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Android is one of the leading operating systems for smartphones in terms of market share and usage. Unfortunately, it is also
an appealing target for attackers to compromise its security through malicious applications. To tackle this issue, domain
experts and researchers are trying different techniques to stop such attacks. All the attempts of securing the Android
platform are somewhat successful. However, existing detection techniques have severe shortcomings, including the
cumbersome process of feature engineering. Designing representative features require expert domain knowledge. -ere is a
need for minimizing human experts’ intervention by circumventing handcrafted feature engineering. Deep learning could
be exploited by extracting deep features automatically. Previous work has shown that operational codes (opcodes) of
executables provide key information to be used with deep learning models for the detection process of malicious ap-
plications. -e only challenge is to feed opcodes information to deep learning models. Existing techniques use one-hot
encoding to tackle the challenge. However, the one-hot encoding scheme has severe limitations. In this paper, we introduce
(1) a novel technique for opcodes embedding, which we name Op2Vec, and (2) based on the learned Op2Vec, we have
developed a dataset for end-to-end detection of Android malware. Introducing the end-to-end Android malware detection
technique avoids expert-intensive handcrafted feature extraction and ensures automation. Some of the recent deep learning-
based techniques showed significantly improved results when tested with the proposed approach and achieved an average
detection accuracy of 97.47%, precision of 0.976, and F1 score of 0.979.

1. Introduction

Mobile technology has shown exponential growth in the
recent past. Mobile devices are the best source tomanage our
day-to-day communications. -ese mobiles accompany us
in all our movements. -e use of these devices allows us to
handle most of our very important activities, social net-
working, payments, and banking, with ease. Due to the high
growth rate, mobile platforms are highly targeted and

severely infected with malicious applications [1]. Attackers
look for the possibility of exploiting mobile platforms
through various techniques.-ere are cybercriminals as well
as hackers, sponsored by states, doing research in order to
find schemes for possible attacks against mobile platforms
for their better interest. According to International Data
Corporation (IDC) [2], mobiles have surpassed PCs in terms
of preferred devices that can be used to access the Internet
and other possible services. IDC also states that the number
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of mobile users will cross the 91 million mark over the
coming four years.

Malware is a short form used for malicious software. It is
a program or software on any system that is not intentionally
installed by the end-user or system administrator. -ere are
various types of malware for different tasks and purposes [3].
-e behavior of malware can range from being a very simple
piece of annoyance, such as pop-up advertisements to severe
actions which may be much more damaging and harmful
[4], such as stealing important systems’ passwords or secret
data and other more severe actions. -ey may be used for
infecting other machines having very confidential and secret
information, over the network [5].

Among mobile platforms, Android is one of the most
prevalent platforms for smartphones nowadays. It has seen
exponential growth with a market share of 82.6% and has
several millions of mobile applications in various markets
[2]. It is a very rich platform in terms of the availability of
various functionalities to its users. Unfortunately, it has been
observed that smartphones with the Android operating
system are targeted more often than any other platform by
security attackers [4], and it is very severely infected by
malicious software. Unlike other mobile platforms, Android
allows easily installing applications from sources without
clear verification, such as third-party markets, whose sole
purpose is to bundle and distribute mobile applications with
malwares, assisting attackers in different kind of tasks [6].
According to a report [7], the number of Android malicious
applications will cross 3.8 million mark at the end of this
year. Keeping this evidence in mind, there is a need for
techniques and solutions to limit the production of malwares
on different Android markets. Large body of research is
involved to overcome the situation [8, 9]. Researchers are
trying to find out smart ways for automated detection of
malicious applications.

Android applications can be analyzed in two ways: either
performing static analysis [10] or dynamic analysis [11]. In
static analysis, the application is studied in its static position.
Its behaviors, i.e., code patterns, requested permissions,
relationships with other applications, intent filters, and other
features, are analyzed. On the other hand, in dynamic
analysis, the application is studied and analyzed during its
running state. Dynamic aspects, such as observation of
system calls, dynamic loading of the code segment, and
invocations of API calls, are analyzed. Dynamic analysis is
performedmostly in a controlled environment that is named
a sandbox [12]. All the relevant operations of the state of the
execution are monitored, such as sending SMS messages,
storage reading, and connection to remote servers.

-e conventional Android malware detection pipeline is
to take Android applications and uses domain expertise to
extract handcrafted features from a set of applications.
Dynamic and static features are extracted for dynamic and
static analyses, respectively. -e features are then used to
train machine learning algorithms to produce trained
models to classify and detect Android malware. Common
classifiers used for Android malware detection are support
vector machine (SVM), decision tree (DT), k-nearest
neighbors (KNN), random forest (RF), neural networks

(NN), and k-means clustering. Recently, deep neural net-
works are getting attention for Android malware detection.
Studies such as Droid-Sec [13], DeepDetector [14, 15], and
[16] are using a deep learning approach to detect Android
malware. Unlike handcrafted feature extraction for con-
ventional machine learning algorithms, deep learning has a
very strong and unique approach to automatically extract
deep features and learn classification patterns.

All the conventional machine learning and the deep
learning techniques studied in the existing literature work
well with reasonable accuracy, but the problem is that these
techniques rely on engineered handcrafted features. Even
the deep learning techniques are trained with handcrafted
features. Features engineering is a cumbersome and a very
lengthy process, which requires domain knowledge. -e
feature engineering process is depicted in Figure 1. Domain
knowledge and domain experts are required to perform
brainstorming of features to decide what features to create.
-e created features are then tested with the experimenta-
tion model. Features are tuned where required and the
complete feature engineering cycle is repeated if necessary.
In most cases, malware designers are required to design the
representative features.-e domain experts and the available
known malware designers are limited in number. -at is
why there is a need for making a system that can replace this
lengthy and cumbersome features engineering process and
incorporate end-to-end learning. -e major problem is that
we do not have any dataset publicly available for deep
learning algorithms to learn end-to-end, i.e., extract deep
features instead of designing handcrafted features. In end-
to-end learning, the algorithm learns deep features instead of
taking engineered features. So, the gap in the current re-
search is to develop a dataset for end-to-end learning of
Android malware and allow deep learning algorithms to be
trained on the dataset and detect Android malware with
minimum human expert intervention. Another problem in
the existing solutions is that they use one-hot encoding to
feed information to deep learning models. One-hot
encoding creates severe problems and sometimes it becomes
infeasible to be used with deep learning techniques. -ese
limitations are discussed in detail in the coming sections.We
need to devise an alternative that outperforms one-hot
encoding.

