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Abstract: The prevalence of non-obese individuals with insulin resistance (IR) and type 2 diabetes
(T2D) is increasing worldwide. This study investigates the metabolic signature of phospholipid-
associated metabolites in non-obese individuals with IR and T2D, aiming to identify potential
biomarkers for these metabolic disorders. The study cohort included non-obese individuals from the
Qatar Biobank categorized into three groups: insulin sensitive, insulin resistant, and patients with
T2D. Each group comprised 236 participants, totaling 708 individuals. Metabolomic profiling was
conducted using high-resolution mass spectrometry, and statistical analyses were performed to iden-
tify metabolites associated with the progression from IS to IR and T2D. The study observed significant
alterations in specific phospholipid metabolites across the IS, IR, and T2D groups. Choline phosphate,
glycerophosphoethanolamine, choline, glycerophosphorylcholine (GPC), and trimethylamine N-
oxide showed significant changes correlated with disease progression. A distinct metabolic signature
in non-obese individuals with IR and T2D was characterized by shifts in choline metabolism, includ-
ing decreased levels of choline and trimethylamine N-oxide and increased levels of phosphatidyl-
cholines, phosphatidylethanolamines, and their degradation products. These findings suggest that
alterations in choline metabolism may play a critical role in the development of glucose intolerance
and insulin resistance. Targeting choline metabolism could offer potential therapeutic strategies for
treating T2D. Further research is needed to validate these biomarkers and understand their functional
significance in the pathogenesis of IR and T2D in non-obese populations.

Keywords: phospholipid metabolites; choline phosphate; glycerophosphoethanolamine; choline;
glycerophosphorylcholine (GPC); trimethylamine N-oxide choline; metabolomics; non-obese; insulin
resistance; type 2 diabetes mellitus

1. Introduction

Phospholipids are crucial cellular membrane lipids which form lipid bilayers. These
membrane lipids form barriers between the cell and the environment and between different
cellular compartments and are precursors of multiple signaling molecules. Alterations in
their homeostasis are associated with the pathogenesis of numerous diseases. Choline, glyc-
erophosphoethanolamine, and glycerophosphorylcholine (GPC) are important constituents
of phospholipids [1–4].

The association of choline, glycerophosphoethanolamine, and GPC with insulin resis-
tance has been investigated in several studies. High dietary choline and betaine intake has
been associated with lower levels of insulin resistance [5]. Another study investigating the
association between dietary choline and betaine intake and the risk of type 2 diabetes risk
indicated sex-based differences in associations. Among male participants, dietary choline
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or betaine intake was not associated with the risk of type 2 diabetes, whereas among female
participants, a trend toward a modestly higher risk of type 2 diabetes was observed in the
highest quartile compared with the lowest quartile of dietary choline intake [6]. Another
study has reported that choline supplementation induces glucose and insulin intolerance
in mice through modulating plasma glucagon and its action in the liver. These findings
suggest a potential link between choline metabolism and hepatic insulin resistance [7].
Choline metabolism plays an important role in the development of IS, IR, and T2D. A study
found that higher choline intake was associated with lower T2D risk among men in eastern
Finland. However, the relationship between choline and T2D risk may differ by sex [8].

Advancements in metabolomics techniques, particularly in mass spectrometry (MS)
technologies, have enabled new discovery of new metabolic factors that influence the
progression of diseases, including those in metabolically healthy and pathologically obese
groups with insulin resistance and T2D [9,10]. Recent evidence has indicated a metabolomics
pattern for T2D by identifying metabolites significantly unchanged between lean and obese
groups and significantly dysregulated in the T2D group compared with both lean and
obese groups. The findings have revealed metabolites associated with insulin resistance
and obesity, including phospholipids, thus providing insights into the metabolic changes
linked to disease development and progression [11].

We have previously identified phospholipid metabolites, including choline, glyc-
erophosphoethanolamine, and GPC, as potential novel biomarkers of obesity-associated
insulin sensitivity when compared with obese insulin resistant and type 2 diabetes mellitus
(T2D) individuals. These findings have suggested potential diagnostic and therapeutic
applications of these metabolites [12]. The novelty of this study lies in its unique approach
to understanding the relationship between phospholipid metabolites and insulin resistance
in a non-obese population. To close the existing knowledge gap, the aim of this study
was to perform an untargeted metabolomics analysis of blood samples in a larger cohort
from Qatar Biobank (QBB) in different body mass index (BMI) groups to investigate the
association of phospholipid metabolites with IR in non-obese participants.

2. Materials and Methods
2.1. Data Source and Study Participants

This study used data from QBB, which compiles comprehensive data on Qatari citizens
and long-term residents (≥15 years) who are 18 years of age or older. The QBB’s database
contains a wide range of information, including basic personal details and extensive
health data such as BMI, blood pressure, blood test results, diabetes history, medication
details, and metabolomic profiles, including analysis of more than 1000 metabolites. The
data collection and analyses were conducted at the central laboratory of Hamad Medical
Corporation, which is certified by the College of American Pathologists. A BMI > 30
is an exclusion factor for this study. A threshold of 1.85 was used as the cut-off point
(75th percentile) to dichotomize participants into non-obese insulin-sensitive (IS) and
insulin-resistant (IR) groups [13]. Individuals with T2D were categorized based on HbA1C
level > 6.5% or glucose ≥7 mmol/L and according to the physician’s diagnosis based on
established clinical guidelines, which included a thorough review of the patients’ histories
and medical records.

