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The entire globe is now focused on generating power using solar photovoltaic (SPV) cells. The SPV is gen-
erating the DC power, by using power converters to satisfy the load requirement. In this article, a mod-
ified High-Voltage DC-DC converter was explained. The main intention of the modified converter is to
decrease the reverse recovery currents and voltage stress across the switch, similarly, it generates high
voltage at the converter output. The modified converter contains mainly-one diode, two capacitors,
and Coupled Inductor (CI). When the converter switch comes under active state two capacitors are dis-
charged in series, similarly when the converter switch under inactive state those two capacitors are
charged in parallel through the coupled inductor (CI) energy so, to get a high voltage at the converter out-
put side. To reuse the leakage-inductor (LI) energy of the CI with the help of a passive clamp circuit for
reducing the voltage stress across the switch, similarly switch has less resistance so conduction losses
also decreased. In this manner, the converter efficiency was improved and the diode recovery problem
also solved. For the converter duty cycle controlling, Proportional-Integral (PI) and Neural Network
(NN) controllers were used. The performance and analysis of the modified converter were described in
detail with the help of both controllers. Here, 48 V is doubled to 400 V. By modifying the converter’s
parameters, its behavior is evaluated. In this converter, voltage spikes and reverse recovery currents
should be minimal. The converter’s switching pulse can be adjusted by PI or NN. The entire system
was designed in MATLAB/ Simulink tool.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

The world’s population is growing at an increasing rate, and
electricity demand has risen in response to their greater quality
of living [1]. Electric power plays a key role in enabling people to
live their lives, and as a result, all countries are looking forward
to generating electricity from a variety of sources, including coal,
oil, and renewable energy sources [2]. Many renewable energy
sources, such as hydro, tidal, wind, and solar, are now used to gen-
erate electricity [3]. Solar-based electric power generation is the
most concentrated of these since it is pollution-free, has a low cost,
and has a large energy potential for electrical power generation [4].
According to an assessment on the renewable energy system, India
plans to create 175 GW of renewable energy by 2022, with wind
and solar providing 90 % of the energy [5]. Solar energy has grown
at a quick rate of 20–25 percent in India during the previous sev-
eral years. Solar cell efficiency is quickly increasing, and manufac-
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turing processes are also improving, which is a major contributor
in cost reduction. The design of the PV cell has been thoroughly
addressed using mathematical formulas. Using MPPT (Maximum
Power Point Tracking) controllers to get the most power out of
the PV [6]. Temperature and irradiation are important factors in
achieving maximum PV power [7].

Basically, the PV cells generate low output power, for generat-
ing a high output power the PV cells are arranged in series connec-
tion [8]. In this case, the shadow effect will come so it’s not a good
solution for generating high output power [9]. Then connect the
boost converter to the PV cells to generate a huge voltage. The con-
ventional boost converter produces high voltage with more duty
cycle but in the experimental, the standard boost converter unable
to generate a high-voltage at the output side due to reverse recov-
ery issue [10]. Because of this problem, the overall efficiency of the
system is decreased and electromagnetic interference (EMI) prob-
Converter Features Advantages Limitations Limitations

Buck Boost Converter Lowcomplexity
Cost effectiv

Suitable for low power applications Voltage imbalance for multi-input and multi-output
application

High Step-Up DC-DC
Converter

Mediumcomplexity
Moderate cost

Non-inverting output
Utilized for renewable
energy applications

Suitable for multi-input single-output configuration
Input conduction losses due to coupled inductors

High Gain Input-Parallel
Output-Series DC-DC

Mediumcomplexity
Moderate
cost

Non-inverting output
Less reverse recovery
period and low output
ripples

Unidirectional power flow
Transient issues due to diode reverse recovery issue and
charging of capacitors
lem also occurs [11–12]. For improving high-voltage and efficiency
so many step-up converter topologies are examined so far [13].
Few converters, fly back and forward converters are can regulate
the transformer turns ratio to get high-voltage [14].