Our first contribution concerns the development of a
novel dataset for end-to-end detection of Android malware.
-e dataset can be used to learn useful patterns and in-
formation from the Android source code. We have not only
developed the dataset but have also presented the design
process and techniques involved in the dataset development.
End-to-end learning minimizes human experts’ intervention
in designing/developing representative features and cir-
cumventing the handcrafted feature extraction process. -e
second contribution of this study is learning Op2Vec.
Op2Vec learning process employs a machine-learning al-
gorithm to learn meaningful vector representations from
opcodes of Android source files. All the limitations of
existing embedding techniques motivated us to develop a
novel encoding technique which we term “Op2Vec.” After
learning Op2Vec and dataset development, we also validate
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the dataset by feeding it to a deep neural network. Based on
the above discussions, the main contributions are summa-
rized as follows:

(1) Op2Vec for learning opcode-vector embedding
(2) Development of a dataset for end-to-end learning

based on learned Op2Vec embedding and feeding
the developed dataset to deep learning models for
learning patterns and insights (circumventing fea-
ture engineering)

In this section, after a detailed introduction to the
problem area and different techniques, the relevant back-
ground of Android malware detection and motivation for
the proposed approach is discussed in Section 2. Section 2
focuses on malware detection techniques along with details
of machine learning models, more importantly, a brief in-
troduction, and the working paradigm of deep learning.
Moreover, in the last part of the section, the word em-
beddings technique, its specifications, and its relevance to
our novel Op2Vec technique are discussed. In Section 3, the
methods of our research and the subtasks of the proposed
approach are listed along with a brief discussion; more
importantly, the word embedding model, skip-gram, is
presented in depth with its working fashion. Section 4
discusses the experiments performed and the results of the
experiments along with a detailed analysis. -is section also
covers how to use the designed dataset with deep neural
networks for end-to-end learning. Section 5 provides a
comparison of our proposed dataset with other state-of-the-
art datasets and discusses how the use of Op2Vec makes it
better than existing datasets. Section 6 concludes the paper
and provides further extensions in this part of the research.

2. Background and Motivation

2.1. Android Malware Analysis. Due to the severity of An-
droid malware, there are hundreds of approaches for its de-
tection and classification. One approach is to perform a static
analysis of the Android application. In static analysis, the
executable code of the Android applications is examined to
determine the data flow, control, and representative pattern
without running the executables. Another approach is to ex-
amine an Android application through dynamic analysis. In
dynamic analysis, the execution of an application is monitored
by inspecting execution behaviors. Both static and dynamic
analysis studies are discussed in the next two subsections.

2.2. Dynamic Analysis Techniques for Android Malware.
Due to the complexity of dynamic analysis, there are very
few techniques for conducting dynamic analysis for Android

malware detection. A very popular technique is DroidScope
[17]. It is an Android malicious applications’ analysis engine,
based on emulation, which performs dynamic analysis of
Android applications. Its specialty is to reconstruct both OS
and Java level semantics seamlessly and simultaneously.
Riskranker [18] is another approach that ensures accurate
and very scalable detection of zero-day Android malware. It
dynamically analyzes whether a particular application ex-
hibits dangerous behavior. Another similar technique
DroidRanger [19] performs a behavioral footprinting
scheme, based on requested permissions, for the detection of
new samples of unseen Android malware families, and later
applies a heuristics-based filtering approach for the iden-
tification of certain inherent behaviors of unseen malware
application families.

Android malware detection is based on system calls [20],
where automatic classification is performed based on
tracking system calls. DroidScribe [21] is a very recent
approach that focuses on dynamic analysis, i.e., runtime
behavior. -is approach shows how machine learning al-
gorithms can be used to automatically classify Android
malware into different malware families by just observing
their runtime behavior. It observes that, on Android sys-
tems, system calls solely do not provide sufficient semantic
content to make classification; that is why it also uses a
lightweight VM introspection to reconstruct interprocess
communication on the Android system for effective analysis.
All the discussed techniques in this section have used
engineered handcrafted features which are specifically
designed for dynamic analysis.

2.3. Static Analysis Techniques for Android Malware.
Static analysis is relatively simple and scalable. -ere are
several techniques that use static analysis for Android
malware detection. A set of static features is designed using
domain expertise. -e features are then utilized for the
detection of Android malware. An approach, DroidAPI-
Miner [22], statically mines API-level features for the robust
detection of malware on Android systems. It aims to provide
a lightweight and robust classifier in order to evade Android
malware installation. Another similar technique Droidminer
[23] uses a behavioral graph to embed abstract malware
program logic into a sequence of threat patterns and then
applies machine learning techniques to identify and label
elements of the graph that match already extracted threat
modalities. A semantic-based technique [24] is responsible
for the classification of Android malware through depen-
dency graphs. It extracts a dependency graph, i.e., a weighted
contextual API graph, as program semantics for the con-
struction of feature sets. Another study reveals that

Brainstorming features

Repeat brainstorming and
creating more features

Deciding what
features to create

Improving features

Creating features

Testing features with
the designed model

Figure 1: Features engineering process.
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malicious application treats sensitive data differently from
benign applications. -is feature is used to design a useful
technique [25] for the identification of malware applications.
Benign Android applications are mined for their data flow
from sensitive sources, and then, these flows are compared
against those, found in malicious applications, to detect
similarities.

DREBIN [26] is a lightweight method for Android
malware detection. It enables the identification of malware
applications on smartphones directly. It extracts as many
features of an Android application as possible, and later, the
extracted features are embedded into a joint vector space in
such a fashion that typical patterns, which are indicative of
malicious applications, can be automatically detected and
can be used to explain decision making. DREBIN has shown
an effective rate of detection of malicious applications on its
own dataset. -ey have designed a dataset and a support
vector machine (SVM) classifier is used for training on the
same dataset.

