W) Check for updates

Hindawi

Security and Communication Networks
Volume 2022, Article ID 3710968, 15 pages
https://doi.org/10.1155/2022/3710968

WILEY | Q@) Hindawi

Research Article

Op2Vec: An Opcode Embedding Technique and Dataset Design for
End-to-End Detection of Android Malware

Kaleem Nawaz Khan ©,! Najeeb Ullah ,! Sikandar Ali ©®,2 Muhammad Salman Khan ©,}
Mohammad Nauman (©,* and Anwar Ghani ®’

'Department of Computer Science, University of Engineering and Technology Mardan, Mardan, Pakistan

Department of Information Technology, The University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
’Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar

*Department of Computer Science, National University of Computer and Emerging Sciences, Peshawar, Pakistan
Department of Computer Science and Software Engineering, International Islamic University Islamabad, Islamabad, Pakistan

Correspondence should be addressed to Kaleem Nawaz Khan; kaleemnawaz@uetmardan.edu.pk, Najeeb Ullah; najeeb@
uetmardan.edu.pk, Sikandar Alj; sikandar@uoh.edu.pk, and Anwar Ghani; anwar.ghani@iiu.edu.pk

Received 25 February 2022; Revised 18 April 2022; Accepted 25 April 2022; Published 19 May 2022
Academic Editor: Shah Nazir

Copyright © 2022 Kaleem Nawaz Khan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Android is one of the leading operating systems for smartphones in terms of market share and usage. Unfortunately, it is also
an appealing target for attackers to compromise its security through malicious applications. To tackle this issue, domain
experts and researchers are trying different techniques to stop such attacks. All the attempts of securing the Android
platform are somewhat successful. However, existing detection techniques have severe shortcomings, including the
cumbersome process of feature engineering. Designing representative features require expert domain knowledge. There is a
need for minimizing human experts’ intervention by circumventing handcrafted feature engineering. Deep learning could
be exploited by extracting deep features automatically. Previous work has shown that operational codes (opcodes) of
executables provide key information to be used with deep learning models for the detection process of malicious ap-
plications. The only challenge is to feed opcodes information to deep learning models. Existing techniques use one-hot
encoding to tackle the challenge. However, the one-hot encoding scheme has severe limitations. In this paper, we introduce
(1) a novel technique for opcodes embedding, which we name Op2Vec, and (2) based on the learned Op2Vec, we have
developed a dataset for end-to-end detection of Android malware. Introducing the end-to-end Android malware detection
technique avoids expert-intensive handcrafted feature extraction and ensures automation. Some of the recent deep learning-
based techniques showed significantly improved results when tested with the proposed approach and achieved an average
detection accuracy of 97.47%, precision of 0.976, and F1 score of 0.979.

1. Introduction severely infected with malicious applications [1]. Attackers

look for the possibility of exploiting mobile platforms

Mobile technology has shown exponential growth in the
recent past. Mobile devices are the best source to manage our
day-to-day communications. These mobiles accompany us
in all our movements. The use of these devices allows us to
handle most of our very important activities, social net-
working, payments, and banking, with ease. Due to the high
growth rate, mobile platforms are highly targeted and

through various techniques. There are cybercriminals as well
as hackers, sponsored by states, doing research in order to
find schemes for possible attacks against mobile platforms
for their better interest. According to International Data
Corporation (IDC) [2], mobiles have surpassed PCs in terms
of preferred devices that can be used to access the Internet
and other possible services. IDC also states that the number

mailto:kaleemnawaz@uetmardan.edu.pk
mailto:najeeb@uetmardan.edu.pk
mailto:najeeb@uetmardan.edu.pk
mailto:sikandar@uoh.edu.pk
mailto:anwar.ghani@iiu.edu.pk
https://orcid.org/0000-0003-3630-6418
https://orcid.org/0000-0003-3464-2135
https://orcid.org/0000-0002-2753-8615
https://orcid.org/0000-0001-9709-8179
https://orcid.org/0000-0003-0941-2549
https://orcid.org/0000-0001-7474-0405
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3710968
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2022%2F3710968&domain=pdf&date_stamp=2022-05-19

of mobile users will cross the 91 million mark over the
coming four years.

Malware is a short form used for malicious software. It is
a program or software on any system that is not intentionally
installed by the end-user or system administrator. There are
various types of malware for different tasks and purposes [3].
The behavior of malware can range from being a very simple
piece of annoyance, such as pop-up advertisements to severe
actions which may be much more damaging and harmful
[4], such as stealing important systems’ passwords or secret
data and other more severe actions. They may be used for
infecting other machines having very confidential and secret
information, over the network [5].

Among mobile platforms, Android is one of the most
prevalent platforms for smartphones nowadays. It has seen
exponential growth with a market share of 82.6% and has
several millions of mobile applications in various markets
[2]. It is a very rich platform in terms of the availability of
various functionalities to its users. Unfortunately, it has been
observed that smartphones with the Android operating
system are targeted more often than any other platform by
security attackers [4], and it is very severely infected by
malicious software. Unlike other mobile platforms, Android
allows easily installing applications from sources without
clear verification, such as third-party markets, whose sole
purpose is to bundle and distribute mobile applications with
malwares, assisting attackers in different kind of tasks [6].
According to a report [7], the number of Android malicious
applications will cross 3.8 million mark at the end of this
year. Keeping this evidence in mind, there is a need for
techniques and solutions to limit the production of malwares
on different Android markets. Large body of research is
involved to overcome the situation [8, 9]. Researchers are
trying to find out smart ways for automated detection of
malicious applications.

Android applications can be analyzed in two ways: either
performing static analysis [10] or dynamic analysis [11]. In
static analysis, the application is studied in its static position.
Its behaviors, i.e., code patterns, requested permissions,
relationships with other applications, intent filters, and other
features, are analyzed. On the other hand, in dynamic
analysis, the application is studied and analyzed during its
running state. Dynamic aspects, such as observation of
system calls, dynamic loading of the code segment, and
invocations of API calls, are analyzed. Dynamic analysis is
performed mostly in a controlled environment that is named
a sandbox [12]. All the relevant operations of the state of the
execution are monitored, such as sending SMS messages,
storage reading, and connection to remote servers.

The conventional Android malware detection pipeline is
to take Android applications and uses domain expertise to
extract handcrafted features from a set of applications.
Dynamic and static features are extracted for dynamic and
static analyses, respectively. The features are then used to
train machine learning algorithms to produce trained
models to classify and detect Android malware. Common
classifiers used for Android malware detection are support
vector machine (SVM), decision tree (DT), k-nearest
neighbors (KNN), random forest (RF), neural networks

Security and Communication Networks

(NN), and k-means clustering. Recently, deep neural net-
works are getting attention for Android malware detection.
Studies such as Droid-Sec [13], DeepDetector [14, 15], and
[16] are using a deep learning approach to detect Android
malware. Unlike handcrafted feature extraction for con-
ventional machine learning algorithms, deep learning has a
very strong and unique approach to automatically extract
deep features and learn classification patterns.

All the conventional machine learning and the deep
learning techniques studied in the existing literature work
well with reasonable accuracy, but the problem is that these
techniques rely on engineered handcrafted features. Even
the deep learning techniques are trained with handcrafted
features. Features engineering is a cumbersome and a very
lengthy process, which requires domain knowledge. The
feature engineering process is depicted in Figure 1. Domain
knowledge and domain experts are required to perform
brainstorming of features to decide what features to create.
The created features are then tested with the experimenta-
tion model. Features are tuned where required and the
complete feature engineering cycle is repeated if necessary.
In most cases, malware designers are required to design the
representative features. The domain experts and the available
known malware designers are limited in number. That is
why there is a need for making a system that can replace this
lengthy and cumbersome features engineering process and
incorporate end-to-end learning. The major problem is that
we do not have any dataset publicly available for deep
learning algorithms to learn end-to-end, i.e., extract deep
features instead of designing handcrafted features. In end-
to-end learning, the algorithm learns deep features instead of
taking engineered features. So, the gap in the current re-
search is to develop a dataset for end-to-end learning of
Android malware and allow deep learning algorithms to be
trained on the dataset and detect Android malware with
minimum human expert intervention. Another problem in
the existing solutions is that they use one-hot encoding to
feed information to deep learning models. One-hot
encoding creates severe problems and sometimes it becomes
infeasible to be used with deep learning techniques. These
limitations are discussed in detail in the coming sections. We
need to devise an alternative that outperforms one-hot
encoding.