2.2. Metabolomics

Metabolomic profiling was performed using Metabolon’s platform, according to
standardized protocols. A Waters ACQUITY ultra-performance liquid chromatography
(UPLC) instrument (Waters Corporation, Milford, MA, USA) coupled to a Q-Exactive
high-resolution/accurate mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
was used. This setup included a heated electrospray ionization (HESI-II) source and an
Orbitrap mass analyzer, operating at a mass resolution of 35,000. Detailed information
regarding the liquid chromatography–mass spectrometry (LC–MS) techniques used herein
has been described in prior publications [14]. In brief, the serum samples were initially
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processed through methanol extraction to remove proteins. The extracted samples were
then divided into five parts: two parts were analyzed with different reverse-phase UPLC-
MS/MS techniques with positive ion mode electrospray ionization (ESI), one part was
analyzed with reverse-phase UPLC-MS/MS with negative ion mode ESI, another part
was analyzed with hydrophilic interaction chromatography (HILIC)-UPLC-MS/MS with
negative ion mode ESI, and the final part was reserved as a backup sample. The raw
data were processed, and peak identification and quality control were performed with the
specialized equipment and software provided by Metabolon [15]. The identification of
compounds was achieved by comparison with a reference library comprising more than
3300 known standards or consistently present unknown substances. This extensive library
comprised a collection of commercially available purified standard compounds. For each
examined compound, matches from the library were carefully reviewed for every sample
and modified as necessary [16].

2.3. Statistical Analysis

The subjects were matched optimally based on their propensity scores using a propen-
sity scores model containing age and sex to ensure balance between IS, IR, and T2D
participants, and matched data were used for subsequent analysis. Clinical data were
checked for normality using the Shapiro–Wilk test followed by the Kruskal–Wallis test to
compare the three groups (IS, IR, and T2D) and Student’s t-test/Mann–Whitney U test
to compare the mean/median between the IS and IR+T2D groups. Metabolomics data
were subjected to inverse rank normalization prior to statistical analysis. Multivariate
principal component analysis (PCA) and orthogonal partial least-discriminant analysis
(OPLS-DA) was performed to evaluate the difference in the metabolic profile between the
study groups (Supplementary Figure S1). PCA was initially used to visualize the data and
assess the overall separation between groups. Following this, OPLS-DA was applied to
identify specific metabolites that significantly differed between groups.

Univariate analysis was performed via linear regression taking each metabolite as
response variable and groups (IS, IR, and T2D) as the predictor variable. In the first
model, the group was continuous to represent the different stages of disease progression
[IS (1) → IR (2) → T2D (3)], and the second model included the group as categorical vari-
able to confirm previously published study [12] in a non-obese cohort. The model also
contained confounding factors such as age, sex, body mass index (BMI), and principal
components 1 and 2 (PC1 and PC2) from the PCA. Spearman’s correlation was conducted
to investigate the association between the significant metabolites and clinical traits. All
statistical tests were performed using R software (version 4.2.1) and SIMCA (version 18.0.0).

3. Results
3.1. General Characteristics of Study Participants in the Non-Obese Cohort

The non-obese cohort included IS (n = 236), IR (n = 236), and T2D (n = 236) individuals
aged <50 years. Due to propensity score matching, the sex distribution was similar between
the IS and IR+T2D groups with approximately 62% males and 38% females in the IS group
and 65% males and 35% females in the IR+T2D group. The average age of participants in
both groups was also similar with a median of 45 years in the IS group and 46 years in
the IR+T2D group. The average systolic blood pressure and the average pulse rate were
higher in the IR+T2D than the IS group, with a p-value of 0.039 and 0.000, respectively.
HOMA-IR (a measure of insulin resistance), insulin levels, glucose levels, HBA1c (a marker
of long-term blood glucose control), C-Peptide (a marker of insulin production), triglyceride
levels, and waist-to-hip ratio (a marker of central obesity) were higher in the IR+T2D group
than the IS group, with a significant p-value of ≤0.001. Free thyroxine and HDL cholesterol
levels were slightly higher in the IS group than the IR+T2D group, with a p-value of 0.019.
Alkaline phosphatase levels, AST (GOT), and total bilirubin levels did not significantly
differ between groups (Table 1).
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Table 1. General characteristics of participants in the non-obese cohort.

Variables IS
(n = 236)

IR
(n = 36)

T2D
(n = 236)

p-Value
(KW)

IR+T2D
(n = 472)

p-Value (IS
vs. IR+T2D)

Sex
Male 146 (61.86%) 149 (62.3%) 160 (66.9%) 309 (65.47%) 0.390

Female 90 (38.14%) 87 (36.4%) 76 (31.8%) 163 (34.53%)
Age (years) 45 (39–49.25) 45 (39–49) 49.5 (41–57) <0.001 46 (40–54) 0.009

BMI (kg/m2) 26.91 (25.19–28.36) 27.19 (25.43–28.61) 27.1 (25.56–28.58) 0.467 27.19
(25.48–28.6) 0.228

Average systolic BP (mmHg) 114.5 (105–126) 114 (107–123) 119 (112–130) <0.001 117 (109–127) 0.039
Average diastolic BP (mmHg) 74 (67–82) 75 (68–83) 75.5 (69–81) 0.935 75 (68–81) 0.716

Average pulse rate
(beats/min) 65 (59–70) 67 (62–72) 72 (65–79) <0.001 68 (63–76) <0.001

HOMA-IR (mmol/L) 1.31 (1–1.57) 3.13 (2.2–4.86) 4.84 (2.42–11.22) <0.001 3.59 (2.21–7.19) <0.001
Insulin (pmol/L) 6 (5–7) 13.1 (10–20.02) 13 (7.45–25.75) <0.001 13 (9–22.4) <0.001

Glucose (mmol/L) 4.82 (4.6–5.1) 5.26 (4.9–5.7) 7.5 (6.3–9.93) <0.001 5.8 (5.1–7.5) <0.001
HBA1c (%) 5.4 (5.1–5.7) 5.5 (5.2–5.7) 6.7 (6–8) <0.001 5.8 (5.4–6.7) <0.001

C-Peptide (nmol/L) 1.66 (1.42–2.11) 3 (2.3–4.12) 2.66 (1.73–4.06) <0.001 2.84 (2.06–4.08) <0.001
Weight (kg) 74.5 (67.52–80.88) 74.75 (67.45–82.62) 73.05 (66.9–80.5) 0.371 74 (67.18–81.53) 0.939