A model presented in [27] is an n-grams-based tech-
nique. Sequential features, based on n-grams, are extracted
from files’ content. It determines patterns of sequential n-
grams and then calculates statistics for the extracted pattern,
and in the last, the classifier is trained to classify malware in
different malware families. -ey have studied three classi-
fiers for this task, i.e., SVM, C4.5, and multilayer perceptron.
A method proposed in [28] uses three metrics, the weighted
sum of permissions’ subset, a set that consists of a combi-
nation of permissions, and a specific subset of system calls’
occurrence. An approach based on permissions’ combina-
tion is studied in [29]. -is scheme uses permission in-
formation present in the manifest of an Android application.
-ese permissions’ combinations are frequently requested
by malicious applications and rarely requested by benign
applications. Based on the permissions combinations, rules
are generated in order to make classification of applications
as benign or malicious. -is model is then used for the
classification of unknown applications.

An Android applications classification technique [30]
and others [31] use bytecode for detection purposes. -e
bytecode of an application contains the accurate behavior of
an application, which can provide enough information
about the application’s intentions. Similarly, malicious ap-
plications tend to have the same pattern of bytecodes which
makes them unique and differentiates them from benign
applications.

Android file’s opcodes are considered the source of
information for malware detection. A technique that uses
opcodes as features for the identification of malware ap-
plications is studied in [32]. -is method is based on state-
of-the-art classifiers applied to the frequencies of opcode
n-grams. Similarly, a very popular study [33] presents a
detectionmechanism based on features, such as sequences of
opcodes combined with machine learning algorithms. As an
initial input feature, it collects all the possible k-grams in a
given set of applications. To determine key relevant features,
a selection algorithm is applied and a classifier is trained
based upon selected features. Another opcode-related study
[34] applies static analysis over opcode distribution. In this

particular experiment, Android executables are dis-
assembled statically, and the opcodes’ frequency distribution
is extracted. -ese distribution patterns are then compared
with nonmalicious executables’ distributions. It is noticed
that there is a significant difference between these distri-
butions. -is feature can be effectively applied to differen-
tiate malware and benign Android applications. -e
exploitation of opcodes for malware detection is currently a
hot topic for Android malware detection problems.

2.4. Representative Handcrafted Features for Malware
Detection. After the extensive study of both dynamic and
static analysis of Android malware, it is concluded that
dynamic and static analyses use a separate set of features for
malware analysis. Features and their importance can be
studied and justified using domain knowledge and expertise
from the computer security domain. Each approach con-
siders different types of features and tries to justify their
importance and relevance to the problem; there is no
standard solution or set of features. -e different categories
of the features are classified in Table 1.

2.5. Machine Learning Algorithms for Malware Detection.
Once the feature engineering and extraction step is per-
formed, the next step is usually to apply machine learning
algorithms, such as random forest, decision tree, SVM,
Bayesian classifiers, KNN, and k-means clustering, for
malware detection and classification. Each algorithm deals
with the extracted features differently and tries to learn
useful patterns. -e parameters of algorithms are tuned
considering the nature of features. Studies such as [35] and
[36] demonstrate the use of machine learning algorithms for
automatic Android malware detection.
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zEn
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2.6.DeepNeuralNetworks andDeepLearning. Deep learning
or end-to-end learning is a paradigm of machine learning
but is very practical [37]. It achieves great flexibility and
power by learning to express the world in the form of a
nested hierarchy of concepts, such that each complex
concept is defined in terms of very simpler concepts.
Concepts that are more abstract are defined in relation to less
abstract concepts. -is concept of end-to-end learning is not
new but was there for decades. But recently with very strong
hype, end-to-end learning is getting extraordinary attention.
-e more prominent contribution of end-to-end learning is
automatic features engineering [38–41]. -is property
makes it unique and more powerful than all other existing
machine learning techniques.
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Convolutional Neural Network (CNN) is an example of a
deep neural network; it tries to learn low-level concepts or
features such as edges and may be lines in starting layers, then
parts and pieces of objects, and then the high-level represen-
tation of the objects [42]. -e general problem-solving ap-
proach of deep learning is different than conventional machine
learning algorithms. -ese algorithms first divide the problem
into subproblems, and then after solving all the subproblems,
the results are compiled in a collective form.-is is not the case
in deep learning because it is end-to-end learning; i.e., just
input the raw data and the classification results are collected as
output. CNNs have multiple hidden layers where convolution
operation is performed, a few dense layers near the end of the
network, and an output and input layer.-e input data is fed to
the input layer along with random initial weights.-e output is
received from the output layer. All the calculations are per-
formed in hidden layers. Equation (2) is the error function
known as mean squared error, where y is the predicted output
and t is the target output or may be named as a label. We can
also consider y as linear combinations of the given inputs as
presented in equation (1), where yk is the output, wki is the
weight, and xi is the input. After prediction, the error is cal-
culated using equation (2), ynk is the predicted output while tnk
is the ground truth.-is error function is for some input n, and
all possible outputs or labels k. -e term x is a particular input
having weight w. -e calculated error is then backpropagated
to hidden layers and weights are updated accordingly. -is
process is continued till the weights are optimized enough, and
the value of the error function is converged. Equation (3) is the
error function gradient considering some weight wji. -is
gradient is used in the backpropagation process.

2.7. Deep Learning-Based Analysis for Android Malware.
-ere are a number of deep learning-based methods for
Android malware detection. One of the methods is Droid-

Sec [13]. It uses 200 different dynamic and static features
with deep neural networks for malware detection. Deep-
Detector [14] is another approach, where eight different sets
of features are considered to be used with deep neural
networks. A multimodal deep learning method is proposed
in [15]. -e technique uses opcode features and method API
features with deep neural networks. Another approach [16]
extracts a sequence of API method calls and manually
categorizes the dangerous APIs. -e categorized API se-
quences are used to train deep neural networks. In [43], the
authors use five different sets of features to perform clas-
sification using deep learning. Droiddetector [35] is con-
sidering three sets of features, i.e., required permission,
sensitive API, and dynamic behavior, with deep neural
networks.