Our first contribution concerns the development of a
novel dataset for end-to-end detection of Android malware.
The dataset can be used to learn useful patterns and in-
formation from the Android source code. We have not only
developed the dataset but have also presented the design
process and techniques involved in the dataset development.
End-to-end learning minimizes human experts’ intervention
in designing/developing representative features and cir-
cumventing the handcrafted feature extraction process. The
second contribution of this study is learning Op2Vec.
Op2Vec learning process employs a machine-learning al-
gorithm to learn meaningful vector representations from
opcodes of Android source files. All the limitations of
existing embedding techniques motivated us to develop a
novel encoding technique which we term “Op2Vec.” After
learning Op2Vec and dataset development, we also validate

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

Security and Communication Networks

Brainstorming features

Deciding what
features to create

Creating features

Repeat brainstorming and
creating more features

Improving features

Testing features with
the designed model

F1GURE 1: Features engineering process.

the dataset by feeding it to a deep neural network. Based on
the above discussions, the main contributions are summa-
rized as follows:

(1) Op2Vec for learning opcode-vector embedding

(2) Development of a dataset for end-to-end learning
based on learned Op2Vec embedding and feeding
the developed dataset to deep learning models for
learning patterns and insights (circumventing fea-
ture engineering)

In this section, after a detailed introduction to the
problem area and different techniques, the relevant back-
ground of Android malware detection and motivation for
the proposed approach is discussed in Section 2. Section 2
focuses on malware detection techniques along with details
of machine learning models, more importantly, a brief in-
troduction, and the working paradigm of deep learning.
Moreover, in the last part of the section, the word em-
beddings technique, its specifications, and its relevance to
our novel Op2Vec technique are discussed. In Section 3, the
methods of our research and the subtasks of the proposed
approach are listed along with a brief discussion; more
importantly, the word embedding model, skip-gram, is
presented in depth with its working fashion. Section 4
discusses the experiments performed and the results of the
experiments along with a detailed analysis. This section also
covers how to use the designed dataset with deep neural
networks for end-to-end learning. Section 5 provides a
comparison of our proposed dataset with other state-of-the-
art datasets and discusses how the use of Op2Vec makes it
better than existing datasets. Section 6 concludes the paper
and provides further extensions in this part of the research.

2. Background and Motivation

2.1. Android Malware Analysis. Due to the severity of An-
droid malware, there are hundreds of approaches for its de-
tection and classification. One approach is to perform a static
analysis of the Android application. In static analysis, the
executable code of the Android applications is examined to
determine the data flow, control, and representative pattern
without running the executables. Another approach is to ex-
amine an Android application through dynamic analysis. In
dynamic analysis, the execution of an application is monitored
by inspecting execution behaviors. Both static and dynamic
analysis studies are discussed in the next two subsections.

2.2. Dynamic Analysis Techniques for Android Malware.
Due to the complexity of dynamic analysis, there are very
few techniques for conducting dynamic analysis for Android

malware detection. A very popular technique is DroidScope
[17]. Itis an Android malicious applications’ analysis engine,
based on emulation, which performs dynamic analysis of
Android applications. Its specialty is to reconstruct both OS
and Java level semantics seamlessly and simultaneously.
Riskranker [18] is another approach that ensures accurate
and very scalable detection of zero-day Android malware. It
dynamically analyzes whether a particular application ex-
hibits dangerous behavior. Another similar technique
DroidRanger [19] performs a behavioral footprinting
scheme, based on requested permissions, for the detection of
new samples of unseen Android malware families, and later
applies a heuristics-based filtering approach for the iden-
tification of certain inherent behaviors of unseen malware
application families.

Android malware detection is based on system calls [20],
where automatic classification is performed based on
tracking system calls. DroidScribe [21] is a very recent
approach that focuses on dynamic analysis, i.e., runtime
behavior. This approach shows how machine learning al-
gorithms can be used to automatically classify Android
malware into different malware families by just observing
their runtime behavior. It observes that, on Android sys-
tems, system calls solely do not provide sufficient semantic
content to make classification; that is why it also uses a
lightweight VM introspection to reconstruct interprocess
communication on the Android system for effective analysis.
All the discussed techniques in this section have used
engineered handcrafted features which are specifically
designed for dynamic analysis.

2.3. Static Analysis Techniques for Android Malware.
Static analysis is relatively simple and scalable. There are
several techniques that use static analysis for Android
malware detection. A set of static features is designed using
domain expertise. The features are then utilized for the
detection of Android malware. An approach, DroidAPI-
Miner [22], statically mines API-level features for the robust
detection of malware on Android systems. It aims to provide
a lightweight and robust classifier in order to evade Android
malware installation. Another similar technique Droidminer
[23] uses a behavioral graph to embed abstract malware
program logic into a sequence of threat patterns and then
applies machine learning techniques to identify and label
elements of the graph that match already extracted threat
modalities. A semantic-based technique [24] is responsible
for the classification of Android malware through depen-
dency graphs. It extracts a dependency graph, i.e., a weighted
contextual API graph, as program semantics for the con-
struction of feature sets. Another study reveals that

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

malicious application treats sensitive data differently from
benign applications. This feature is used to design a useful
technique [25] for the identification of malware applications.
Benign Android applications are mined for their data flow
from sensitive sources, and then, these flows are compared
against those, found in malicious applications, to detect
similarities.

DREBIN [26] is a lightweight method for Android
malware detection. It enables the identification of malware
applications on smartphones directly. It extracts as many
features of an Android application as possible, and later, the
extracted features are embedded into a joint vector space in
such a fashion that typical patterns, which are indicative of
malicious applications, can be automatically detected and
can be used to explain decision making. DREBIN has shown
an effective rate of detection of malicious applications on its
own dataset. They have designed a dataset and a support
vector machine (SVM) classifier is used for training on the
same dataset.

A model presented in [27] is an n-grams-based tech-
nique. Sequential features, based on n-grams, are extracted
from files’ content. It determines patterns of sequential n-
grams and then calculates statistics for the extracted pattern,
and in the last, the classifier is trained to classify malware in
different malware families. They have studied three classi-
fiers for this task, i.e., SVM, C4.5, and multilayer perceptron.
A method proposed in [28] uses three metrics, the weighted
sum of permissions’ subset, a set that consists of a combi-
nation of permissions, and a specific subset of system calls’
occurrence. An approach based on permissions’ combina-
tion is studied in [29]. This scheme uses permission in-
formation present in the manifest of an Android application.
These permissions’ combinations are frequently requested
by malicious applications and rarely requested by benign
applications. Based on the permissions combinations, rules
are generated in order to make classification of applications
as benign or malicious. This model is then used for the
classification of unknown applications.

An Android applications classification technique [30]
and others [31] use bytecode for detection purposes. The
bytecode of an application contains the accurate behavior of
an application, which can provide enough information
about the application’s intentions. Similarly, malicious ap-
plications tend to have the same pattern of bytecodes which
makes them unique and differentiates them from benign
applications.

Android file’s opcodes are considered the source of
information for malware detection. A technique that uses
opcodes as features for the identification of malware ap-
plications is studied in [32]. This method is based on state-
of-the-art classifiers applied to the frequencies of opcode
n-grams. Similarly, a very popular study [33] presents a
detection mechanism based on features, such as sequences of
opcodes combined with machine learning algorithms. As an
initial input feature, it collects all the possible k-grams in a
given set of applications. To determine key relevant features,
a selection algorithm is applied and a classifier is trained
based upon selected features. Another opcode-related study
[34] applies static analysis over opcode distribution. In this

Security and Communication Networks

particular experiment, Android executables are dis-
assembled statically, and the opcodes’ frequency distribution
is extracted. These distribution patterns are then compared
with nonmalicious executables’ distributions. It is noticed
that there is a significant difference between these distri-
butions. This feature can be effectively applied to differen-
tiate malware and benign Android applications. The
exploitation of opcodes for malware detection is currently a
hot topic for Android malware detection problems.

2.4. Representative Handcrafted Features for Malware
Detection. After the extensive study of both dynamic and
static analysis of Android malware, it is concluded that
dynamic and static analyses use a separate set of features for
malware analysis. Features and their importance can be
studied and justified using domain knowledge and expertise
from the computer security domain. Each approach con-
siders different types of features and tries to justify their
importance and relevance to the problem; there is no
standard solution or set of features. The different categories
of the features are classified in Table 1.

2.5. Machine Learning Algorithms for Malware Detection.
Once the feature engineering and extraction step is per-
formed, the next step is usually to apply machine learning
algorithms, such as random forest, decision tree, SVM,
Bayesian classifiers, KNN, and k-means clustering, for
malware detection and classification. Each algorithm deals
with the extracted features differently and tries to learn
useful patterns. The parameters of algorithms are tuned
considering the nature of features. Studies such as [35] and
[36] demonstrate the use of machine learning algorithms for
automatic Android malware detection.

yk = Z(wki.xi), (1)
1
E, = 5 Z (ynk - tnk)zwhere; Yuk = Vi (xn’ w), (2)
k
OE,
P CA R)

Jt

2.6. Deep Neural Networks and Deep Learning. Deep learning
or end-to-end learning is a paradigm of machine learning
but is very practical [37]. It achieves great flexibility and
power by learning to express the world in the form of a
nested hierarchy of concepts, such that each complex
concept is defined in terms of very simpler concepts.
Concepts that are more abstract are defined in relation to less
abstract concepts. This concept of end-to-end learning is not
new but was there for decades. But recently with very strong
hype, end-to-end learning is getting extraordinary attention.
The more prominent contribution of end-to-end learning is
automatic features engineering [38-41]. This property
makes it unique and more powerful than all other existing
machine learning techniques.

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

Security and Communication Networks

TaBLE 1: Features set for Android malware analysis.