Due to the LI of the transformer, the converter switch faces
power dissipation and voltage spike problems even yet the active
clamp and non-dissipative snubber circuit was taken, the price is
also increased because of the extra power switches [15]. By using
voltage lift and switched capacitor methods to get a high-voltage
[16]. Still, switch face some problems like conduction loss and high
charging current. By using the CI in the converter to get high-
voltage. But the LI produces the voltage spikes across the switch
and influence the efficiency of the system [17]. For this cause,
the CI along with an active clamp circuit was used in the converter
[18]. Likewise, the LI energy is straight reused to the load, to min-
imize the voltage spike across the converter switch [19]. Moreover,
to vary the CI turns ratio to adjust the voltage stress across the con-
verter switch. To attain a high-voltage, it has been suggested that
forward and flyback converters are utilized in the secondary side
of the CI [20].

Similarly, so many authors proposed to combine a converters
output-voltage to rise the voltage gain [21]. Moreover, use more
than one CI in the converter to get high-voltage. So, to attain
high-voltage and better efficiency, this article proposed a modern
clamp-mode and high step-up converter [22–23]. The modified
converter has two diodes and two capacitors on the secondary side
of the CI. Those two capacitors are discharged in series and charged
in parallel through the CI, still, high-voltage spikes and power loss
are present across the switch because of leakage inductor of the CI.
Thus, LI energy is reused and the voltage level of the switch is
clamped by using a clamping circuit. Finally, one more diode is
added on the front side of the converter it protects the system in
case of reverse direction of current flow in the circuit by using PI
and NN controllers to control the switching pulse of the converter.
2

The converters were connected to the generated PV arrays’ 3-phase
RL load. The non-linear power boost converter, PV module, and
inverter make up the system. The system is strong and dependable
thanks to the suggested PWM control method[26]. DC-DC convert-
ers are a type of power electronic equipment that is particularly
useful for regulating DC voltage and increasing the efficiency of
renewable energy sources.The total efficiency and effectiveness
of power grids are greatly influenced by the care with which the
DC-DC converter is chosen. In addition to picking a reliable DC-
DC conversion method, it’s crucial to incorporate an appropriate
control strategy for the best possible performance [27].

The performance and analysis of the modified High-Voltage DC-
DC converter were explained in detail with the help of both con-
trollers. The entire system was designed in MATLAB/ Simulink tool.

Comparison of Non-Isolated DC-DC Converter Topologies.
2. Modified high-voltage dc-dc converter

The modified High-voltage DC-DC converter has 48 V DC input
voltage (Vin), one coupled inductor (CI), the CI has Ns and Np, one
main switch (S), output capacitor (C0), output diode (D0), clamp
capacitor (C1), clamp diode (D1), two diodes (D2 and D3) and
two capacitors (C2 and C3). The CI has leakage inductor (LI) Lk, mag-
netizing inductor (MI) Lm and an ideal transformer. Fig. 1 (a) signi-
fies the block diagram of the proposed converter and Fig. 1(b)
signifies the circuit diagram of the High-Voltage DC-DC converter.

The energy in the LI of the CI is reused to C1, and the switch volt-
age also clamped. The voltage stress across the switch is decreased
randomly because the switch has less resistance. The innovative
voltage-clamp topology was primarily projected in [23] to recover
the energy in the LI. The modified converter has an association
with the CI and switched-capacitor methods. The concept of the
switch capacitor method has been suggested in [2]. So, when the
switch is an active state those two capacitors are discharged in ser-
ies similarly when the switch is an inactive state those two capac-
itors are charged in parallel through the CI. By tuning the CI turns
ratio, the voltage around the capacitors can be controlled then
high-voltage can be attained. Therefore, the modified converter
has less conduction loss and reduces the reverse-recovery problem
of the diodes. The modified DC-DC converter works on both Con-
tinuous Conduction Stage (CCS) and Discontinuous Conduction
Stage (DCS).

The different stages of CCS and the working, mathematical anal-
ysis and operating stages of the modified converter are described
below. Fig. 2 represents the operating stages of the modified con-
verter in CCS. To assume the following conditions the circuit anal-
ysis is very easy, 1) all capacitors are considered large enough. 2)
The CI coupling coefficient isK ¼ Lm

LmþLkð Þ. 3) Similarly, CI turns ratio

n = Ns/NP. Fig. 3 represents the characteristics of the modified con-
verter in CCS.



Fig. 1. Circuit diagram of the modified Converter.