2.8. Motivation for the Proposed Approach. Deep learning
methods are popular because of deep feature extraction. All
the existing deep learning-based techniques discussed in
Section 2.7 have used handcrafted features for automated
Android malware detection as depicted in Figure 2. -ese
techniques do not exploit the deep feature extraction nature
of deep learning methods but rather use engineered
handcrafted features. To hand-design, an effective feature is
a lengthy process. -is approach is very costly and lengthy
and requires intensive domain knowledge and expertise as
already discussed in Section 1. -ere is a need for making
this feature extraction process automatic and reduce human
experts’ intervention. Aiming at new applications, deep
learning enables the acquisition of new effective feature
representations from the available dataset for training. -e
major difference between deep learning and conventional
methods is that deep learning automatically learns features
from big data, instead of adopting handcrafted features as
shown in Figure 3, which mainly depends on prior

Table 1: Features set for Android malware analysis.

Features for dynamic Android malware analysis

Behavioral footprinting
Dalvik instruction traces

System calls
API-level activity and information leakage

Heuristic-based filtering
Sensitive data handling
Run time behavior

Features for static Android malware analysis

Behavioral graph
API-level features

Weighted contextual API dependency graph
Control flow transition

Permissions
Opcode patterns

Opcode frequency histogram
Manifest and creator information

Information flow
Context, time, and connection-based network features

Statistical features
N-gram sequential features

Weighted sum of permissions
Internet component call graph

Signature-based features

Security and Communication Networks 5

 2037, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2022/3710968 by Q

atar U
niversity, W

iley O
nline L

ibrary on [10/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



knowledge of designers and is highly impossible to take the
advantage of big data.

Recent studies, such as [32, 33] and [34], offer solid
justification that opcodes distribution and sequences pro-
vide important information to differentiate a malware from
a trusted Android application. -e problem is how to feed
the opcodes information to deep neural networks as deep
neural networks only work with numerical data. Another
problem for Android application classification and malware
detection is that there are only a limited number of datasets.
-e latest publicly available dataset is Drebin [26]. Drebin
and all other existing datasets have Android apks structured
directories and have such a format that they cannot be used
to perform automatic malware detection using deep learning
models [44].

First, we need to develop an opcode embedding tech-
nique to feed the opcodes to deep neural networks. One
solution is one-hot encoding [45–47]. But this solution has
shortcomings; i.e., one-hot encoding leads to inefficiency for
high-dimensional input data and it does not capture the
semantic relationship. -ere are extensive studies [48–49]
that strengthen the concept that the vector embedding
technique outperforms the conventional one-hot encoding
solution. -is motivates us to develop a vector embedding
technique for opcodes which we name “Op2Vec.” And
secondly, based on the learned vector embeddings, we de-
velop a dataset that will be used for the end-to-end detection
of Android malware.

2.9. Word Embeddings. Word embedding is a technique
used for embedding words into vectors. It does this task in
such a fashion that the syntactic and semantic relationships
between words are always preserved.Word2Vec is one of the
very important subtasks for most of the applications of
natural language processing (NLP). Word embedding is the
collective name for a set of feature learning and language
modeling techniques in the field of NLP where words and
phrases from the available vocabulary are mapped to vectors
of real numbers. Our work is inspired by TWEET2VEC [46],
ATTACK2VEC [50], and ASM2VEC [51] where the authors
have applied a word embedding technique to encode tweets,
attacks, and assembly language functions into vectors. Word
embedding is considered a very recent version of these

embeddings which are relatively dense and have low di-
mensionality [52], which is very efficient in terms of com-
putation. Get motivated from all these studies we are
applying theWord2Vec to opcodes which we nameOp2Vec,
to learn vectors for opcodes. -ere are two common word
embedding models, i.e., continuous bag-of-words (CBOW)
and the skip-gram model. Because of the two severe limi-
tations of CBOW [53], i.e., ignoring the order of words and
ignoring the semantics of words, we will be considering the
skip-gram model for our solution.

3. Proposed Methodology

In this section, we present details of the Op2Vec learning
process and the designed dataset. -e dataset consists of
opcode sequences of Android applications. Initially, the
dataset contains 28,570 Android applications. More appli-
cations can be easily added in the future to confirm the
robustness of the proposed technique. -e dataset design
process consists of five phases. A pictorial view of all the
steps involved in the proposed design process is shown in
Figure 4. After the collection of Android apks from different
online Android Play Stores, the first phase is the extraction
of Dalvik Executable (.dex) files from apks.-e second phase
is the extraction of instructions from executable files. All the
instructions are processed and only opcode sequences are
extracted. In the third phase, opcode sequences of different
files are combined to learn Op2Vec, i.e., opcode embeddings.
In the very last stage, for every single file, opcodes are
replaced by their corresponding vectors, learned in phase
four to finalize the dataset.-e final step is to feed the dataset
to deep neural networks to ensure its validation for end-to-
end learning.

3.1. Collection of Benign Applications. Benign applications
are those applications that are solely designed for harmless
and smooth fulfillment of user requirements. -e main
objective of these applications is to meet the user require-
ments. Some Android benign applications are free and
others are paid, available in online markets. Because of DRM
restrictions, we have mostly collected free Android appli-
cations for our dataset. Around 16,240 free benign Android
applications are downloaded from Amazon Appstore,

Android apps Domain knowledge and expertise
for handcrafted features extraction

Trained model to classify Android
applications

Handcrafted
features

Classification
algorithms

Figure 2: Conventional model for Android app classification.

Android apps Deep Neural Networks
(End-to-end learning)

Trained model to classify
Android applications

Figure 3: Proposed classification pipeline.
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SlideME, 1Mobile Market, and Google Play. A script
(https://github.com/KaleemFAST/playstore-scraper-php.
git) is designed to download applications from all the
available sources.