Waist size (cm) 86 (80.75–92) 88 (82–94) 90 (86–97) <0.001 89 (83–95) <0.001
Hip size (cm) 102 (98–106) 103 (99–106) 100 (97–104) <0.001 101 (98–105.25) 0.198

Waist-to-hip ratio 0.86 (0.79–0.9) 0.87 (0.8–0.92) 0.92 (0.84–0.96) <0.001 0.89 (0.82–0.94) <0.001

Free thyroxine (pmol/L) 13.22 (12.28–14.2) 12.7 (11.88–13.7) 13.12
(12.29–14.16) 0.001 12.9

(12.05–13.83) 0.019

Free triiodothyronine
(pmol/L) 4.4 (4–4.7) 4.5 (4.1–4.9) 4.4 (4–4.8) 0.076 4.45 (4.1–4.8) 0.137

Total cholesterol (mmol/L) 5.1 (4.4–5.88) 5.26 (4.6–5.85) 4.94 (4.2–5.63) 0.003 5.1 (4.4–5.75) 0.499
HDL cholesterol (mmol/L) 1.35 (1.14–1.61) 1.22 (1.04–1.45) 1.13 (0.94–1.38) <0.001 1.19 (0.99–1.43) <0.001
LDL cholesterol (mmol/L) 3.08 (2.52–3.92) 3.18 (2.75–3.94) 3 (2.1–3.6) 0.001 3 (2.37–3.76) 0.259

Triglyceride (mmol/L) 1.1 (0.81–1.48) 1.37 (0.99–2) 1.69 (1.12–2.36) <0.001 1.5 (1.05–2.2) <0.001
Total protein 73 (71–76) 73 (70–76) 73 (70–75) 0.146 73 (70–75) 0.182

Alkaline phosphatase (U/L) 65 (54–80) 67 (56–79) 68 (56–81) 0.434 67 (56–80) 0.319
ALT (GPT) (U/L) 19 (14–27.25) 22 (16–33) 21 (16–31) <0.001 21 (16–32) <0.001
AST (GOT) (U/L) 18 (15–22) 18 (16–24) 17 (14–22) 0.002 18 (15–23) 0.932

GGT (U/L) 16.5 (13–26) 24 (14–34.5) 23 (15.5–35.5) 0.026 23 (14.25–35) 0.008
GGT_2 (U/L) 23 (17–31) 27 (18.5–37) 28 (18.5–42) 0.032 27 (18.25–38) 0.011

Bilirubin Total (µmol/L) 6.95 (5–9) 6 (4.7–8.75) 6.45 (4.62–9) 0.346 6.2 (4.7–9) 0.229

p-value significance level of 0.05 was used. The data are presented as median (IQR) after the Shapiro–Wilk
normality test has indicated that it does not follow a normal distribution, and the medians were compared using
Mann–Whitney U test and Kruskal–Wallis (KW) test. Percentage/count data were compared using Chi square
test. [ALT—Alanine transaminase, AST—Aspartate aminotransferase, BMI—Body mass index, GGT—Gamma-
glutamyl transferase, HOMA-IR—Homeostatic Model Assessment for Insulin Resistance, HDL—High-density
lipoprotein, LDL—Low-density lipoprotein].

3.2. Phospholipid Metabolites Associated with Different Stages of Disease

A linear model was used to assess the significance of phospholipid metabolites associ-
ated with different stages of disease in non-obese individuals by comparing IS vs. IR vs.
T2D. Five metabolites exhibited significant differences associated with disease progression
(Table 2): choline phosphate, glycerophosphoethanolamine, choline, glycerophosphoryl-
choline (GPC), and trimethylamine N-oxide. Figure 1 demonstrates patterns of increased
choline phosphate, GPC, and glycerophosphoethanolamine or decreased of choline metabo-
lites in the studied groups.

Table 2. Phospholipid metabolites associated with metabolic dysfunction progression in non-obese
individuals.

Metabolite Sub-Pathway Estimate SE p-Value FDR

Choline phosphate Phospholipid Metabolism 0.232 0.045 2.52 × 10−7 2.69 × 10−6

Glycerophosphoethanolamine Phospholipid Metabolism 0.186 0.041 7.09 × 10−6 5.38 × 10−5

Choline Phospholipid Metabolism −0.199 0.047 3.08 × 10−5 2.06 × 10−4

Glycerophosphorylcholine (GPC) Phospholipid Metabolism 0.139 0.045 2.21 × 10−3 8.36 × 10−3

Trimethylamine N-oxide Phospholipid Metabolism −0.108 0.041 9.01 × 10−3 2.82 × 10−2

FDR significance of 0.05 was used.
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Figure 1. Jitter plot of significant metabolites, showing the means and standard deviations. The figure
also features a line plot for visualizing trends among the means of the IS, IR, and T2D groups. Y-axis
represents the normalized value of metabolites.

3.3. Phospholipids Metabolites Differentiating IS from IR+T2D

Non-targeted metabolomics analysis of serum samples from the 708 participants
was performed to identify metabolites significantly differentiating individuals with IS
vs. IR+T2D to identify a metabolic signature of non-obesity-associated insulin resistance
and T2D. The analysis identified metabolites associated with phospholipid metabolism,
specifically choline phosphate, choline, trimethylamine N-oxide, and glycerophospho-
ethanolamine.

Linear regression analysis (Table 3) estimated a positive effect size of 0.299 and 0.205
for choline phosphate and glycerophosphoethanolamine, respectively. In contrast, choline
and trimethylamine N-oxide exhibited negative effect sizes of −0.303 and −0.215.

Table 3. Results of linear regression analysis to identifying significant phospholipid metabolites
between IS and IR+T2D.

Metabolites Sub-Pathway Estimate SE p-Value FDR

Choline phosphate Phospholipid Metabolism 0.299 0.077 1.19 × 10−4 8.18 × 10−4

Choline Phospholipid Metabolism −0.303 0.082 2.31 × 10−4 1.45 × 10−3

Trimethylamine N-oxide Phospholipid Metabolism −0.215 0.071 2.55 × 10−3 1.18 × 10−2

Glycerophosphoethanolamine Phospholipid Metabolism 0.205 0.071 4.11 × 10−3 1.77 × 10−2

FDR significance of 0.05 was used.