Features for dynamic Android malware analysis

Behavioral footprinting
Dalvik instruction traces
System calls
API-level activity and information leakage
Heuristic-based filtering
Sensitive data handling
Run time behavior

Features for static Android malware analysis

Behavioral graph
API-level features
Weighted contextual API dependency graph
Control flow transition
Permissions
Opcode patterns
Opcode frequency histogram
Manifest and creator information
Information flow
Context, time, and connection-based network features
Statistical features
N-gram sequential features
Weighted sum of permissions
Internet component call graph
Signature-based features

Convolutional Neural Network (CNN) is an example of a
deep neural network; it tries to learn low-level concepts or
features such as edges and may be lines in starting layers, then
parts and pieces of objects, and then the high-level represen-
tation of the objects [42]. The general problem-solving ap-
proach of deep learning is different than conventional machine
learning algorithms. These algorithms first divide the problem
into subproblems, and then after solving all the subproblems,
the results are compiled in a collective form. This is not the case
in deep learning because it is end-to-end learning; i.e., just
input the raw data and the classification results are collected as
output. CNNs have multiple hidden layers where convolution
operation is performed, a few dense layers near the end of the
network, and an output and input layer. The input data is fed to
the input layer along with random initial weights. The output is
received from the output layer. All the calculations are per-
formed in hidden layers. Equation (2) is the error function
known as mean squared error, where y is the predicted output
and t is the target output or may be named as a label. We can
also consider y as linear combinations of the given inputs as
presented in equation (1), where yj is the output, wy; is the
weight, and x; is the input. After prediction, the error is cal-
culated using equation (2), y, is the predicted output while £,
is the ground truth. This error function is for some input #, and
all possible outputs or labels k. The term x is a particular input
having weight w. The calculated error is then backpropagated
to hidden layers and weights are updated accordingly. This
process is continued till the weights are optimized enough, and
the value of the error function is converged. Equation (3) is the
error function gradient considering some weight w;;. This
gradient is used in the backpropagation process.

2.7. Deep Learning-Based Analysis for Android Malware.
There are a number of deep learning-based methods for
Android malware detection. One of the methods is Droid-

Sec [13]. It uses 200 different dynamic and static features
with deep neural networks for malware detection. Deep-
Detector [14] is another approach, where eight different sets
of features are considered to be used with deep neural
networks. A multimodal deep learning method is proposed
in [15]. The technique uses opcode features and method API
features with deep neural networks. Another approach [16]
extracts a sequence of API method calls and manually
categorizes the dangerous APIs. The categorized API se-
quences are used to train deep neural networks. In [43], the
authors use five different sets of features to perform clas-
sification using deep learning. Droiddetector [35] is con-
sidering three sets of features, i.e., required permission,
sensitive API, and dynamic behavior, with deep neural
networks.

2.8. Motivation for the Proposed Approach. Deep learning
methods are popular because of deep feature extraction. All
the existing deep learning-based techniques discussed in
Section 2.7 have used handcrafted features for automated
Android malware detection as depicted in Figure 2. These
techniques do not exploit the deep feature extraction nature
of deep learning methods but rather use engineered
handcrafted features. To hand-design, an effective feature is
a lengthy process. This approach is very costly and lengthy
and requires intensive domain knowledge and expertise as
already discussed in Section 1. There is a need for making
this feature extraction process automatic and reduce human
experts’ intervention. Aiming at new applications, deep
learning enables the acquisition of new effective feature
representations from the available dataset for training. The
major difference between deep learning and conventional
methods is that deep learning automatically learns features
from big data, instead of adopting handcrafted features as
shown in Figure 3, which mainly depends on prior

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

Security and Communication Networks

//\

Android apps \

Domain knowledge and expertise \
for handcrafted features extraction

Handcrafted

/ features

\//

A 4

Trained model to classify Android
applications

Classification
algorithms

FiGure 2: Conventional model for Android app classification.

Android apps

Deep Neural Networks
(End-to-end learning)

Trained model to classify
Android applications

FIGURE 3: Proposed classification pipeline.

knowledge of designers and is highly impossible to take the
advantage of big data.

Recent studies, such as [32, 33] and [34], offer solid
justification that opcodes distribution and sequences pro-
vide important information to differentiate a malware from
a trusted Android application. The problem is how to feed
the opcodes information to deep neural networks as deep
neural networks only work with numerical data. Another
problem for Android application classification and malware
detection is that there are only a limited number of datasets.
The latest publicly available dataset is Drebin [26]. Drebin
and all other existing datasets have Android apks structured
directories and have such a format that they cannot be used
to perform automatic malware detection using deep learning
models [44].

First, we need to develop an opcode embedding tech-
nique to feed the opcodes to deep neural networks. One
solution is one-hot encoding [45-47]. But this solution has
shortcomings; i.e., one-hot encoding leads to inefficiency for
high-dimensional input data and it does not capture the
semantic relationship. There are extensive studies [48-49]
that strengthen the concept that the vector embedding
technique outperforms the conventional one-hot encoding
solution. This motivates us to develop a vector embedding
technique for opcodes which we name “Op2Vec.” And
secondly, based on the learned vector embeddings, we de-
velop a dataset that will be used for the end-to-end detection
of Android malware.

2.9. Word Embeddings. Word embedding is a technique
used for embedding words into vectors. It does this task in
such a fashion that the syntactic and semantic relationships
between words are always preserved. Word2Vec is one of the
very important subtasks for most of the applications of
natural language processing (NLP). Word embedding is the
collective name for a set of feature learning and language
modeling techniques in the field of NLP where words and
phrases from the available vocabulary are mapped to vectors
of real numbers. Our work is inspired by TWEET2VEC [46],
ATTACK2VEC [50], and ASM2VEC [51] where the authors
have applied a word embedding technique to encode tweets,
attacks, and assembly language functions into vectors. Word
embedding is considered a very recent version of these

embeddings which are relatively dense and have low di-
mensionality [52], which is very efficient in terms of com-
putation. Get motivated from all these studies we are
applying the Word2Vec to opcodes which we name Op2Vec,
to learn vectors for opcodes. There are two common word
embedding models, i.e., continuous bag-of-words (CBOW)
and the skip-gram model. Because of the two severe limi-
tations of CBOW [53], i.e., ignoring the order of words and
ignoring the semantics of words, we will be considering the
skip-gram model for our solution.

3. Proposed Methodology

In this section, we present details of the Op2Vec learning
process and the designed dataset. The dataset consists of
opcode sequences of Android applications. Initially, the
dataset contains 28,570 Android applications. More appli-
cations can be easily added in the future to confirm the
robustness of the proposed technique. The dataset design
process consists of five phases. A pictorial view of all the
steps involved in the proposed design process is shown in
Figure 4. After the collection of Android apks from different
online Android Play Stores, the first phase is the extraction
of Dalvik Executable (.dex) files from apks. The second phase
is the extraction of instructions from executable files. All the
instructions are processed and only opcode sequences are
extracted. In the third phase, opcode sequences of different
files are combined to learn Op2Vec, i.e., opcode embeddings.
In the very last stage, for every single file, opcodes are
replaced by their corresponding vectors, learned in phase
four to finalize the dataset. The final step is to feed the dataset
to deep neural networks to ensure its validation for end-to-
end learning.

3.1. Collection of Benign Applications. Benign applications
are those applications that are solely designed for harmless
and smooth fulfillment of user requirements. The main
objective of these applications is to meet the user require-
ments. Some Android benign applications are free and
others are paid, available in online markets. Because of DRM
restrictions, we have mostly collected free Android appli-
cations for our dataset. Around 16,240 free benign Android
applications are downloaded from Amazon Appstore,

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

Security and Communication Networks

/| dex checksum, sha-1 signature
/ (header

dex extraction

—/

android package Kt | | = iving constami pool.)

C type/class constant pool)

/ C field constant pool)

dex - C method constant pool)

: \ (dassdefinition)

|

\\\ (method list)

VO code header)
\

\ (local data / variables)

benign malicious

drebin + virusshare opcode| operands
self crawled / S~o
I opcode)
input skip-gram op2vec
GPU
op2vec deep learning Oorl
GPU

. I target opcode

context opcode
Skip-gram sliding window with step size 2,

\ ¢

/ \\ z
// \\ 4//
// 16-bit ~ 16-bit 16-bit
/
/
K 16-bit
/
/ . n .
/ 16-bit 16-bit 16-bit
vocabulary 16-bit 16-bit 16-bit
\\ . . .
\ 16-bit 16-bit 16-bit
\
\ 16-bit 16-bit 16-bit
\
AN 16-bit 16-bit 16-bit

M 16-bit 16-bit 16-bit

1 similarity measurement
3 compression

malicious real no. vector
-1to 1

; real no. vector
benign Lol

Op2Vec

unique 255 vectors (nd)

in our case 2x1 2 context

FIGURE 4: Stepwise workflow of Op2Vec model and dataset design.

SlideME, 1Mobile Market, and Google Play. A script
(https://github.com/KaleemFAST/playstore-scraper-php.
git) is designed to download applications from all the
available sources.