3.2. Collection of Malicious Applications. Android applica-
tions are solely designed to meet the developer’s interests at
the cost of harming the application’s users. A malicious
payload is part of the application that carries malicious
behavior. -ere are two main objectives [54] that mostly
encourage the design of malicious applications: (1) without
the user intention, triggering the malicious payload exe-
cution again and again for maximum benefit, and (2) escape
from detection in order to have maximum life till the ful-
fillment of interests. We have collected around 12,330
malicious applications of different malware families, i.e.,
Androidbox, AnserverBot, and 12 other families.

3.3. Dex Files Extraction. -e Android APK consists of files,
classes.dex, resources.arsc, AndroidManifest.xml, sub-
folders, lib, assets, res, and META-INF. -e file structure of
the Android apk is depicted in Figure 4 step 1. All the files
and folders have the necessary information regarding apk
file. We are interested in the Dalvik Executable file, i.e.,
classes.dex. We extract this file from apk using a tool, named
apktool (https://ibotpeaches.github.io). Apktool is a reverse

engineering tool for Android apks. A script (https://github.
com/KaleemFAST/Android%20End2End%20dataset%20de
sign.git) is designed, and each apk file is unzipped through
apktool. All the extracted classes.dex files are collected.

3.4. Opcodes Extraction. Dex file is the executable file for
Android applications.-e structure of the dex file is depicted
in Figure 4 step 1. We have used a tool dedexer (https://
sourceforge.net/projects/dedexer/), i.e., a disassembler tool
for Android dex file. We get a dex.log file that produces all
the necessary information of different portions of the dex
file. Using the information given in the dex.log file, the
desired code section of the dex file is filtered. From the code
section of the dex file, all the opcode sequences are extracted
to another file. -is process is repeated for all the collected
dex files. Now, we have files containing opcode sequences of
dex files.

3.5. Need forOpcode Embeddings. Opcodes representation is
in textual form, i.e., 05, e2, 03, 87, etc. -ere are two severe
and main problems with this type of representation. (1) We
can see the order relationship among these opcodes; i.e., 05 is
greater than 03. In reality, there is no such relationship; i.e.,
opcodes are not comparable with each other and thus are not
ordered [55]. If we feed this data to the deep neural network
in this form, the network may consider this relation as a
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Figure 4: Stepwise workflow of Op2Vec model and dataset design.
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feature (because of the feature engineering nature of deep
neural networks), this reduces accuracy, and the learning
process may be misled [56]. A technique is needed that
should change this representation in such a fashion that
assists the learning process and preserves the opcodes
identity but still breaks the unnecessary ordering. (2) Deep
neural networks do not work with textual/categorical data
directly; rather, we have to change or encode its represen-
tation to numeric values.

-e conventional encoding technique used is one-hot
encoding [45–47]. -is encoding technique has the fol-
lowing limitations:

(1) In some scenarios, one-hot encoding may be useful
where the number of categorical variables is limited
[45, 47]. But when the variables are not limited, it
becomes very expensive and leads to inefficiency in
most cases [49, 57]. In our case, we have 255 different
opcodes so for each opcode xi if embedded into one-
hot encoding, it will have size xi ∈ [0, 1]255×1, and for
example, if a single file has 300000 opcodes, it will
have 30000 vectors of dimensions 255×1. -is data
will exponentially grow if the number of files exceeds
50,000 figures, i.e., 50,000× 300,000 vectors of di-
mensions 255×1. Training deep learning models on
high-dimensional data having no spatial structure
causes a major computational problem. It implies a
network with an input layer of a very huge size,
which greatly increases the number of weights, often
making the training infeasible [58].

(2) It does not capture morphological resemblance be-
tween categories, and it also ignores the semantic
relationship between the input categories [57]. -is
can be very useful for deep learning models to learn
deep features from opcodes arrangement in Android
source files [59].

p wc,j � wO,c|wI  � yc,j �
exp uc,j 


V
j′�1 exp uj

′ 
. (4)

We definitely need to have an opcode embedding
technique that overcomes all the above issues.

3.6. Opcode Embeddings Using Skip-Gram Model. From the
previous section, it is clear that we need an opcode em-
bedding technique. -at is why we have introduced
Op2Vec to get rid of all the listed issues. We have applied
the skip-gram word embeddings technique for opcodes
encoding. Skip-gram model [48] is a very prominent model
in NLP that is used for Word2Vec. -e words are em-
bedded into vectors with the intuition that model needs to
learn very similar and almost identical vectors for words
having similar contexts. -e complete architecture of the
skip-gram is shown in Figure 5. Window size is selected
based on the problem’s nature.-e input to the network is a
one-hot vector that represents the input word and the
output is also the number of one-hot vectors considering
window size. While evaluating the trained network on a

word given as input, the vectors that are obtained as output
are probability distributions for nearby words, where from
nearby words, we mean words lying inside the window
selected for a particular vocabulary file given for training.
-e weights W in Figure 5, which are learned at the input
layer, are the embedded representations of all the words in
the vocabulary file. -ese probabilities are calculated using
equation (4). In equation (4), wO and wI represent the
output and input vectors, respectively. V represents the
length of the vector. y is a training instance and u is any
given vector. In plain English, this equation states the
prediction probability of a particular jth word of the cth
panel, which equals cth output word, i.e., the actual value of
the output vector index, conditioned on wI. -is equation
decides the index value for a particular word in the output
vector.

We have used the skip-gram to learn Op2Vec. Skip-gram
uses word sequences, so for Op2Vec, words are analogous to
opcodes. We applied this concept with the intuition that
opcodes that appear in the same context must have similar
vector representations. Word2Vec is an analogy to Op2Vec,
i.e., learning Op2Vec, and encodes opcodes in such a
manner that opcodes having similar semantics are assigned
nearly identical vector representations.