To visualize the trends among the means of these significant metabolites, we con-
structed a jitter plot (Figure 2) displaying the adjusted means derived from a linear regres-
sion model, along with their corresponding standard errors (SEs). Additionally, a line plot
is included in Figure 2 to aid in visualization of the trends between the IS and IR+T2D
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groups. Figure 2 illustrates the differences in metabolite levels between the IS and IR+T2D
groups. Choline phosphate and glycerophosphoethanolamine had higher levels in the IS
group than the IR+T2D group. In contrast, choline and trimethylamine N-oxide had lower
levels in the IS group than the IR+T2D group.
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3.4. Other Significant Phospholipid-Associated Metabolites Significantly Differentiating IS vs.
IR+T2D in Non-Obese Participants

We performed linear regression analysis to identify the presence of significant phospho-
lipid-associated metabolites in non-obese participants. Table 4 provides a comprehensive
overview of the findings. The analysis revealed the presence of various types of phospholipids,
including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol.

Table 4. Other significant phospholipid-associated metabolites in non-obese participants.

Metabolite Sub-Pathway Estimate SE p-Value FDR

1-Palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) * Phosphatidylcholine 0.431 0.068 4.51 × 10−10 1.78 × 10−8

1-Palmitoyl-2-oleoyl-GPC (16:0/18:1) Phosphatidylcholine 0.342 0.059 1.12 × 10−8 2.95 × 10−7

1-Palmitoyl-2-dihomo-linolenoyl-GPC
(16:0/20:3n3 or 6) * Phosphatidylcholine 0.367 0.064 1.6 × 10−8 4.21 × 10−7

1-Palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) Phosphatidylcholine 0.333 0.060 4.17 × 10−8 9.55 × 10−7

1-Myristoyl-2-arachidonoyl-GPC (14:0/20:4) * Phosphatidylcholine 0.348 0.064 8.93 × 10−8 1.85 × 10−6

1-Stearoyl-2-oleoyl-GPC (18:0/18:1) Phosphatidylcholine 0.278 0.061 6.62 × 10−6 7.48 × 10−5

1-Myristoyl-2-palmitoyl-GPC (14:0/16:0) Phosphatidylcholine 0.288 0.071 5.17 × 10−5 4.06 × 10−4

1-Palmitoyl-2-linoleoyl-GPC (16:0/18:2) Phosphatidylcholine 0.265 0.073 3.04 × 10−4 1.81 × 10−3

1-Stearoyl-2-arachidonoyl-GPC (18:0/20:4) Phosphatidylcholine 0.220 0.063 5.30 × 10−4 3.01 × 10−3

1,2-Dipalmitoyl-GPC (16:0/16:0) Phosphatidylcholine 0.198 0.059 7.42 × 10−4 4.01 × 10−3

1-Palmitoyl-2-arachidonoyl-GPE (16:0/20:4) * Phosphatidylethanolamine 0.438 0.062 5.76 × 10−12 4.56 × 10−10

1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) Phosphatidylethanolamine 0.440 0.067 8.78 × 10−11 4.50 × 10−9

1-Palmitoyl-2-linoleoyl-GPE (16:0/18:2) Phosphatidylethanolamine 0.421 0.068 9.41 × 10−10 3.28 × 10−8

1-Stearoyl-2-oleoyl-GPE (18:0/18:1) Phosphatidylethanolamine 0.370 0.069 1.23 × 10−7 2.39 × 10−6

1-Stearoyl-2-arachidonoyl-GPE (18:0/20:4) Phosphatidylethanolamine 0.357 0.068 2.26 × 10−7 4.02 × 10−6

1-Stearoyl-2-linoleoyl-GPE (18:0/18:2) * Phosphatidylethanolamine 0.340 0.075 7.54 × 10−6 8.31 × 10−5

1-Palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) * Phosphatidylethanolamine 0.226 0.064 3.96 × 10−4 2.31 × 10−3

1-Palmitoyl-2-arachidonoyl-GPI (16:0/20:4) * Phosphatidylinositol 0.319 0.077 3.50 × 10−5 2.90 × 10−4

1-Palmitoyl-2-oleoyl-GPI (16:0/18:1) * Phosphatidylinositol 0.300 0.076 8.53 × 10−5 6.24 × 10−4

1-Palmitoyl-2-linoleoyl-GPI (16:0/18:2) Phosphatidylinositol 0.302 0.077 9.11 × 10−5 6.62 × 10−4

1-Stearoyl-2-arachidonoyl-GPI (18:0/20:4) Phosphatidylinositol 0.280 0.076 2.32 × 10−4 1.45 × 10−3

FDR significance threshold of 0.05 was used. * Indicates that Metabolon is confident about the identity of the
metabolites, however it is not confirmed based on the standard.
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In the phosphatidylcholine sub-pathway, several metabolites significantly differed be-
tween groups, such as 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), 1-palmitoyl-2-dihomo-
linolenoyl-GPC (16:0/20:3n3 or 6), and 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4). In the
phosphatidylethanolamine sub-pathway, significant metabolites included 1-palmitoyl-2-
arachidonoyl-GPE (16:0/20:4), 1-stearoyl-2-linoleoyl-GPE (18:0/18:2), and 1-palmitoyl-2-
docosahexaenoyl-GPE (16:0/22:6). Finally, in the phosphatidylinositol sub-pathway, signif-
icant metabolites included 1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4) and 1-palmitoyl-
2-oleoyl-GPI (16:0/18:1). These findings contribute to a better understanding of the
phospholipid-associated metabolites in non-obese individuals.