Fig. 2. States of operation of modified converter in CCS.
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Fig. 3. The characteristic waveform for CCS.
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2.1. CCS operation

The different stages of CSS are shown in Fig. 2.
Stage I: The diodes, DO and D1 are in the inactive state, and D2

and D3 are in the active state. In this stage, the switch is closed. The
voltage expression on the magnetic and leakage inductors is

Vin ¼ VLk þ VLm

Vin charges the Lk, CI current is of the secondary side is reduced
linearly due to leakage inductor Lk. The CO delivers its energy to the
R. At t = t1 current iD2 = 0, then stage one ends. Fig. 2. represents
the stage I operation of the converter in CCS.

Stage II: In stage two, D1, D2, and D3 are in the inactive state,
and D0 is in the active state. In this stage, the switch is closed.
The input voltage Vincharges the energy to the MI (Lm) as well as
transfers some energy to the secondary side via a CI. The produced
voltage is discharged through the C0 and R. If S is open, Stage II is
terminated at t = t2. Fig. 2. represents the stage II operation of the
converter in CCS.
4

Stage III: In stage three D1, D2, and D3 are in the inactive state,
and D0 is in the active state. In this interval, the switch is open. The
main switch of the parasitic capacitor (Cds) is charged via MI (Lm)
and LI (Lk). The Co is delivering its energy to R. D1 conducts when
the voltage of the capacitor VC1 = Vin + Vds, at t = t3, stage III is ter-
minated. Fig. 2. represents the stage III operation of the converter
in CCS.

Stage IV: In stage four D1 and D0 are in the active states, and D2

and D3 are in the inactive state. In this interval, the switch is open.
The clamp capacitor C1 is charged through the LI (Lm) and MI (Lm),
later LI (Lk) energy is recycled. The CI voltage VL2 is charging C0 as
well as R, till the is equal to zero. In the meantime, D2 and D3 start
to an active state. If iD0 = 0, at t = t4, stage IV is terminated. Fig. 2.
represents the stage IV operation of the converter in CCS.

Stage V: In stage five D1, D2, and D3 are in the active state and D0

is in the inactive state. In this stage, the switch is closed. Output
capacitor C0 is discharged through the R. The C1 is charged by
the MI (Lm) and LI (Lk). The MI (Lm) is released through the second
end of the CI and charges the C2 and C3. Therefore, C2 and C3 are
parallel charged. LI (Lk) energy charge C1, the current iLk reduces
and rises gradually. At, t = t6, stage V is terminated. Fig. 2. repre-
sents the stage V operation of the converter in CCS. Fig. 3 indicates
the column diagram for duty ratio versus output voltage of the
modified converter.

2.2. DCS operation

By neglecting LI (LK) of the CI, the steady of DCS is made easy. In
the DCS section mainly-three Stages are described.

Stage-I: In stage one D1, D2, and D3 are in the inactive state, and
DO is in the active state. In this stage, the switch is closed. DC
source (Vin) transfers the energy to the MI (Lm) Thus, MI current
(iLM) rises linearly. Also, Vin transfers the energy to the secondary
side via CI, then capacitors are connected in series the energy is
transferred to the CO and R. When S is open, stage I is terminated
at, t = t1. Fig. 4. represents the stage I operation of the converter
in DCS.

Stage-II: In stage two D1, D2, and D3 are in the active state and
D0 is in the inactive state. In this period S is open. The C1, C2, and C3

are charged through the MI (Lm). The CO is delivering its energy to
the R. Stage 2 is terminated when MI (Lm) energy is exhausted at,
t = t2. Fig. 4. represents the stage II operation of the converter in
CCS.

Stage-III: In stage three the switch remains open. MI (Lm)
energy is exhausted, the CO energy is discharged through the R.
When the switch is closed then Stage three is terminated. Fig. 4
represents the stage III operation of the converter in DCS. Fig. 5
represents the characteristic waveform of the converter in DCS.

3. Modelling and anayltic analysis of the modified converter

3.1. Continuous conduction stage

Let, Lk has released energy to the capacitor the duty cycle DC1 is

DC1 ¼ tC1
TS

¼ 2 1� Dð Þ
nþ 1

ð1Þ

Where tc1 = Time interval

V2
Lk ¼

Lk1
Lm þ Lk1

Vin ¼ 1� kð ÞVin ð2Þ

V2
L1 ¼ Lm

Lm þ Lk1
Vin ¼ kVin ð3Þ

V2
L2 ¼ nV2

L1 ¼ nkVin ð4Þ



Fig. 4. States of operation for the modified converter in DCS.