3.2. Collection of Malicious Applications. Android applica-
tions are solely designed to meet the developer’s interests at
the cost of harming the application’s users. A malicious
payload is part of the application that carries malicious
behavior. There are two main objectives [54] that mostly
encourage the design of malicious applications: (1) without
the user intention, triggering the malicious payload exe-
cution again and again for maximum benefit, and (2) escape
from detection in order to have maximum life till the ful-
fillment of interests. We have collected around 12,330
malicious applications of different malware families, i.e.,
Androidbox, AnserverBot, and 12 other families.

3.3. Dex Files Extraction. The Android APK consists of files,
classes.dex, resources.arsc, AndroidManifest.xml, sub-
folders, lib, assets, res, and META-INF. The file structure of
the Android apk is depicted in Figure 4 step 1. All the files
and folders have the necessary information regarding apk
file. We are interested in the Dalvik Executable file, i.e.,
classes.dex. We extract this file from apk using a tool, named
apktool (https://ibotpeaches.github.io). Apktool is a reverse

engineering tool for Android apks. A script (https://github.
com/KaleemFAST/Android%20End2End%20dataset%20de
sign.git) is designed, and each apk file is unzipped through
apktool. All the extracted classes.dex files are collected.

3.4. Opcodes Extraction. Dex file is the executable file for
Android applications. The structure of the dex file is depicted
in Figure 4 step 1. We have used a tool dedexer (https://
sourceforge.net/projects/dedexer/), i.e., a disassembler tool
for Android dex file. We get a dex.log file that produces all
the necessary information of different portions of the dex
file. Using the information given in the dexlog file, the
desired code section of the dex file is filtered. From the code
section of the dex file, all the opcode sequences are extracted
to another file. This process is repeated for all the collected
dex files. Now, we have files containing opcode sequences of
dex files.

3.5. Need for Opcode Embeddings. Opcodes representation is
in textual form, i.e., 05, €2, 03, 87, etc. There are two severe
and main problems with this type of representation. (1) We
can see the order relationship among these opcodes; i.e., 05 is
greater than 03. In reality, there is no such relationship; i.e.,
opcodes are not comparable with each other and thus are not
ordered [55]. If we feed this data to the deep neural network
in this form, the network may consider this relation as a

95UBD1 7 SUOWIWOD dAIER1D) 8 (dedl|dde ay) Aq peusenob a1e sejpe WO ‘88N JO Sajni Joj ARid178UljUO AB|IA\ UO (SUONIPUCO-pUR-SWLB)/W0D A8 | 1M Ate.q jeut|uo//sdny) suonipuoD pue swis | auy1 8es *[y202/zT/0T] uo Arigiauljuo eI ‘Asiean eed Aq 8960T/E/2Z02Z/SSTT 0T/10p/wod A3 |m Aelg i jpuljuoy/:sdiy woly pepeojumoq ‘T ‘220z ‘.02

https://github.com/KaleemFAST/playstore-scraper-php.git
https://github.com/KaleemFAST/playstore-scraper-php.git
https://ibotpeaches.github.io
https://github.com/KaleemFAST/Android%20End2End%20dataset%20design.git
https://github.com/KaleemFAST/Android%20End2End%20dataset%20design.git
https://github.com/KaleemFAST/Android%20End2End%20dataset%20design.git
https://sourceforge.net/projects/dedexer/
https://sourceforge.net/projects/dedexer/

feature (because of the feature engineering nature of deep
neural networks), this reduces accuracy, and the learning
process may be misled [56]. A technique is needed that
should change this representation in such a fashion that
assists the learning process and preserves the opcodes
identity but still breaks the unnecessary ordering. (2) Deep
neural networks do not work with textual/categorical data
directly; rather, we have to change or encode its represen-
tation to numeric values.

The conventional encoding technique used is one-hot
encoding [45-47]. This encoding technique has the fol-
lowing limitations:

(1) In some scenarios, one-hot encoding may be useful
where the number of categorical variables is limited
[45, 47]. But when the variables are not limited, it
becomes very expensive and leads to inefficiency in
most cases [49, 57]. In our case, we have 255 different
opcodes so for each opcode x; if embedded into one-
hot encoding, it will have size x; € [0, 1]1%***!, and for
example, if a single file has 300000 opcodes, it will
have 30000 vectors of dimensions 255 x 1. This data
will exponentially grow if the number of files exceeds
50,000 figures, i.e., 50,000 x 300,000 vectors of di-
mensions 255 x 1. Training deep learning models on
high-dimensional data having no spatial structure
causes a major computational problem. It implies a
network with an input layer of a very huge size,
which greatly increases the number of weights, often
making the training infeasible [58].

(2) It does not capture morphological resemblance be-
tween categories, and it also ignores the semantic
relationship between the input categories [57]. This
can be very useful for deep learning models to learn
deep features from opcodes arrangement in Android
source files [59].

CXP(L{C’]’)

. (4)
271 exp(uj)

p(wc,j = wO,clwI) = yc,j =

We definitely need to have an opcode embedding
technique that overcomes all the above issues.

3.6. Opcode Embeddings Using Skip-Gram Model. From the
previous section, it is clear that we need an opcode em-
bedding technique. That is why we have introduced
Op2Vec to get rid of all the listed issues. We have applied
the skip-gram word embeddings technique for opcodes
encoding. Skip-gram model [48] is a very prominent model
in NLP that is used for Word2Vec. The words are em-
bedded into vectors with the intuition that model needs to
learn very similar and almost identical vectors for words
having similar contexts. The complete architecture of the
skip-gram is shown in Figure 5. Window size is selected
based on the problem’s nature. The input to the network is a
one-hot vector that represents the input word and the
output is also the number of one-hot vectors considering
window size. While evaluating the trained network on a

Security and Communication Networks

word given as input, the vectors that are obtained as output
are probability distributions for nearby words, where from
nearby words, we mean words lying inside the window
selected for a particular vocabulary file given for training.
The weights W in Figure 5, which are learned at the input
layer, are the embedded representations of all the words in
the vocabulary file. These probabilities are calculated using
equation (4). In equation (4), wy and w; represent the
output and input vectors, respectively. V represents the
length of the vector. y is a training instance and u is any
given vector. In plain English, this equation states the
prediction probabilit{ of a particular j word of the ¢™
panel, which equals ¢ output word, i.e., the actual value of
the output vector index, conditioned on w;. This equation
decides the index value for a particular word in the output
vector.

We have used the skip-gram to learn Op2Vec. Skip-gram
uses word sequences, so for Op2Vec, words are analogous to
opcodes. We applied this concept with the intuition that
opcodes that appear in the same context must have similar
vector representations. Word2Vec is an analogy to Op2Vec,
i.e,, learning Op2Vec, and encodes opcodes in such a
manner that opcodes having similar semantics are assigned
nearly identical vector representations.

4. Experimental Setup and Results

There are three main experiments that are carried out to
justify the efficacy of the proposed approach. One is learning
Op2Vec. The second one is the dataset development based
on the learned Op2Vec, i.e., opcode embeddings for end-to-
end learning of Android malware. And the third experiment
is to feed the designed dataset to deep neural networks to
validate the claim that the dataset can be used for the deep
learning-based analysis of Android malware. In Figure 4, the
gray boxes and cubes from left to right depict the Op2Vec
learning process. The skip-gram model takes input and uses
the GPU facility to learn Op2Vec. This Op2Vec will be used
with deep learning models to perform end-to-end learning
for Android malware detection and classify Android apps as
benign 0 or malicious 1.

4.1. Op2Vec: Learning Opcode Embeddings. Words analogy
to opcodes is considered in order to apply the word em-
beddings technique to opcode embeddings. The same steps
and process of the skip-gram model, used for word em-
beddings in Section 3.6, are applied for opcodes. After the
learning phase, opcodes are encoded into vector represen-
tations. This process consists of four subtasks which are
listed as follows.

4.1.1. Preprocessing Phase. In the preprocessing phase, we
consider 5,000 Android applications’ dex files, 3,000 benign
and 2,000 Malicious files out of the total 16,240 benign
Android applications, and 12,330 malware files, respectively,
for the development of vocabulary files to train our model.
All the opcodes are collected into a single file. Now, this file is
considered a vocabulary file for the learning phase. This

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

Security and Communication Networks

Vx1 Vx1 Vx1
ulyve Softmax (ulyve) Truth
vl dxV dx1 e e
Wt
03| | 06 1 W,
w 0.2 0.1 0
0.1 0.2 0
— Ve
0 Vxd ' ' :
0 x 1.8 0.0 0
0 — — 0.2 0.1 0
S .- 09 - - - —
g S 02 - .- -0.9 — — —
.) 02 Wea
“0a” - - 02 --- 0.1 0.7 0.1 0
0 01 --- 02 0.3 0.4 1
.04 - - -0.1 Vxd 02 | ___| 01 0
03 - - - 0.4
0 .02 - - - 03 : : :
— — 0.2 0.1 0.2 0
0 L
| 0 0.1 0.2 0
Vxd]]]
-0.2 0.1 0 W,
1.8 0.2 0
0.2 0.5 1
One hot word Representation of center Output Word 0.1 0.1 0
symbol word Representation 0.1 0.1 0

FIGURE 5: Skip-gram model.

vocabulary file has to be fed to the Op2Vec model for
training. At the very start, we are not able to feed the opcodes
directly to the neural network. The reason is that opcodes are
represented in hexadecimal notations, i.e., strings; that is
why we binarize this input with a one-hot encoding tech-
nique. As there are a total of 255 opcodes, so the length of the
one-hot input vector is 255 x 1. For a particular opcode 0q,
the one-hot vector is depicted in Figure 5. For 0a, the
corresponding entry in the vector is fixed as 1 and all the
other 254 entries are zeros. The output of this model network
is a vector of the same size. It should also have 255 com-
ponents. Every entry of the resultant output vector is the
probability of an opcode selected randomly in the vicinity of
the input opcode.