3.5. Correlation of Significant Metabolites with Mediators of Metabolic Disease

To determine which clinical parameters are most strongly linked to the metabolites
that exhibit significant differences across disease groups (as shown in Figure 3), a partial
correlation analysis was performed. This statistical technique allows for evaluating the
relationship between each metabolite and each clinical parameter while controlling for
the potential influence of all other parameters. In the IS group, a positive correlation of
total cholesterol with the metabolites glycerophosphoethanolamine and GPC was observed.
In contrast, in the IR+T2D group, total cholesterol was positively correlated with choline
phosphate and GPC. Choline levels were negatively correlated with the average pulse rate,
glucose, and HbA1C (glycated hemoglobin). Moreover, glycerophosphoethanolamine and
GPC in IR+T2D participants showed significant positive correlations with hematocrit and
hemoglobin.
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4. Discussion

Phospholipid metabolism plays a central role in the pathogenesis of metabolic diseases,
including insulin resistance and T2D [17]. Despite the evidence from clinical studies indi-
cating a link between phospholipids and insulin sensitivity, it remains uncertain whether
alterations in phospholipids are the cause or result of insulin resistance. The aim of this
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study was to investigate the association of phospholipid metabolites with insulin resistance
and T2D in non-obese participants.

Our results showed a significant decrease in choline levels with progression from
insulin sensitivity to insulin resistance and T2D. Similar results were obtained when the
IS group was compared with the combined group (IR+T2D). This is in line with our
previous study on obese participants [12] with Lemaitre et al., who showed that choline
was associated with greater insulin sensitivity [18], and Gao et al. [19], who reported that
dietary choline was negatively correlated with insulin resistance. Moreover, Corbin et al.
demonstrated that choline deficiency in humans is associated with liver dysfunction [20].
However, Al-Aama et al. [21] reported increased choline levels in T2D patients.

Our results also showed an increased level of glycerophosphorylcholine (GPC) with
metabolic dysfunction progression, accompanied by a significant increase in many phos-
phatidylcholines. This suggested activated choline metabolism is further corroborated by a
significant rise in choline phosphate, the first intermediate in the choline metabolic pathway.
In fact, in the Kennedy pathway [22], choline is phosphorylated to choline phosphate (PC)
by choline kinase, and then PC is converted to cytidine diphosphate choline (CDP-choline).
Then CDP-choline and diacylglycerol are used to produce phosphatidylcholines, which in
their turn, are broken down to form GPC by the action of phospholipases.

The activated choline metabolism, characterized by an increase in PC and GPC, has
become a hallmark of carcinogenesis and tumor progression, as these metabolites were
detected in all tested cancer types [23]. Yet, the interplay between choline metabolism
and insulin resistance and T2D is less clearly understood. Zeisel et al. [24] demonstrated
that mice with deletions in one of several genes involved in choline metabolism exhibited
enhanced insulin sensitivity. Moreover, Kumar et al. showed that the upregulation of
exosomal PC contributes to insulin resistance in lean mice [25], and He et al. [26] reported
that reduced polyunsaturated PC in adipocyte plasma membranes increased insulin sen-
sitivity. PC and GPC play crucial roles in cellular membrane composition and signaling
pathways, influencing the overall metabolic health. PC contributes to membrane integrity
and fluidity, participates in lipid metabolism, and plays a crucial role in liver function and
cellular signaling. GPC acts as an osmolyte, a choline reservoir, and supports neuropro-
tection and signal transduction. The balance and function of PC and GPC are essential
for maintaining cellular health and overall metabolic balance, with disruptions potentially
leading to various metabolic disorders [17].

However, in our previous study on participants with obesity [12], metabolic dysfunc-
tion progression was associated with decreased levels of GPC. Additionally, Suhre et al. [27]
reported lower levels of GPC in patients with T2D when compared to healthy controls.
Remarkably, the T2D participants in both studies were obese, suggesting that obesity may
be a confounding factor affecting phosphatidylcholines and GPC levels.

Interestingly, our findings also revealed an association between metabolic dysfunction
progression and elevated levels of phosphatidylethanolamine, another Kennedy path-
way metabolite, as well as its degradation product glycerophosphoethanolamine (GPE).
Phosphatidylethanolamine is synthesized de novo via the CDP–ethanolamine pathway
analogous to CDP–choline pathway. Phosphatidylethanolamine can also be converted
into phosphatidylcholine by N-methyltransferase in a pathway specific to the liver [28].
Phosphatidylethanolamine is a major component and cell membrane and plays a crucial
role in its integrity and fluidity [29]. Low membrane fluidity has been associated with im-
paired insulin signaling [30], and one way that the cell membrane fluidity can be increased
is through decreasing phosphatidylethanolamine [29]. Moreover, alterations in PE and
GPE levels can lead to the accumulation of diacylglycerol, a known contributor to insulin
resistance [17].

Relatedly, a clinical study involving lean and overweight subjects demonstrated that
HOMA-IR was positively correlated with the content of phosphatidylethanolamine and
phosphatidylcholine in erythrocyte membranes across the entire study population [31].
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Our emerging results showed significantly decreased levels of trimethylamine N-oxide
(TMAO) with progression from insulin sensitivity to insulin resistance and T2D. TMAO is
a gut microbiota metabolite [32], and its association with insulin resistance and diabetes
has been a topic of interest in recent studies, but the results have been inconsistent.

In line with our study, the PREDIMED case-cohort study reported that high plasma
TMAO concentrations were associated with a decreased risk of incident diabetes [33]. More-
over, Trøseid et al. [34] documented a two-fold increase in TMAO plasma concentrations
accompanied by a decrease in glycated hemoglobin after one year of bariatric surgery which
is known to reduce CVD risk. However, conflicting studies have been published. While
the results by Lemaitre et al. [18] and Roy et al. [35] do not report any association between
TMAO and the increased risk of insulin resistance and incident diabetes, Schugar et al. [36]
reported a positive correlation between plasma levels of TMAO and insulin resistance.
Additionally, Li et al. [37] and Svingen et al. [38] reported an association between higher
serum TMAO with a higher risk of T2D. Given the potential variability in microbiome
composition and metabolic pathways across the studied cohorts, the microbial metabolite
TMAO may exhibit distinct behaviors and have varying impacts on health outcomes in
different populations, which could contribute to the observed inconsistencies in research
findings. Further research is warranted to uncover the specific mechanisms and contexts in
which TMAO influences insulin resistance and overall human health.