4. Experimental Setup and Results

-ere are three main experiments that are carried out to
justify the efficacy of the proposed approach. One is learning
Op2Vec. -e second one is the dataset development based
on the learned Op2Vec, i.e., opcode embeddings for end-to-
end learning of Android malware. And the third experiment
is to feed the designed dataset to deep neural networks to
validate the claim that the dataset can be used for the deep
learning-based analysis of Android malware. In Figure 4, the
gray boxes and cubes from left to right depict the Op2Vec
learning process. -e skip-gram model takes input and uses
the GPU facility to learn Op2Vec. -is Op2Vec will be used
with deep learning models to perform end-to-end learning
for Android malware detection and classify Android apps as
benign 0 or malicious 1.

4.1. Op2Vec: Learning Opcode Embeddings. Words analogy
to opcodes is considered in order to apply the word em-
beddings technique to opcode embeddings. -e same steps
and process of the skip-gram model, used for word em-
beddings in Section 3.6, are applied for opcodes. After the
learning phase, opcodes are encoded into vector represen-
tations. -is process consists of four subtasks which are
listed as follows.

4.1.1. Preprocessing Phase. In the preprocessing phase, we
consider 5,000 Android applications’ dex files, 3,000 benign
and 2,000 Malicious files out of the total 16,240 benign
Android applications, and 12,330 malware files, respectively,
for the development of vocabulary files to train our model.
All the opcodes are collected into a single file. Now, this file is
considered a vocabulary file for the learning phase. -is
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vocabulary file has to be fed to the Op2Vec model for
training. At the very start, we are not able to feed the opcodes
directly to the neural network.-e reason is that opcodes are
represented in hexadecimal notations, i.e., strings; that is
why we binarize this input with a one-hot encoding tech-
nique. As there are a total of 255 opcodes, so the length of the
one-hot input vector is 255×1. For a particular opcode 0a,
the one-hot vector is depicted in Figure 5. For 0a, the
corresponding entry in the vector is fixed as 1 and all the
other 254 entries are zeros.-e output of this model network
is a vector of the same size. It should also have 255 com-
ponents. Every entry of the resultant output vector is the
probability of an opcode selected randomly in the vicinity of
the input opcode.

4.1.2. Parameters Setting for Training Phase. Op2Vec em-
beddings are learned using the skip-gram model. It is a
neural network-based model having all the hidden, input,
and output layers. All neurons in the hidden layers are
without the activation functions, but all the neurons in the
output layer use the softmax. Softmax is a type of regression
used for multiclass classification. In softmax, for a given
input X, a designed hypothesis tries to estimate P(y � k|x),
which is the probability for each value of k � 1, . . . , K. -is
value of k denotes the label of a particular class, so essentially
the function gives us the probability of a particular input
being in any class k. -e network is trained on pairs of
opcodes. -e input vector is the one-hot representation of
the input opcode. -e output, which is also in the form of a

one-hot vector, is all the opcodes inside the window except
the input opcode, and we call it training output opcodes.

For computational simplicity and better visual repre-
sentation, we trained our network for opcode vectors
having two dimensions. We already know that the input
vector size is 255 and we have selected the dimensions
count as 2, so the representation of the hidden layer weight
matrix is going to be in the form of a matrix with 255
columns and 2 rows. -e ultimate goal of this setup is to
learn the weight matrix. -e output vectors are thrown out
once we are done with learning. -e network is trained to
do the task, i.e., given any specific opcode in the middle of
the opcodes sequence, and randomly pick one opcode from
the vicinity, and the model tells us the probability for every
opcode in the vocabulary to be that opcode we have selected
randomly. -e vicinity or nearby term is used because the
skip-gram model uses the window as a parameter in its
algorithm; typically, the window size parameter is set to 5 as
recommended in the original documentation of the skip-
gram.Window size 5 means 5 opcodes ahead and 5 opcodes
behind the central opcode. We have hyperparameter, i.e.,
window size. For our problem, we fixed this hyper-
parameter to its default value as 5.

4.1.3. Training Phase. In the training phase of learning
Op2Vec, the vocabulary file designed in Section 4.1.1 is used
as input to the neural network. A sliding window of size 5 is
adjusted to slide through all the opcodes in the vocabulary
file till the end of the file. -e neural network tries to
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optimize its weight matrix after each iteration to adjust the
probabilities at the output layer for the opcodes of the same
context and semantics.

In Figure 6(a), a sliding window of size 2 is shown, i.e.,
two opcodes before the central opcode and two opcodes after
the central one. For instance, 5 opcodes in a row are selected,
and the opcode colored black is the input opcode for the
network. After feeding this setup, the network tries to learn
patterns in the form of statistical information of the number
of occurrences of each pair, i.e., central opcode with any
other opcode in the mentioned window. In this particular
case where opcode If-it is the central opcode, the pairs are
(If-lt, If-le), (If-lt, If-ge), (If-lt, If-gt), and (If-lt, If-eqz). Let us
say the pair (If-lt, If-ge) occurred more frequently in the
given vocabulary file, so when the learning phase is finished
and we input the opcode If-lt to the network, it shows the
high probability for the opcode If-ge in the output vector.
-e window is slid further to repeat this process for all
opcodes in the vocabulary.-is sliding procedure is depicted
in Figures 6(b) and 6(c).

4.1.4. Learning Op2Vec. -e input vector size is 255×1. -e
weight matrix for the first hidden layer is of size 2× 255 as
shown in Figure 5. -e output of the hidden layer is a vector
of 2×1.-is vector is going to be input for the next layer, i.e.,
the output layer, where the weight matrices for this layer are
of size 255× 2. -e output vectors of the network are of size
255×1, i.e., which is the probability distribution of all
distinct 255 opcodes. -e softmax is applied to the output of
each neuron in order to get the values to sum up to 1. -e
columns of the learned weight matrix at the first hidden layer
are the vector representations of all the 255 opcodes. After
the network is trained, when we evaluate the network on a
given input opcode, the output vector represents the
probability distribution, i.e., a list of values in the form of
floating points, not in the form of a one-hot vector that we
obtain in the training phase.