4.1.2. Parameters Setting for Training Phase. Op2Vec em-
beddings are learned using the skip-gram model. It is a
neural network-based model having all the hidden, input,
and output layers. All neurons in the hidden layers are
without the activation functions, but all the neurons in the
output layer use the softmax. Softmax is a type of regression
used for multiclass classification. In softmax, for a given
input X, a designed hypothesis tries to estimate P(y = kl|x),
which is the probability for each value of k = 1,..., K. This
value of k denotes the label of a particular class, so essentially
the function gives us the probability of a particular input
being in any class k. The network is trained on pairs of
opcodes. The input vector is the one-hot representation of
the input opcode. The output, which is also in the form of a

one-hot vector, is all the opcodes inside the window except
the input opcode, and we call it training output opcodes.

For computational simplicity and better visual repre-
sentation, we trained our network for opcode vectors
having two dimensions. We already know that the input
vector size is 255 and we have selected the dimensions
count as 2, so the representation of the hidden layer weight
matrix is going to be in the form of a matrix with 255
columns and 2 rows. The ultimate goal of this setup is to
learn the weight matrix. The output vectors are thrown out
once we are done with learning. The network is trained to
do the task, i.e., given any specific opcode in the middle of
the opcodes sequence, and randomly pick one opcode from
the vicinity, and the model tells us the probability for every
opcode in the vocabulary to be that opcode we have selected
randomly. The vicinity or nearby term is used because the
skip-gram model uses the window as a parameter in its
algorithm; typically, the window size parameter is set to 5 as
recommended in the original documentation of the skip-
gram. Window size 5 means 5 opcodes ahead and 5 opcodes
behind the central opcode. We have hyperparameter, i.e.,
window size. For our problem, we fixed this hyper-
parameter to its default value as 5.

4.1.3. Training Phase. In the training phase of learning
Op2Vec, the vocabulary file designed in Section 4.1.1 is used
as input to the neural network. A sliding window of size 5 is
adjusted to slide through all the opcodes in the vocabulary
file till the end of the file. The neural network tries to

95UBD1 7 SUOWIWOD dAIER1D) 8 (dedl|dde ay) Aq peusenob a1e sejpe WO ‘88N JO Sajni Joj ARid178UljUO AB|IA\ UO (SUONIPUCO-pUR-SWLB)/W0D A8 | 1M Ate.q jeut|uo//sdny) suonipuoD pue swis | auy1 8es *[y202/zT/0T] uo Arigiauljuo eI ‘Asiean eed Aq 8960T/E/2Z02Z/SSTT 0T/10p/wod A3 |m Aelg i jpuljuoy/:sdiy woly pepeojumoq ‘T ‘220z ‘.02

10

optimize its weight matrix after each iteration to adjust the
probabilities at the output layer for the opcodes of the same
context and semantics.

In Figure 6(a), a sliding window of size 2 is shown, i.e.,
two opcodes before the central opcode and two opcodes after
the central one. For instance, 5 opcodes in a row are selected,
and the opcode colored black is the input opcode for the
network. After feeding this setup, the network tries to learn
patterns in the form of statistical information of the number
of occurrences of each pair, i.e., central opcode with any
other opcode in the mentioned window. In this particular
case where opcode If-it is the central opcode, the pairs are
(If-1t, If-le), (If-It, If-ge), (If-It, If-gt), and (If-It, If-eqz). Let us
say the pair (If-It, If-ge) occurred more frequently in the
given vocabulary file, so when the learning phase is finished
and we input the opcode If-It to the network, it shows the
high probability for the opcode If-ge in the output vector.
The window is slid further to repeat this process for all
opcodes in the vocabulary. This sliding procedure is depicted
in Figures 6(b) and 6(c).

4.1.4. Learning Op2Vec. The input vector size is 255 x 1. The
weight matrix for the first hidden layer is of size 2 x 255 as
shown in Figure 5. The output of the hidden layer is a vector
of 2 x 1. This vector is going to be input for the next layer, i.e.,
the output layer, where the weight matrices for this layer are
of size 255 x 2. The output vectors of the network are of size
255x1, i.e., which is the probability distribution of all
distinct 255 opcodes. The softmax is applied to the output of
each neuron in order to get the values to sum up to 1. The
columns of the learned weight matrix at the first hidden layer
are the vector representations of all the 255 opcodes. After
the network is trained, when we evaluate the network on a
given input opcode, the output vector represents the
probability distribution, i.e., a list of values in the form of
floating points, not in the form of a one-hot vector that we
obtain in the training phase.

4.2. Op2Vec Results: Learned Opcode Embeddings. After
completion of the learning process, the weight matrix is
divided into vectors to get the vector representation of all the
255 opcodes. The values range of all the vectors is in the
interval [-1, 1]. For some very common opcodes, the learned
vectors are listed in Table 2. These are two-dimensional
vectors. It can be seen that the same categories of opcodes are
represented by nearly identical vectors. Few of these vectors
are plotted in Figure 7. Op2Vec has fixed all the issues of
conventional one-hot encoding, discussed in Section 3.5, as
follows:

(1) Tt is very clear from Figure 7 that the Op2Vec model
learned vectors are depicted in such a manner that
opcodes, having similar semantics, are represented
by almost identical vectors. It is also depicted that
opcodes, semantically different, are very apart from
each other. If we look at Figure 7, we can clearly see
that all the conditional statements If-It, If-le, If-eqz,
If-ne, If-ge, and If-gt are positioned very near in the

Security and Communication Networks

space; this reveals that semantics are preserved in this
sort of learning. Similarly, arithmetic opcodes Mul-
int, Sub-lg, Div-int, Div-lg, and Add-Ig are separately
clustered. Because of the semantic similarity, they are
almost identical. Same patterns can be observed for
the rest of the opcode categories. So the results reveal
the fact that Op2Vec has learned embeddings ef-
fectively and semantic relationships among opcodes
are preserved. Intuitively, this is a very useful insight
for deep learning models to learn deep features from
opcodes arrangement in the Android source file.
Introducing this relationship among opcodes will
enhance the malware detection learning process
[48, 49, 60], which is a contribution to automatic
malware detection.

(2) The size of a single one-hot vector is 255 x 1. Table 2
shows that Op2Vec embeddings have reduced the
255x1 size of one-hot vectors to 2 x 1, which sig-
nificantly decreases computationally complexity
[58].

(3) Op2Vec embeddings have also fixed the limitation of
ordering between originally extracted opcodes as
there is no such real order in the generated vector
representation.

4.3. Development of the End-to-End Learning Dataset.
Now, when the Op2Vec embeddings are successfully
learned, we can generate the proposed dataset that can be
efficiently used for end-to-end learning analysis of Android
malware. All the files generated in Section 3.4 are accessed
one by one, and the opcodes are replaced by their corre-
sponding vector representation learned in Section 4.2. Thus,
the dataset is developed, and we claim that this is the first-
ever attempt to develop a dataset that will be used for end-to-
end detection of Android malware using deep neural
networks.

4.4. Feed the Developed Dataset to Deep Learning Models.
The claimed hypothesis that the dataset can be effectively
used for end-to-end learning is validated by feeding the
dataset to the CNN, i.e., a deep neural network/end-to-end
learning model. Each file in the dataset has two-dimensional
vectors corresponding to each opcode in the original dex file.
So each file has two columns and a number of rows. For the
network, we consider our input frame consists of two
channels as each vector is of two dimensional. Each benign
file is assigned a label as 0 whereas each malicious file is
labeled as 1. The network’s setup is all set to process the
available files for end-to-end learning.

5. Comparison with Existing Datasets

This section draws a comparison among our designed
Op2Vec dataset and six other very popular datasets in the
malware analysis literature. The comparison is based on the
following two parameters.

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

Security and Communication Networks

11

|If—ge If-le [EIEIf-gt If-eqz | If-ne Add-lg Div-int If-ge |If—le If-It If-eqz If—nel Add-1g Div-int

()

(b)

If-ge If-le |If—lt If-gt [[f=eqz] If-ne Add-lgl Div-int

FIGURE 6: Sliding window over vocabulary opcodes.

TABLE 2: Learned Op2Vec: the learned vectors.

