furthermore, the formulation of AI-driven strategies for optimizing sampling method-
ologies is essential. This includes determining the best locations and timings for data
collection to maximize information acquisition and model accuracy. AI can assist in op-
timizing the allocation of resources, ensuring that data collection efforts are efficient and
cost-effective. Fostering collaboration between AI researchers, environmental scientists,
policymakers, and stakeholders is crucial. This multidisciplinary approach ensures that
AI solutions are developed with a deep understanding of real-world challenges and can
be effectively applied in practice. It encourages the co-creation of AI-driven solutions that
address the specific needs and priorities of the water quality management community. By
pursuing these research avenues and continually advancing AI methodologies, the field
of water quality monitoring and modeling can harness technological capabilities to gain
deeper insights into, manage, and safeguard invaluable water resources while ensuring
fairness, equity, and ethical considerations are upheld throughout the process.

15. Conclusions

Sensors are crucial in aiding researchers when specific target locations are inaccessible
due to challenging weather conditions, deep water bodies, extreme temperatures, salinity,
pressure variations, and similar factors. The development of sensor technologies becomes
essential for swiftly and precisely detecting contaminants. Such outcomes can contribute
to reducing the consumption of low-quality water, conserving water resources for future
generations, and mitigating the prevalence of severe diseases. The necessity to assess
pollution levels emerged as a solution, involving creating models and forecasts. This
task incurs significant investments in time, labor, resources, and manual efforts. Artificial
intelligence models were established using extensive data from diverse water bodies
gathered across various locations to predict and categorize drinking water quality. The
integration of Internet of things (IoT) technology brought forth a range of advantages
alongside the pre-existing sensor-based monitoring systems. These advantages encompass
remote system operation, cost reduction through minimized frequency of checks, seamless
communication, real-time monitoring of water volume, and more.

Additionally, real-time notifications empower authorities to make timely decisions.
While AI techniques hold immense potential to revolutionize water quality monitoring
and modeling, their successful application demands careful consideration of data accuracy,
model transparency, potential biases, and domain expertise. A well-balanced approach that
combines the strengths of AI with conventional monitoring methods can yield more precise
and actionable insights, consequently enhancing the efficacy of water quality management.
The mention of utilizing artificial intelligence techniques, including neural networks, to
manage raw data pertaining to surface and groundwater quality metrics is a specific and
potentially innovative aspect of this review. This approach is beneficial for addressing the
challenges associated with handling and interpreting extensive datasets, which are critical
for maintaining continuous water quality monitoring. In addition, this article explores
advancements in the assessment of ecological impacts resulting from water quality concerns,
which is a unique feature. Understanding the broader environmental repercussions of water
quality issues is indispensable for effectively managing and preserving aquatic ecosystems.

Moreover, the reference to disseminating information to the public, communities, and
businesses emphasizes the wider societal implications of water quality monitoring. This
review article provides valuable insights into raising awareness and engaging stakeholders.
Apart from this, this review paper offers practical guidance on applying artificial intel-
ligence techniques to cost-effective water quality monitoring, representing a distinctive
advantage. Such practical recommendations serve as a bridge between research findings
and their real-world implementation.
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Abbreviations

World Health Organization WHO
Guidelines for Drinking Water Quality GDWQ
Atomic absorption spectroscopy AAS
Inductively coupled plasma mass spectrometry ICP-MS
Dissolved oxygen DO
Biochemical oxygen demand BOD
Chemical oxygen demand COD
Nephelometric turbidity unit NTU
Online water quality monitoring OWQM
Global system for mobile communications GSM
General packet radio services GPRS
Contamination warning system CWS
Semi-volatile organic compounds SVOCs
Water Quality Analysis Simulation Program WASP
Better Assessment Integrating Point and Nonpoint Sources BASINS
Environmental Fluid Dynamics Code EFDC
Quality Simulation Along River Systems QUASAR
One-Dimensional Transport with Inflow and Storage OTIS
Adaptive neuro-fuzzy inference system ANFIS
Feed-forward neural network FFNN
K-nearest neighbor KNN
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