Fig. 5. Characteristic waveforms for DCS.
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V0 ¼ Vin þ VC1 þ VC2 þ V2
L2 þ VC3 ð5Þ

The principle of voltage second balance isZ DTS

0
V2

Lkdt þ
Z TS

DTS

V5
Lkdt ¼ 0 ð6Þ
5

Z DTS

0
V2

L1dt þ
Z TS

DTS

V5
L1dt ¼ 0

Z DTS

0
V2

L2dt þ
Z TS

DTS

V5
L2dt ¼ 0 ð8Þ

Substituting equations (1) to (4) into equations (6) to (8).

V5
Lk ¼ �D nþ 1ð Þ 1� kð Þ

2 1� Dð Þ VinV
5
L1 ¼ � Dk

1� D
VinV

5
L2

¼ � nDk
1� D

Vin ð11Þ

The capacitor voltages are

VC1 ¼ �V5
Lk � V5

L1 ð12Þ
¼ D
1� D

Vin
1þ kð Þ þ 1� kð Þn

2

VC2 ¼ VC3 ¼ �V5
L2 ¼ nDk

1� D
Vin ð13Þ

Finally the voltage-gain of the converter is

MCCS ¼ V0
Vin

¼ 1þnk
1�D þ D

1�D
k�1ð Þþn 1þkð Þ

2 (14).

Fig. 6 indicates the column diagram for duty ratio versus output
voltage of the modified converter. Table. 1 indicates the output
voltage of the converter with a varying duty ratio from 0.1 to 0.9.

In Table 2 represents the duty ratio versus voltage gain under
n = 3 and varying k values, the k (coupling coefficient) values are
taken 1.0, 0.98, and 0.95. If the duty ratio is 0.9 with a k value of
1.0 the converter produces 67 V, If the duty ratio is 0.9 with a k
value of 0.98 the converter produces 66.04 V, If the duty ratio is
0.9 with a k value of 0.95 the converter produces 64.4 V, from table
2 we can observe by changing the k value the converter output
voltage variation is very less so, the converter is not sensitive with
change in coefficient value (k). Fig. 7 represents the graphical rep-
resentation of the duty ratio versus output gain of the converter. In
that, the x-axis is taken as duty ratio and the y-axis is taken as con-
verter output voltage gain.

Table 3 represents the duty ratio versus voltage gain with cou-
pling coefficient (k) is considered as 3 and varying CI values, the CI
values are taken as 3, 4, 5, and 6. If the duty ratio is 0.9 with a CI
value is 3 the converter produces 67 V, If the duty ratio is 0.9 with
CI value is 4 the converter produces 86 V, If the duty ratio is 0.9



Fig. 6. Output voltage of the converter with a varying duty ratio from 0.1 to 0.9.

Table 1
Output voltage versus duty ratio.

Duty ratio Output voltage (V)

0.9 736.8
0.8 727.5
0.7 726.8
0.6 642.4
0.5 564.5
0.4 481.1
0.3 389.1
0.2 289.1
0.1 195.4

Table 2
Duty ratio versus voltage gain.

Duty ratio Vo/Vin under n = 3
K = 1 K = 0.98 K = 0.95

0.9 67.00 66.04 64.4
0.8 32.00 31.59 30.85
0.7 20.33 20.02 19.58
0.6 14.50 14.29 13.97
0.5 11.00 10.84 10.60
0.4 8.66 8.53 8.34
0.3 7.00 6.88 6.74
0.2 5.75 5.66 5.53
0.1 4.77 4.69 4.59

Fig. 7. Duty ratio versus voltage gain in CCS at n = 3 and different k’s.

Table 3
Duty ratio versus CI turns ratio.

Duty ratio Vo/Vin for k = 1
n = 3 n = 4 n = 5 n = 6

0.9 67.00 86.00 105.00 124.00
0.8 32.00 41.00 50.00 59.00
0.7 20.33 26.00 31.60 37.30
0.6 14.50 18.50 22.50 26.50
0.5 11.00 14.00 17.00 20.00
0.4 8.66 11.00 13.30 15.60
0.3 7.00 8.85 10.70 12.50
0.2 5.75 7.25 8.75 10.20
0.1 4.77 6.00 7.20 8.40
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with CI value is 5 the converter produces 105 V, If the duty ratio is
0.9 with CI value is 6 the converter produce 124 V.