Opcode X-axis value Y-axis value
If-ne —-0.2729177368 -0.0875072266
If-1t —-0.3726633597 —0.017922292
If-ge —-0.6149268202 —-0.0044448727
If-gt —-0.6818177649 —-0.3873034379
If-le —-0.3076827262 0.1643184456
If-eqz —-0.2591792741 0.2236180313
Mul-int 0.2114985694 0.3691054416
Sub-lg 0.1262099695 0.1640332061
Div-int 0.1447551711 —-0.0522292025
Add-lg —-0.0497673974 —-0.2025787514
Div-1g 0.1181362618 —-0.0835916175
Iput-wide 0.3703214875 —0.0470563225
Iput-byte 0.3919335594 -0.0879191859
Iput-char 0.462135628 —0.3112477693
Invoke-static -0.278561079 —-0.3259538566
Invoke-super —0.6331899455 —-0.4750899485
Invoke-virtual —0.5944988213 —0.5101055075
New-array 0.0389557098 0.6073178184
Filled-new-array -0.0966243253 0.5125404323
New-instance 0.0762253855 0.4074241374

5.1. Features (Handcrafted or Deep Features). One of the
fundamental limitations of all other available datasets is
handcrafted feature extraction which are employed for
characterizing malware behavior. Our Op2Vec does not
require handcrafted features. The datasets can be fed directly
to the deep neural network for learning deep features.

5.2. Feeding Information to the Deep Neural Network (One-
Hot Encoding or Vector Embedding). All the listed datasets
and techniques have used one-hot encoding to feed the
Android source code information to the classifiers. One-hot
encoding has limitations that are discussed in Section 3.5.
We have proposed Op2Vec which has fixed all the limita-
tions and outperforms one-hot encoding as discussed in
Section 4.2.

Drebin [26] has used a script for the automated ex-
traction of different handcrafted features. The features are
embedded in the one-hot encoding of the form x; ¢ [0, 1]
2450001 QM classifier is trained to classify applications
based on their representative feature vectors. Another
dataset that is used in [61]. A total of 42 handcrafted features
of size x; € [0, 1]**! are extracted to use with LSTM. Sim-
ilarly, the authors in [62] have used a dataset where 34,570
handcrafted features are extracted. This feature set is reduced
to 413 using a feature selection technique. The input feature
vector for the classifier is of size x; € [0, 1]*"***. Both [63, 65]
have used 323 and 1,058 features, respectively, for machine

1.00
g 0.75
-QE) ’ T;Iew—array
£ 0.50 4 @ Filled-new-array
5 o New-instance
a=] ©® Mul-int

If-

& 025+ Jre
2 I ®f e °
i 0.00 o ¥ ﬁ“‘lf,ne Div-int Iput-wide
@) Add-1g Div-lg Iput-byte
S -0.25 1 Invoke-static
[If-gt ® Iput-char
T:; 0.50 Invoke-super
= U ® [nyoke-virtual
-
=]
£ -0.75 -
—

-1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Latent Value of Op2vec 1st dimension

FIGURe 7: Learned opcode embeddings.

learning classifiers. Their input feature vectors are x; € [0, 1]
3231 and x; € [0, 1]'%%, respectively. There are a number of
datasets available for Android malware analysis and these
datasets are only a collection of malicious Android appli-
cations. VirusShare [64] is one of the examples of such
datasets. VirusShare has a total of 107,888 malicious An-
droid applications. Different studies have used this dataset to
learn insights into Android malware. A total of 482 features
are considered and a feature vector of size x; € [0, 1]****! has
been used to feed information to machine learning
classifiers.

All the discussed datasets have a format that cannot be
used to perform automatic malware detection using deep
learning models. Most of these studies extract features from
datasets, and these features are used with deep learning
algorithms. Deep learning models have a very strong
property, i.e., automatic deep feature extraction. They do not
need handcrafted features; rather, raw data is sufficient for
the training and learning process. Our proposed dataset is
designed to exploit deep learning models for deep features.
We have designed a dataset that can be fed directly to deep
learning models. Unlike other datasets, no handcrafted
features are required. The input encoded vector size is
x; € [-1, 1]%*, which has very few dimensions in comparison
with other existing dataset techniques.

From Table 3, it is clear that in terms of features ex-
traction and embedding technique our Op2Vec dataset is far
better and adaptable as compared to the other datasets.
Performing the Op2Vec type embedding technique can
reduce dimensions up to 2 x1. Adopting this dataset will
allow learning deep features without extraction of

95UBD1 7 SUOWIWOD dAIER1D) 8 (dedl|dde ay) Aq peusenob a1e sejpe WO ‘88N JO Sajni Joj ARid178UljUO AB|IA\ UO (SUONIPUCO-pUR-SWLB)/W0D A8 | 1M Ate.q jeut|uo//sdny) suonipuoD pue swis | auy1 8es *[y202/zT/0T] uo Arigiauljuo eI ‘Asiean eed Aq 8960T/E/2Z02Z/SSTT 0T/10p/wod A3 |m Aelg i jpuljuoy/:sdiy woly pepeojumoq ‘T ‘220z ‘.02

12 Security and Communication Networks
TaBLE 3: Comparisons with existing datasets.
Dataset Files count Malicious Benign Feature extraction Features set Feature vector
Drebin [26] 129,013 123,453 5,560 Handcrafted 545,000 x; € [0, 1]°4°000<
Vinayakumar et al. [61] 2296 1,609 687 Handcrafted 42 x;€[0, 1]*4
Wang et al. [62] 23,000 13,000 10,000 Handcrafted 34,570 x;€ [0, 11414
Zhu et al. [63] 11,000 8,000 3,000 Handcrafted 323 x;€[0, 1]3*¥4
VirusShare [64] 107,888 None 107,888 Handcrafted 482 x;€[0, 1]48%4
Hou et al. [65] 5,000 2,500 2,500 Handcrafted 1,058 x; € [0, 1]1081
AndroZoo [66] 3,182,590 1,162,150 2,020,440 Handcrafted 50,000 x; € [0, 1]°0000
Op2Vec dataset 28,570 12,330 16,240 Automated Deep features x; € [-1, 117

TaBLE 4: Performance enhancement of existing opcode-based techniques.

Results with

. . Reported
Reference (Year) Features Deep learning technique Dataset results (Acc) (%) OpZ\EOe/:) (acc)
Parildi et al. (2021) [67] Opcodes VirusShare and native Win7 apps RIE;\,IF;;I d 95 96.83
Ren et al. (2020) [68] Opcodes Google Play store and VirusShare DNNs 95.8 97.1
Niu et al. (2020) [69] Opcodes VirusShare, Androzoo, and Pea Pods LSTM 97 98.77
Pekta and Acarman (2020) Opeodes Androzoo, Argus group, and RNN and 91.42 9%
[70] GooglePlay
Zhang et al. (2018) [71] Opcodes Microsoft in Kaig; ;2015 and Benign ResNet 98.2 98.63
McLaughlin et al. (2017) [72] Opcodes Genome project, McAfee Labs CNN 95 97.53

handcrafted features and with less computational com-
plexity. The rest of Table 3 shows the files count in all the
three datasets, malicious and benign files count, feature
extraction method, and encoding techniques for features to
be fed to machine learning and deep learning algorithms.

In order to demonstrate the significance of the proposed
approach, some of the recent opcode-based deep learning
techniques such as [67-72] are trained and tested with the
Op2Vec dataset. For a fair comparison, the same experi-
mental setup is used for the experiments with Op2Vec. It can
be seen in Table 4 that the performance of the existing
techniques significantly improves by incorporating Op2Vec
embeddings. All the listed approaches achieve an average
accuracy of 97.47%, where the highest accuracy is achieved
with the setup suggested in [71]. It is evident from the results
that Op2Vec which incorporates the semantic relationship
of opcodes and deep features enhances the performance of
deep learning techniques to detect Android malware.

6. Conclusion and Extensions

Previous work has shown that opcodes of executables have
potential information. Opcodes can be considered as fea-
tures in order to make discrimination between malware and
benign Android applications. But these features are very
hard to extract or notify. The handcrafted features or in-
formation extraction process is very expensive in terms of
cost and time. In order to automate the process and

effectively identify potential information and extract deep
features, end-to-end learning is a perfect solution. This study
concerns the learning of Op2Vec and the development of a
novel dataset for end-to-end detection of Android malware.
Op2Vec learning process employs a machine-learning al-
gorithm to learn meaningful vector representations from
opcodes of Android source files. The designed opcode
embedding technique is used to develop a dataset for end-to-
end detection of Android malware. The dataset will be used
to learn useful patterns and information from the Android
source code. We have not only developed the dataset but
have also presented the design process and techniques in-
volved in the dataset development. To the best of our
knowledge, we believe this is the first state-of-the-art dataset
for end-to-end Android malware detection. The product
dataset of this research will be made openly available for
further research concerning Android malware detection.
Not only the dataset but also the designed process of the
dataset will be made public so that in the future, new An-
droid application files can be added to the dataset. This will
make our technique robust to deal with newly emerging
Android malware.

The proposed technique is one of the static Android
malware analysis techniques. The limitation of this tech-
nique is that it may not capture the dynamic aspects of
malware analysis. One of the future directions can be to
combine the Dalvik instruction traces technique with the
proposed approach to fix this limitation.