Taken together with existing literature, our results indicate that the progression from
insulin sensitivity to insulin resistance and T2D is associated with an increase in choline
metabolism and a shift to CDP–choline and CDP–ethanolamine pathways over the TMAO
pathway (Figure 4). Our results were further corroborated by the direct correlation of
choline phosphate, GPC, and GPE with glucose and HbA1C in the (IS+T2D) group. In
contrast, choline exhibited an inverse correlation with these key glycemic parameters.
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Another crucial point to consider is the fatty acid composition of phosphatidylcholines
and phosphatidylethanolamines in the cell membrane which may modulate the action of
insulin. Our results showed that the metabolic dysfunction progression was associated with
phospholipids containing high levels of saturated fatty acids. Indeed, decreased insulin
sensitivity correlates with reduced levels of polyunsaturated fatty acids in skeletal muscle
phospholipids [17]. Moreover, phospholipids containing saturated fatty acids decrease the
aforementioned membrane fluidity and therefore decrease insulin sensitivity [30].

Nevertheless, the interrelationship between insulin sensitivity and phospholipids is a
very complex process. It is essential to understand that numerous cellular changes occur
in response to insulin stimulation, which can affect phospholipid metabolism. Further
investigation is still required in order to obtain more insight into the functional significance
of these observations.
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5. Conclusions

Insulin resistance and T2D in this study were associated in non-obese participants with
a shift in choline metabolism characterized by a decrease in choline and trimethylamine
N-oxide levels and an increase in phosphatidylcholines and phosphatidylethanolamines
and their degradation products. These findings suggest that choline metabolism may be
a critical factor in the development of glucose intolerance and insulin resistance and that
targeting choline metabolism pharmacologically or through the diet may be a potential
therapeutic strategy for the treatment of T2D.

6. Limitations

This study has some limitations. First, the data were obtained from QBB, which
includes information from Qatari nationals and long-term residents, so the findings may not
be generalizable to other populations. Second, the study focused on alterations in choline
metabolism in non-obese individuals with insulin resistance and type 2 diabetes mellitus,
without investigating other factors such as lifestyle, diet, or genetic predispositions. Finally,
the observational nature of this study limits the conclusions of the causal associations
between metabolites and diseases. Future longitudinal studies are warranted to further
understand the underlying mechanisms that may be driving these observed associations.
Additionally, it would be important to conduct studies in diverse populations to ensure the
generalizability of these findings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo14080457/s1, Figure S1: Multivariate principal component
analysis (PCA) and orthogonal partial least-discriminant analysis (OPLS-DA) analysis to evaluate the
difference in the metabolic profile between the study groups.

Author Contributions: H.A.-S.: Writing—original draft, Methodology, and Writing—review and
editing. N.A.: Formal analysis and Data curation. S.S.B.: Data analysis support, revising the
manuscript. K.N.: Writing—conclusion part. M.A.E.: Funding acquisition, Project administration,
Supervision, Writing—review and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by QRDI, grant number PPM 06-0516-230030.

Institutional Review Board Statement: This study was approved by the Institutional Review Boards
of the Qatar Biobank (E-2024-QF-QBB-RES-ACC-00158-0269). Approval date: 26 February 2024.

Informed Consent Statement: Informed consent was obtained from all participants involved in the
study.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Acknowledgments: The authors would like to acknowledge QBB for providing the data and QRDI
for generously funding this project.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wortmann, S.B.; Mayr, J.A. Choline-related-inherited metabolic diseases—A mini review. J. Inherit. Metab. Dis. 2019, 42, 237–242.

[CrossRef]
2. Zeisel, S.H.; da Costa, K.A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623. [CrossRef]
3. Drescher, S.; van Hoogevest, P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug

Delivery. Pharmaceutics 2020, 12, 1235. [CrossRef]
4. Dai, Y.; Tang, H.; Pang, S. The Crucial Roles of Phospholipids in Aging and Lifespan Regulation. Front. Physiol. 2021, 12, 775648.

[CrossRef] [PubMed]
5. Abbasi, M.S.P.; Tousi, A.Z.; Yazdani, Y.; Vahdat, S.; Gharebakhshi, F.; Nikrad, N.; Manzouri, A.; Ardekani, A.M.; Jafarzadeh, F.

Dietary choline and betaine intake, cardio-metabolic risk factors and prevalence of metabolic syndrome among overweight and
obese adults. BMC Endocr. Disord. 2023, 23, 67. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo14080457/s1
https://www.mdpi.com/article/10.3390/metabo14080457/s1
https://doi.org/10.1002/jimd.12011
https://doi.org/10.1111/j.1753-4887.2009.00246.x
https://doi.org/10.3390/pharmaceutics12121235
https://doi.org/10.3389/fphys.2021.775648
https://www.ncbi.nlm.nih.gov/pubmed/34887779
https://doi.org/10.1186/s12902-023-01323-4


Metabolites 2024, 14, 457 11 of 12

6. Dibaba, D.T.; Johnson, K.C.; Kucharska-Newton, A.M.; Meyer, K.; Zeisel, S.H.; Bidulescu, A. The Association of Dietary Choline
and Betaine with the Risk of Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 2020, 43,
2840–2846. [CrossRef] [PubMed]

7. Wu, G.; Zhang, L.; Li, T.; Zuniga, A.; Lopaschuk, G.D.; Li, L.; Jacobs, R.L.; Vance, D.E. Choline Supplementation Promotes Hepatic
Insulin Resistance in Phosphatidylethanolamine N-Methyltransferase-deficient Mice via Increased Glucagon Action. J. Biol. Chem.
2013, 288, 837–847. [CrossRef]

8. Zhu, J.; Saikia, G.; Zhang, X.; Shen, X.; Kahe, K. One-Carbon Metabolism Nutrients, Genetic Variation, and Diabetes Mellitus.
Diabetes Metab. J. 2024, 48, 170–183. [CrossRef]