4.2. Op2Vec Results: Learned Opcode Embeddings. After
completion of the learning process, the weight matrix is
divided into vectors to get the vector representation of all the
255 opcodes. -e values range of all the vectors is in the
interval [−1, 1]. For some very common opcodes, the learned
vectors are listed in Table 2. -ese are two-dimensional
vectors. It can be seen that the same categories of opcodes are
represented by nearly identical vectors. Few of these vectors
are plotted in Figure 7. Op2Vec has fixed all the issues of
conventional one-hot encoding, discussed in Section 3.5, as
follows:

(1) It is very clear from Figure 7 that the Op2Vec model
learned vectors are depicted in such a manner that
opcodes, having similar semantics, are represented
by almost identical vectors. It is also depicted that
opcodes, semantically different, are very apart from
each other. If we look at Figure 7, we can clearly see
that all the conditional statements If-lt, If-le, If-eqz,
If-ne, If-ge, and If-gt are positioned very near in the

space; this reveals that semantics are preserved in this
sort of learning. Similarly, arithmetic opcodes Mul-
int, Sub-lg, Div-int, Div-lg, and Add-lg are separately
clustered. Because of the semantic similarity, they are
almost identical. Same patterns can be observed for
the rest of the opcode categories. So the results reveal
the fact that Op2Vec has learned embeddings ef-
fectively and semantic relationships among opcodes
are preserved. Intuitively, this is a very useful insight
for deep learning models to learn deep features from
opcodes arrangement in the Android source file.
Introducing this relationship among opcodes will
enhance the malware detection learning process
[48, 49, 60], which is a contribution to automatic
malware detection.

(2) -e size of a single one-hot vector is 255×1. Table 2
shows that Op2Vec embeddings have reduced the
255×1 size of one-hot vectors to 2×1, which sig-
nificantly decreases computationally complexity
[58].

(3) Op2Vec embeddings have also fixed the limitation of
ordering between originally extracted opcodes as
there is no such real order in the generated vector
representation.

4.3. Development of the End-to-End Learning Dataset.
Now, when the Op2Vec embeddings are successfully
learned, we can generate the proposed dataset that can be
efficiently used for end-to-end learning analysis of Android
malware. All the files generated in Section 3.4 are accessed
one by one, and the opcodes are replaced by their corre-
sponding vector representation learned in Section 4.2. -us,
the dataset is developed, and we claim that this is the first-
ever attempt to develop a dataset that will be used for end-to-
end detection of Android malware using deep neural
networks.

4.4. Feed the Developed Dataset to Deep Learning Models.
-e claimed hypothesis that the dataset can be effectively
used for end-to-end learning is validated by feeding the
dataset to the CNN, i.e., a deep neural network/end-to-end
learning model. Each file in the dataset has two-dimensional
vectors corresponding to each opcode in the original dex file.
So each file has two columns and a number of rows. For the
network, we consider our input frame consists of two
channels as each vector is of two dimensional. Each benign
file is assigned a label as 0 whereas each malicious file is
labeled as 1. -e network’s setup is all set to process the
available files for end-to-end learning.

5. Comparison with Existing Datasets

-is section draws a comparison among our designed
Op2Vec dataset and six other very popular datasets in the
malware analysis literature. -e comparison is based on the
following two parameters.
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5.1. Features (Handcrafted or Deep Features). One of the
fundamental limitations of all other available datasets is
handcrafted feature extraction which are employed for
characterizing malware behavior. Our Op2Vec does not
require handcrafted features. -e datasets can be fed directly
to the deep neural network for learning deep features.

5.2. Feeding Information to the Deep Neural Network (One-
Hot Encoding or Vector Embedding). All the listed datasets
and techniques have used one-hot encoding to feed the
Android source code information to the classifiers. One-hot
encoding has limitations that are discussed in Section 3.5.
We have proposed Op2Vec which has fixed all the limita-
tions and outperforms one-hot encoding as discussed in
Section 4.2.

Drebin [26] has used a script for the automated ex-
traction of different handcrafted features. -e features are
embedded in the one-hot encoding of the form xi ∈ [0, 1]
545000×1. SVM classifier is trained to classify applications
based on their representative feature vectors. Another
dataset that is used in [61]. A total of 42 handcrafted features
of size xi ∈ [0, 1]42×1 are extracted to use with LSTM. Sim-
ilarly, the authors in [62] have used a dataset where 34,570
handcrafted features are extracted.-is feature set is reduced
to 413 using a feature selection technique. -e input feature
vector for the classifier is of size xi ∈ [0, 1]413×1. Both [63, 65]
have used 323 and 1,058 features, respectively, for machine

learning classifiers. -eir input feature vectors are xi ∈ [0, 1]
323×1 and xi ∈ [0, 1]1058×1, respectively. -ere are a number of
datasets available for Android malware analysis and these
datasets are only a collection of malicious Android appli-
cations. VirusShare [64] is one of the examples of such
datasets. VirusShare has a total of 107,888 malicious An-
droid applications. Different studies have used this dataset to
learn insights into Android malware. A total of 482 features
are considered and a feature vector of size xi ∈ [0, 1]482×1 has
been used to feed information to machine learning
classifiers.

All the discussed datasets have a format that cannot be
used to perform automatic malware detection using deep
learning models. Most of these studies extract features from
datasets, and these features are used with deep learning
algorithms. Deep learning models have a very strong
property, i.e., automatic deep feature extraction.-ey do not
need handcrafted features; rather, raw data is sufficient for
the training and learning process. Our proposed dataset is
designed to exploit deep learning models for deep features.
We have designed a dataset that can be fed directly to deep
learning models. Unlike other datasets, no handcrafted
features are required. -e input encoded vector size is
xi ∈ [−1, 1]2×1, which has very few dimensions in comparison
with other existing dataset techniques.

From Table 3, it is clear that in terms of features ex-
traction and embedding technique our Op2Vec dataset is far
better and adaptable as compared to the other datasets.
Performing the Op2Vec type embedding technique can
reduce dimensions up to 2×1. Adopting this dataset will
allow learning deep features without extraction of

If-ge If-le If-lt If-gt If-eqz If-ne Add-lg Div-int

(a)

If-ge If-le If-lt If-gt If-eqz If-ne Add-lg Div-int

(b)

If-ge If-le If-lt If-gt If-eqz If-ne Add-lg Div-int

(c)

Figure 6: Sliding window over vocabulary opcodes.