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

Security and Communication Networks

Data Availability

The data used to support the findings of this study are
available from (1) https://github.com/KaleemFAST/
playstore-scraper-php.git, (2) https://ibotpeaches.github.io/
Apktool/, (3) https://github.com/KaleemFAST/
Android_End2End_dataset_design, and (4) https://
sourceforge.net/projects/dedexer/.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] D. Geer, R. Bace, P. Gutmann et al., Cyberinsecurity: The Cost
of Monopoly, Computer and Communications Industry As-
sociation (CCIA), Washington, D.C, USA, 2003.

[2] none, Smartphone OS IDC. Market Share, 2017.

[3] M. Aziz, A. Omar, and M. Mohaisen, “Amal: high-fidelity,
behavior-based automated malware analysis and classifica-
tion,” Computers & Security, vol. 52, pp. 251-266, 2015.

[4] P. Faruki, A. Bharmal, V. Laxmi et al., “Android security: a
survey of issues, malware penetration, and defenses,” IEEE
communications surveys & tutorials, vol. 17, no. 2, pp. 998-
1022, 2015.

[5] Q. Do, B. Martini, and K.-K. R. Choo, “Exfiltrating data from
android devices,” Computers & Security, vol. 48, pp. 74-91,
2015.

[6] Y.Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang, “Hybrid user-
level sandboxing of third-party android apps,” in Proceedings
of the 10th ACM Symposium on Information, Computer and
Communications Security, vol. 19-30, ACM, New York, NY,
USA, April 2015.

[7] C. Lueg, 8,400 New Android Malware Samples Every Day,
2017.

[8] C. Guo, J. Wang, and W. Zhu, “Smart-phone attacks and
defenses,” in Hotnets III, San Diego, CA, USA, 2004.

[9] J. Hamada, New Android Threat Gives Phone a Root Canal,
2011.

[10] A.-D. Schmidt, R. Bye, H.-G. Schmidt et al., “Static analysis of
executables for collaborative malware detection on android,”
in Proceedings of the in Communications ICC’09. IEEE In-
ternational Conference on, vol. 1-5, IEEE, Dresden, Germany,
June 2009.
T. Petsas, G. Voyatzis, A. Elias, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: hindering
dynamic analysis of android malware,” in Proceedings of the
Seventh European Workshop on System Security, vol. 5, ACM,
Amsterdam, Netherlands, April, 2014.
T. Bldsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and
A. Sahin, “An android application sandbox system for sus-
picious software detection,” in Proceedings of the Malicious
and unwanted software (MALWARE), 2010 5th international
conference on, pp. 55-62, IEEE, Nancy, France, October 2010.
[13] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep
learning in android malware detection,” in ACM SIGCOMM -
Computer Communication Review, vol. 44, pp. 371-372,
ACM, 2014.
[14] D. Li, Z. Wang, and Y. Xue, “Deepdetector: android malware
detection using deep neural network,” in Proceedings of the
International Conference on Advances in Computing and

[11

(12

13

Communication Engineering (ICACCE), pp. 184-188, IEEE,
Paris, France, June 2018.

[15] T.Kim, B. Kang, M. Rho, S. Sezer, and E. Gyu, “A multimodal
deep learning method for android malware detection using
various features,” IEEE Transactions on Information Forensics
and Security, vol. 14, no. 3, pp. 773-788, 2018.

[16] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“Android malware detection using deep learning on api
method sequences,” 2017, https://arxiv.org/abs/1712.08996.

[17] L.-K. Yan and H. Yin, “Droidscope: seamlessly reconstructing
the os and dalvik semantic views for dynamic android mal-
ware analysis,” in USENIX Security Symposium, pp. 569-584,
2012.

[18] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“Riskranker: scalable and accurate zero-day android malware
detection,” in Proceedings of the 10th international conference
on Mobile systems, applications, and services, pp. 281-294, UK,
June 2012.

[19] Y. Zhou, Z. Wang, Z. Wu, and X. Jiang, “Hey, you, get off of
my market: detecting malicious apps in official and alternative
android markets,” NDSS, vol. 25, pp. 50-52, 2012.

[20] M. Dimjasevic, S. Atzeni, I. Ugrina, and Z. Rakamaric, An-
droid Malware Detection Based on System Calls, University of
Utah, Salt Lake City, UT, USA, 2015.

[21] S. Kumar, G. Suarez-Tangil, S. Khan et al,, “Droidscribe:
classifying android malware based on runtime behavior,” in
Proceedings of the Security and Privacy Workshops (SPW),
pp. 252-261, IEEE, San Jose, CA, USA, May 2016.

[22] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: mining api-
level features for robust malware detection in android,” in
Proceedings of the International Conference on Security and
Privacy in Communication Systems, pp. 86-103, Springer,
Sydney, NSW, Australia, September 2013.

[23] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras,

“Droidminer: automated mining and characterization of fine-

grained malicious behaviors in android applications,” in

European Symposium on Research in Computer Security,

pp- 163-182, Springer, Berlin, Germany, 2014.

M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware

android malware classification using weighted contextual api

dependency graphs,” in Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security,

pp- 1105-1116, ACM, Scottsdale Arizona, USA, November

2014.

A. Gorla, A. Zeller, V. Avdiienko, and K. Kuznetsov, “Mining

apps for abnormal usage of sensitive data,” in Proceedings of

the International Conference on Software Engineering, Flor-

ence, Italy, May 2015.

[26] D. Arp, M. Spreitzenbarth, H. Gascon, K. Rieck, and

C. E. R. T. Siemens, “Drebin: effective and explainable de-

tection of android malware in your pocket,” in Proceedings of

the Network and Distributed System Security Symposium,

2014.

C. Liangboonprakong and O. Sornil, “Classification of mal-

ware families based on n-grams sequential pattern features,”

in Proceedings of the Industrial Electronics and Applications

(ICIEA), 2013 8th IEEE Conference on, pp. 777-782, IEEE,

Melbourne, VIC, Australia, June 2013.

[28] G. Canfora, F. Mercaldo, and C. A. Visaggio, “A classifier of
malicious android applications,” in Proceedings of the
Availability, Reliability and Security (ARES), 2013 Eighth
International Conference on, pp. 607-614, IEEE, Regensburg,
Germany, September 2013.

(24

[25

[27

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

https://github.com/KaleemFAST/playstore-scraper-php.git
https://github.com/KaleemFAST/playstore-scraper-php.git
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://github.com/KaleemFAST/Android_End2End_dataset_design
https://github.com/KaleemFAST/Android_End2End_dataset_design
https://sourceforge.net/projects/dedexer/
https://sourceforge.net/projects/dedexer/
https://arxiv.org/abs/1712.08996

14

[29] S. Liang and X. Du, “Permission-combination-based scheme
for android mobile malware detection,” in Proceedings of the
Communications (ICC), 2014 IEEE International Conference
on, pp. 2301-2306, IEEE, Sydney, NSW, Australia, June 2014.

[30] B. Kang, B. Kang, J. Kim, and E. Gyu, “Android malware
classification method: dalvik bytecode frequency analysis,” in
Proceedings of the 2013 research in adaptive and convergent
systems, pp. 349-350, ACM, Montreal Quebec Canada, Oc-
tober 2013.

[31] A.Demontis, M. Melis, B. Biggio et al., “Yes, machine learning

can be more secure! a case study on android malware de-

tection,” IEEE Transactions on Dependable and Secure

Computing, vol. 16, 2017.

C. A. Visaggio, G. Canfora, and F. Mercaldo, “Mobile malware

detection using op-code frequency histogram,” in Proceedings

of the International joint Conference on e-business and

Telecommunication, Colmar, France, July 2015.

Q. Jerome, A. Kevin, S. Radu, and T. Engel, “Using opcode-

sequences to detect malicious android applications,” in

Proceedings of the Communications (ICC), 2014 IEEE Inter-

national Conference on, pp. 914-919, IEEE, Sydney, NSW,

Australia, June 2014.

[34] D. Bilar, “Opcodes as predictor for malware,” International
Journal of Electronic Security and Digital Forensics, vol. 1,
no. 2, pp. 156-168, 2007.

[35] Z.Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114-123, 2016.

[36] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: a

streaminglized machine learning-based system for detecting

android malware,” in Proceedings of the 11th ACM on Asia

Conference on Computer and Communications Security,

pp. 377-388, ACM, May 2016.

S. Jurgen, “Deep learning in neural networks: an overview,”

Neural Networks, vol. 61, pp. 85-117, 2015.

S. Frank, G. Li, X. Chen, and Y. Dong, “Feature engineering in

context-dependent deep neural networks for conversational

speech transcription,” in Proceedings of the Automatic Speech

Recognition and Understanding (ASRU), 2011 IEEE Workshop

on, pp. 24-29, IEEE, Waikoloa, HI, USA, December 2011.

M. Islam, K. N. Khan, and M. S. Khan, “Evaluation of pre-

processing techniques for U-Net based automated liver seg-

mentation,” in Proceedings of the 2021 International

Conference on Artificial Intelligence (ICAI), pp. 187-192,

Islamabad, Pakistan, April 2021.