9. Al-Sulaiti, H.; Almaliti, J.; Naman, C.B.; Al Thani, A.A.; Yassine, H.M. Metabolomics Approaches for the Diagnosis, Treatment,
and Better Disease Management of Viral Infections. Metabolites 2023, 13, 948. [CrossRef] [PubMed]

10. Al Hariri, M.; Al-Sulaiti, H.; Anwardeen, N.; Naja, K.; Elrayess, M.A. Comparing the metabolic signatures of obesity defined by
waist circumference, waist-hip ratio, or BMI. Obesity 2024, 32, 1494–1507. [CrossRef]

11. Gu, X.; Al Dubayee, M.; Alshahrani, A.; Masood, A.; Benabdelkamel, H.; Zahra, M.; Li, L.; Rahman, A.M.A.; Aljada, A. Distinctive
Metabolomics Patterns Associated With Insulin Resistance and Type 2 Diabetes Mellitus. Front. Mol. Biosci. 2020, 7, 609806.
[CrossRef] [PubMed]

12. Al-Sulaiti, H.; Diboun, I.; Agha, M.V.; Mohamed, F.F.S.; Atkin, S.; Dömling, A.S.; Elrayess, M.A.; Mazloum, N.A. Metabolic
signature of obesity-associated insulin resistance and type 2 diabetes. J. Transl. Med. 2019, 17, 348. [CrossRef]

13. Elrayess, M.A.; Rizk, N.M.; Fadel, A.S.; Kerkadi, A. Prevalence and Predictors of Insulin Resistance in Non-Obese Healthy Young
Females in Qatar. Int. J. Environ. Res. Public Health 2020, 17, 5088. [CrossRef] [PubMed]

14. Al-Khelaifi, F.; Diboun, I.; Donati, F.; Botrè, F.; Alsayrafi, M.; Georgakopoulos, C.; Suhre, K.; Yousri, N.A.; Elrayess, M.A. A pilot
study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med. Open 2018, 4, 2.
[CrossRef]

15. DeHaven, C.D.; Evans, J.M.; Dai, H.; Lawton, K.A. Software techniques for enabling high-throughput analysis of metabolomic
datasets. Metabolomics 2012, 10, 167–192. [CrossRef]

16. Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, Nontargeted Ultrahigh Performance Liquid
Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification
of the Small-Molecule Complement of Biological Systems. Anal. Chem. 2009, 81, 6656–6667. [CrossRef]

17. Chang, W.; Hatch, G.M.; Wang, Y.; Yu, F.; Wang, M. The relationship between phospholipids and insulin resistance: From clinical
to experimental studies. J. Cell. Mol. Med. 2018, 23, 702–710. [CrossRef]

18. Lemaitre, R.N.; Jensen, P.N.; Wang, Z.; Fretts, A.M.; McKnight, B.; Nemet, I.; Biggs, M.L.; Sotoodehnia, N.; de Oliveira Otto, M.C.;
Psaty, B.M.; et al. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The
Cardiovascular Health Study. JAMA Netw. Open 2021, 4, e2122844. [CrossRef]

19. Gao, X.; Wang, Y.; Sun, G. High dietary choline and betaine intake is associated with low insulin resistance in the Newfoundland
population. Nutrition 2017, 33, 28–34. [CrossRef]

20. Corbin, K.D.; Zeisel, S.H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression.
Curr. Opin. Gastroenterol. 2012, 28, 159–165. [CrossRef] [PubMed]

21. Al-Aama, J.Y.; Al Mahdi, H.B.; Salama, M.A.; Bakur, K.H.; Alhozali, A.; Mosli, H.H. Detection of Secondary Metabolites as
Biomarkers for the Early Diagnosis and Prevention of Type 2 Diabetes. Diabetes Metab. Syndr. Obes. 2019, 12, 2675–2684. [CrossRef]

22. Fagone, P.; Jackowski, S. Phosphatidylcholine and the CDP-choline cycle. Biochim. Biophys. Acta 2013, 1831, 523–532. [CrossRef]
23. Sonkar, K.; Ayyappan, V.; Tressler, C.M.; Adelaja, O.; Cai, R.; Cheng, M.; Glunde, K. Focus on the glycerophosphocholine pathway

in choline phospholipid metabolism of cancer. NMR Biomed. 2019, 32, e4112. [CrossRef]
24. Zeisel, S.H. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis. Clin. Chem. Lab. Med. 2012, 51,

467–475. [CrossRef] [PubMed]
25. Kumar, A.; Sundaram, K.; Mu, J.; Dryden, G.W.; Sriwastva, M.K.; Lei, C.; Zhang, L.; Qiu, X.; Xu, F.; Yan, J.; et al. High-fat

diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat. Commun. 2021, 12, 213–234.
[CrossRef] [PubMed]

26. He, M.; Li, Z.; Tung, V.S.K.; Pan, M.; Han, X.; Evgrafov, O.; Jiang, X.-C. Inhibiting Phosphatidylcholine Remodeling in Adipose
Tissue Increases Insulin Sensitivity. Diabetes 2023, 72, 1547–1559. [CrossRef]

27. Suhre, K.; Meisinger, C.; Döring, A.; Altmaier, E.; Belcredi, P.; Gieger, C.; Chang, D.; Milburn, M.V.; Gall, W.E.; Weinberger, K.M.;
et al. Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting. PLoS ONE 2010, 5,
e13953. [CrossRef]

28. Germain, M.S.; Iraji, R.; Bakovic, M. Phosphatidylethanolamine homeostasis under conditions of impaired CDP-ethanolamine
pathway or phosphatidylserine decarboxylation. Front. Nutr. 2023, 9, 1094273. [CrossRef] [PubMed]

29. Dawaliby, R.; Trubbia, C.; Delporte, C.; Noyon, C.; Ruysschaert, J.-M.; Van Antwerpen, P.; Govaerts, C. Phosphatidylethanolamine
Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. J. Biol. Chem. 2016, 291, 3658–3667. [CrossRef]