Table 2: Learned Op2Vec: the learned vectors.

Opcode X-axis value Y-axis value
If-ne −0.2729177368 −0.0875072266
If-lt −0.3726633597 −0.017922292
If-ge −0.6149268202 −0.0044448727
If-gt −0.6818177649 −0.3873034379
If-le −0.3076827262 0.1643184456
If-eqz −0.2591792741 0.2236180313
Mul-int 0.2114985694 0.3691054416
Sub-lg 0.1262099695 0.1640332061
Div-int 0.1447551711 −0.0522292025
Add-lg −0.0497673974 −0.2025787514
Div-lg 0.1181362618 −0.0835916175
Iput-wide 0.3703214875 −0.0470563225
Iput-byte 0.3919335594 −0.0879191859
Iput-char 0.462135628 −0.3112477693
Invoke-static −0.278561079 −0.3259538566
Invoke-super −0.6331899455 −0.4750899485
Invoke-virtual −0.5944988213 −0.5101055075
New-array 0.0389557098 0.6073178184
Filled-new-array −0.0966243253 0.5125404323
New-instance 0.0762253855 0.4074241374
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Figure 7: Learned opcode embeddings.
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handcrafted features and with less computational com-
plexity. -e rest of Table 3 shows the files count in all the
three datasets, malicious and benign files count, feature
extraction method, and encoding techniques for features to
be fed to machine learning and deep learning algorithms.

In order to demonstrate the significance of the proposed
approach, some of the recent opcode-based deep learning
techniques such as [67–72] are trained and tested with the
Op2Vec dataset. For a fair comparison, the same experi-
mental setup is used for the experiments with Op2Vec. It can
be seen in Table 4 that the performance of the existing
techniques significantly improves by incorporating Op2Vec
embeddings. All the listed approaches achieve an average
accuracy of 97.47%, where the highest accuracy is achieved
with the setup suggested in [71]. It is evident from the results
that Op2Vec which incorporates the semantic relationship
of opcodes and deep features enhances the performance of
deep learning techniques to detect Android malware.

6. Conclusion and Extensions

Previous work has shown that opcodes of executables have
potential information. Opcodes can be considered as fea-
tures in order to make discrimination between malware and
benign Android applications. But these features are very
hard to extract or notify. -e handcrafted features or in-
formation extraction process is very expensive in terms of
cost and time. In order to automate the process and

effectively identify potential information and extract deep
features, end-to-end learning is a perfect solution.-is study
concerns the learning of Op2Vec and the development of a
novel dataset for end-to-end detection of Android malware.
Op2Vec learning process employs a machine-learning al-
gorithm to learn meaningful vector representations from
opcodes of Android source files. -e designed opcode
embedding technique is used to develop a dataset for end-to-
end detection of Android malware. -e dataset will be used
to learn useful patterns and information from the Android
source code. We have not only developed the dataset but
have also presented the design process and techniques in-
volved in the dataset development. To the best of our
knowledge, we believe this is the first state-of-the-art dataset
for end-to-end Android malware detection. -e product
dataset of this research will be made openly available for
further research concerning Android malware detection.
Not only the dataset but also the designed process of the
dataset will be made public so that in the future, new An-
droid application files can be added to the dataset. -is will
make our technique robust to deal with newly emerging
Android malware.

-e proposed technique is one of the static Android
malware analysis techniques. -e limitation of this tech-
nique is that it may not capture the dynamic aspects of
malware analysis. One of the future directions can be to
combine the Dalvik instruction traces technique with the
proposed approach to fix this limitation.

Table 3: Comparisons with existing datasets.

Dataset Files count Malicious Benign Feature extraction Features set Feature vector
Drebin [26] 129,013 123,453 5,560 Handcrafted 545,000 xi ∈ [0, 1]545000×1

Vinayakumar et al. [61] 2296 1,609 687 Handcrafted 42 xi ∈ [0, 1]42×1

Wang et al. [62] 23,000 13,000 10,000 Handcrafted 34,570 xi ∈ [0, 1]413×1

Zhu et al. [63] 11,000 8,000 3,000 Handcrafted 323 xi ∈ [0, 1]323×1

VirusShare [64] 107,888 None 107,888 Handcrafted 482 xi ∈ [0, 1]482×1

Hou et al. [65] 5,000 2,500 2,500 Handcrafted 1,058 xi ∈ [0, 1]1058×1

AndroZoo [66] 3,182,590 1,162,150 2,020,440 Handcrafted 50,000 xi ∈ [0, 1]50000×1

Op2Vec dataset 28,570 12,330 16,240 Automated Deep features xi ∈ [−1, 1]2×1

Table 4: Performance enhancement of existing opcode-based techniques.

Reference (Year) Features Deep learning technique Dataset Reported
results (Acc) (%)

Results with
Op2Vec (acc)

(%)

Parildi et al. (2021) [67] Opcodes VirusShare and native Win7 apps RNN and
LSTM 95 96.83

Ren et al. (2020) [68] Opcodes Google Play store and VirusShare DNNs 95.8 97.1
Niu et al. (2020) [69] Opcodes VirusShare, Androzoo, and Pea Pods LSTM 97 98.77
Pekta and Acarman (2020)
[70] Opcodes Androzoo, Argus group, and

GooglePlay RNN and 91.42 96

Zhang et al. (2018) [71] Opcodes Microsoft in Kaggle 2015 and Benign
apps ResNet 98.2 98.63

McLaughlin et al. (2017) [72] Opcodes Genome project, McAfee Labs CNN 95 97.53
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Data Availability

-e data used to support the findings of this study are
available from (1) https://github.com/KaleemFAST/
playstore-scraper-php.git, (2) https://ibotpeaches.github.io/
Apktool/, (3) https://github.com/KaleemFAST/
Android_End2End_dataset_design, and (4) https://
sourceforge.net/projects/dedexer/.
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