B. Ahmad, F. A. Khan, K. N. Khan, and M. S. Khan, “Au-

tomatic classification of heart sounds using long short-term

memory,” in Proceedings of the 2021 15th International

Conference on Open Source Systems and Technologies

(ICOSST), pp. 1-6, Lahore, Pakistan, December 2021.

R. Hasib, K. N. Khan, M. Yu, and M. S. Khan, “Vision-based

human posture classification and fall detection using con-

volutional neural network,” in Proceedings of the 2021 In-
ternational Conference on Artificial Intelligence (ICAI),

pp- 74-79, Islamabad, Pakistan, April 2021.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional

deep belief networks for scalable unsupervised learning of

hierarchical representations,” Proceedings of the 26th Annual

International Conference on Machine Learning, pp. 609-616,

ACM, Montreal Quebec, Canada, June 2009.

N. Abdelmonim and Y. Li, “Using deep neural network for

android malware detection,” 2019, https://arxiv.org/abs/1904.

00736.

(32

(33

[37

(38

(39

[40

(41

(42

[43

Security and Communication Networks

[44] X. Li, Y.-H. Lian, and Y. Hong, “Classification of mobile apps
with combined information,” in Proceedings of the IEEE In-
ternational Conference on Cloud Computing and Big Data
Analysis (ICCCBDA), pp. 193-198, IEEE, Chengdu, China,
July 2016.

[45] J. Gu, G. Wang, and T. Chen, “Recurrent highway networks
with language cnn for image captioning,” 2016, https://arxiv.
org/abs/1612.07086.

[46] S. Vosoughi, P. Vijayaraghavan, and D. Roy, “Tweet2vec:
learning tweet embeddings using character-level cnn-Istm
encoder-decoder,” in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in In-
formation Retrieval, pp. 1041-1044, ACM, Pisa Italy, July
2016.

[47] A.C.H. Choongand N. K. Lee, “Evaluation of convolutionary

neural networks modeling of dna sequences using ordinal

versus one-hot encoding method,” in Proceedings of the In-
ternational Conference on Computer and Drone Applications

(IConDA), pp. 60-65, IEEE, Kuching, Malaysia, November

2017.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their

compositionality,” in Proceedings of the Advances in neural

information processing systems, pp. 3111-3119, December

2013.

[49] J. Pennington, R. Socher, and C. D. Manning, “Glove: global
vectors for word representation,” in Proceedings of the 2014
conference on empirical methods in natural language pro-
cessing (EMNLP), pp. 1532-1543, 2014.

[50] Y. Shen and G. Stringhini, “Attack2vec: leveraging temporal
word embeddings to understand the evolution of cyber-
attacks,” 2019, https://arxiv.org/abs/1905.12590.

[51] S.H. H. Ding, C. M. F. Benjamin, and P. Charland, “Asm2vec:
boosting static representation robustness for binary clone
search against code obfuscation and compiler optimization,”
IEEE, San Francisco, CA, USA, May 2019.

[52] L. K. Senel, I. Utlu, V. Yucesoy, A. Koc, and T. Cukur,
“Semantic structure and interpretability of word embed-
dings,” 2017, https://arxiv.org/abs/1711.00331.

[53] B. Wang, A. Wang, F. Chen, Y. Wang, and C.-C.]J. Kuo,
“Evaluating word embedding models: methods and experi-
mental results,” APSIPA transactions on signal and infor-
mation processing, vol. 8, 2019.

[54] B. Bashari, M. Masrom, and S. Ibrahim, “Camouflage in
malware: from encryption to metamorphism,” International
Journal of Computer Science and Network Security, vol. 12,
no. 8, pp. 74-83, 2012.

[55] C.LeDoux and A. Lakhotia, “Malware and machine learning,”
in Intelligent Methods for Cyber Warfare, Springer, Berlin,
Germany, 2015.

[56] A. Jovi¢, K. Brki¢, and N. Bogunovi¢, “A review of feature
selection methods with applications,” in Proceedings of the
38th International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics
(MIPRO), pp. 1200-1205, IEEE, Opatija, Croatia, May 2015.

[57] P.Cerda, G. Varoquaux, and B. Kégl, “Similarity encoding for
learning with dirty categorical variables,” Machine Learning,
vol. 107, no. 8-10, pp. 1477-1494, 2018.

[58] P. I. Wojcik and M. Kurdziel, “Training neural networks on
high-dimensional data using random projection,” Pattern
Analysis & Applications, vol. 22, no. 3, pp. 1221-1231, 2019.

[59] Y. Yan, X.-C. Yin, B.-W. Zhang, C. Yang, and H. Hong-Wei,
“Semantic indexing with deep learning: a case study,” Big
Data Analytics, vol. 1, no. 1, 2016.

(48

85U80| 7 SUOWWOD 8AFe.D 8|edl|dde auj Aq pauRA0h 818 Sajoe WO ‘88N JO S3N. o4 A%Iq1T 8UI|UO AB|I/ UO (SUOIHIPUOD-PUe-SWB)AL0D A8 I AReIq e JUO//SdNY) SUORIPUOD PUe SWIB | 84} 88S *[7202/2T/0T] uo ArigiTaunuo A8im ‘Aisieaiun eed Aq 8960T.E/2Z02/SSTT OT/I0p/w0d A3 | im Axeiq1utjuo//Sdny woy papeojumod ‘T ‘2202 ‘LE0T

https://arxiv.org/abs/1904.00736
https://arxiv.org/abs/1904.00736
https://arxiv.org/abs/1612.07086
https://arxiv.org/abs/1612.07086
https://arxiv.org/abs/1905.12590
https://arxiv.org/abs/1711.00331

Security and Communication Networks

[60] K. Yoon, “Convolutional neural networks for sentence clas-
sification,” 2014, https://arxiv.org/abs/1408.5882.
[61] R. Vinayakumar, K. P. Soman, P. Poornachandran, and
S. Kumar, “Detecting android malware using long short-term
memory (Istm),” Journal of Intelligent and Fuzzy Systems,
vol. 34, no. 3, pp. 1277-1288, 2018.
W. Wang, M. Zhao, and J. Wang, “Effective android malware
detection with a hybrid model based on deep autoencoder and
convolutional neural network,” Journal of Ambient Intelli-
gence and Humanized Computing, vol. 10, no. 8, pp. 3035-
3043, 2019.
[63] D. Zhu, H. Jin, Y. Yang, D. Wu, and W. Chen, “Deepflow:
deep learning-based malware detection by mining android
application for abnormal usage of sensitive data,” in Pro-
ceedings of the IEEE symposium on computers and commu-
nications (ISCC), pp. 438-443, IEEE, Heraklion, July 2017.
J.-M. Roberts, “Virus share,” 2011, https://virusshare.com/.
S. Hou, A. Saas, L. Chen, Y. Ye, and T. Bourlai, “Deep neural
networks for automatic android malware detection,” in
Proceedings of the 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining,
pp- 803-810, Sydney, NSW, Australia, July 2017.
A. Kevin, T. F. Bissyandé, J. Klein, and Y. L. T. Androzoo,
“Collecting millions of android apps for the research com-
munity,” in Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 16, pp. 468-471, ACM,
New York, NY, USA, 2016.
[67] E. S. Parildi, D. Hatzinakos, and Y. Lawryshyn, “Deep
learning-aided runtime opcode-based windows malware de-
tection,” Neural Computing & Applications, vol. 33, no. 18,
Article ID 11963, 2021.
Z.Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, “End-to-end
malware detection for android iot devices using deep learn-
ing,” Ad Hoc Networks, vol. 101, Article ID 102098, 2020.
[69] W. Niu, R. Cao, X. Zhang, K. Ding, K. Zhang, and T. Lj,
“Opcode-level function call graph based android malware
classification using deep learning,” Sensors, vol. 20, no. 13,
p. 3645, 2020.
A. Pektas and T. Acarman, “Learning to detect android
malware via opcode sequences,” Neurocomputing, vol. 396,
pp. 599-608, 2020.
X. Zhang, M. Sun, J. Wang, and J. Wang, “Malware detection
based on opcode sequence and resnet,” in Proceedings of the
International Conference on Security with Intelligent Com-
puting and Big-Data Services, pp. 489-502, Springer, Guilin,
China, December 2018.
N. McLaughlin, J. Martinez del Rincon, B. Kang et al., “Deep
android malware detection,” in Proceedings of the seventh
ACM on conference on data and application security and
privacy, pp. 301-308, 2017.

(62

[64
[65

(66

[68

[70

(71

[72

15

95UBD1 7 SUOWIWOD dAIER1D) 8 (dedl|dde ay) Aq peusenob a1e sejpe WO ‘88N JO Sajni Joj ARid178UljUO AB|IA\ UO (SUONIPUCO-pUR-SWLB)/W0D A8 | 1M Ate.q jeut|uo//sdny) suonipuoD pue swis | auy1 8es *[y202/zT/0T] uo Arigiauljuo eI ‘Asiean eed Aq 8960T/E/2Z02Z/SSTT 0T/10p/wod A3 |m Aelg i jpuljuoy/:sdiy woly pepeojumoq ‘T ‘220z ‘.02

https://arxiv.org/abs/1408.5882
https://virusshare.com/