30. Pilon, M. Revisiting the membrane-centric view of diabetes. Lipids Health Dis. 2016, 15, 167. [CrossRef]
31. Younsi, M.; Quilliot, D.; Al-Makdissy, N.; Delbachian, I.; Drouin, P.; Donner, M.; Ziegler, O. Erythrocyte membrane phospholipid

composition is related to hyperinsulinemia in obese nondiabetic women: Effects of weight loss. Metabolism 2002, 51, 1261–1268.
[CrossRef] [PubMed]

https://doi.org/10.2337/dc20-0733
https://www.ncbi.nlm.nih.gov/pubmed/32900787
https://doi.org/10.1074/jbc.M112.415117
https://doi.org/10.4093/dmj.2023.0272
https://doi.org/10.3390/metabo13080948
https://www.ncbi.nlm.nih.gov/pubmed/37623891
https://doi.org/10.1002/oby.24070
https://doi.org/10.3389/fmolb.2020.609806
https://www.ncbi.nlm.nih.gov/pubmed/33381523
https://doi.org/10.1186/s12967-019-2096-8
https://doi.org/10.3390/ijerph17145088
https://www.ncbi.nlm.nih.gov/pubmed/32679640
https://doi.org/10.1186/s40798-017-0114-z
https://doi.org/10.5772/31277
https://doi.org/10.1021/ac901536h
https://doi.org/10.1111/jcmm.13984
https://doi.org/10.1001/jamanetworkopen.2021.22844
https://doi.org/10.1016/j.nut.2016.08.005
https://doi.org/10.1097/MOG.0b013e32834e7b4b
https://www.ncbi.nlm.nih.gov/pubmed/22134222
https://doi.org/10.2147/DMSO.S215528
https://doi.org/10.1016/j.bbalip.2012.09.009
https://doi.org/10.1002/nbm.4112
https://doi.org/10.1515/cclm-2012-0518
https://www.ncbi.nlm.nih.gov/pubmed/23072856
https://doi.org/10.1038/s41467-020-20500-w
https://www.ncbi.nlm.nih.gov/pubmed/33431899
https://doi.org/10.2337/db23-0317
https://doi.org/10.1371/journal.pone.0013953
https://doi.org/10.3389/fnut.2022.1094273
https://www.ncbi.nlm.nih.gov/pubmed/36687696
https://doi.org/10.1074/jbc.M115.706523
https://doi.org/10.1186/s12944-016-0342-0
https://doi.org/10.1053/meta.2002.35184
https://www.ncbi.nlm.nih.gov/pubmed/12370844


Metabolites 2024, 14, 457 12 of 12

32. Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021, 20, 301–319.
33. Papandreou, C.; Bulló, M.; Zheng, Y.; Ruiz-Canela, M.; Yu, E.; Guasch-Ferré, M.; Toledo, E.; Clish, C.; Corella, D.; Estruch, R.; et al.

Plasma trimethylamine-N-oxide and related metabolites are associated with type 2 diabetes risk in the Prevención con Dieta
Mediterránea (PREDIMED) trial. Am. J. Clin. Nutr. 2018, 108, 163–173. [CrossRef]

34. Trøseid, M.; Hov, J.R.; Nestvold, T.K.; Thoresen, H.; Berge, R.K.; Svardal, A.; Lappegård, K.T. Major Increase in Microbiota-
Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery. Metab. Syndr. Relat. Disord. 2016, 14, 197–201.
[CrossRef]

35. Roy, S.; Yuzefpolskaya, M.; Nandakumar, R.; Colombo, P.C.; Demmer, R.T. Plasma Trimethylamine-N-oxide and impaired glucose
regulation: Results from The Oral Infections, Glucose Intolerance and Insulin Resistance Study (ORIGINS). PLoS ONE 2020, 15,
e0227482. [CrossRef] [PubMed]

36. Schugar, R.C.; Shih, D.M.; Warrier, M.; Helsley, R.N.; Burrows, A.; Ferguson, D.; Brown, A.L.; Gromovsky, A.D.; Heine, M.;
Chatterjee, A.; et al. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of
White Adipose Tissue. Cell Rep. 2017, 19, 2451–2461. [CrossRef] [PubMed]

37. Li, S.-Y.; Chen, S.; Lu, X.-T.; Fang, A.-P.; Chen, Y.-M.; Huang, R.-Z.; Lin, X.-L.; Huang, Z.-H.; Ma, J.-F.; Huang, B.-X.; et al. Serum
trimethylamine-N-oxide is associated with incident type 2 diabetes in middle-aged and older adults: A prospective cohort study.
J. Transl. Med. 2022, 20, 374. [CrossRef]

38. Svingen, G.F.; Schartum-Hansen, H.; Pedersen, E.R.; Ueland, P.M.; Tell, G.S.; Mellgren, G.; Njølstad, P.R.; Seifert, R.; Strand, E.;
Karlsson, T.; et al. Prospective Associations of Systemic and Urinary Choline Metabolites with Incident Type 2 Diabetes. Clin.
Chem. 2016, 62, 755–765. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/ajcn/nqy058
https://doi.org/10.1089/met.2015.0120
https://doi.org/10.1371/journal.pone.0227482
https://www.ncbi.nlm.nih.gov/pubmed/31940332
https://doi.org/10.1016/j.celrep.2017.05.077
https://www.ncbi.nlm.nih.gov/pubmed/28636934
https://doi.org/10.1186/s12967-022-03581-7
https://doi.org/10.1373/clinchem.2015.250761

	Introduction 
	Materials and Methods 
	Data Source and Study Participants 
	Metabolomics 
	Statistical Analysis 

	Results 
	General Characteristics of Study Participants in the Non-Obese Cohort 
	Phospholipid Metabolites Associated with Different Stages of Disease 
	Phospholipids Metabolites Differentiating IS from IR+T2D 
	Other Significant Phospholipid-Associated Metabolites Significantly Differentiating IS vs. IR+T2D in Non-Obese Participants 
	Correlation of Significant Metabolites with Mediators of Metabolic Disease 

	Discussion 
	Conclusions 
	Limitations 
	References