Table 3 can observe by changing the CI value the converter out-
put voltage also changes. Fig. 8 represents the line diagram of duty
ratio versus voltage gain, with different coupled inductor turns
ratios (CI). Form Fig. 8 can be observed for more CI turns ratio pro-
duces more voltage gain.

4. Discontinuous conduction stage operation

In these three Stages are discussed.

V1
L1 ¼ Vin ð15Þ

V1
L2 ¼ nVin ð16Þ
6

V0 ¼ Vin þ VC1 þ VC2 þ V1
L2 þ VC3 ð17Þ

For calculating the peak current of Lm is

ILmp ¼ Vin

Lm
DTS ð18Þ

From Fig. 2 (Stage 2) the subsequence expression can be written
(Stage-II)

V2
L1 ¼ �VC1 ð19Þ



Fig. 8. Duty ratio versus voltage gain, with different coupled inductor turns ratio
under k = 1.

Fig. 9. PI controller block diagram.

Fig. 10. Architecture of the neural network.

Table 4
Simulation specifications of the solar PV panel and converter.

Electrical Parameters Values

Irradiance 200–1000 W/m2

Open-circuit voltage (Voc) 23.88 V
Voltage at maximum power (Vmp) 19.68 V
Short-circuit current (Isc) 9.6A
Current at maximum power (Imp) 9.15A
Maximum power at STC (Wp) 180Wp
DC input voltage (Vin) 48 V
Clamp capacitor (C1) 56uF/100 V
Charge Capacitors (C2 and C3) 22uF/200 V
Output capacitor (C0) 180uF/450 V
DC Output voltage 400 V (nearly)
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V2
L2 ¼ �VC2 ¼ �VC3 ð20Þ
From Fig. 2 (Stage 3) the subsequence expression can be written

(Stage-III)

V3
L1 ¼ V3

L2 ¼ 0 ð21Þ
The subsequence expression can get from the coupled inductor

by applying voltage balance principleZ DTS

0
V1

L1dt þ
Z DþDLð ÞTS

DTS

V2
L1dt þ

Z TS

DþDLð ÞTS
V3

L1dt ¼ 0 ð22Þ

Z DTS

0
V1

L2dt þ
Z DþDLð ÞTS

DTS

V2
L2dt þ

Z TS

DþDLð ÞTS
V3

L2dt ¼ 0 ð23Þ

The capacitors voltages (C1, C2, and C3) are got by substituting
equations (15), 16, 18, 19 and 20 into equations (22) and (23)[28].

VC1 ¼ D
DL

Vin ð24Þ

VC2 ¼ VC3 ¼ nD
DL

Vin ð25Þ

Voltage gain is got by substituting equations (16), 24 and 25
into equation (17)

V0 ¼ D
DL

2nþ 1ð Þ þ nþ 1ð Þ
� �

Vin ð26Þ

DL(Duty cycle) can be derived from equation (26)

DL ¼ 1þ 2nð ÞDVin

V0 � 1þ nð ÞVin
ð27Þ

In a steady-state condition capacitor (C2) releases its energy to R
load and capacitor (C0) Also, the average current

ID0 ¼ ID2

The average current of iCO is

IC0 ¼ ID0 ¼ �I0 ¼ ID2 � I0 ¼ 1
2
DL

ILmp

2nþ 1
� I0 ð28Þ

In steady-state condition IC0 = 0, substituting equations (18) and
(27) into equation (28)
7

D2V2
inTS

2 V0 � 1þ nð ÞVin½ �Lm ¼ V0

R
ð29Þ
TLm ¼ Lm
RTS

¼ Lmf S
R

ð30Þ

Where, fs = switching frequency.
Voltage gain can be got by insert equation (30) into 29

MDCS ¼ V0

Vin
¼ 1þ n

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nð Þ2

4
þ D2

2TLm

s
ð31Þ

The voltage-gain of the modified converter in CCS and DCS are
equal.



Fig. 11. I-V and P-V curves of the solar PV panel with various irradiance.

Fig. 13. Converter input and output voltages (a) with NN controller (b) with PI controller.

Fig. 12. Gate pulse of the converter switch.
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5. Control techniques

5.1. Proportional integral

For reducing the steady-state error and increasing the system
response Integral (I) controller was used but there is a disadvan-
tage in the integral controller that is it will affect the stability of
the system so to overcome this problem a Proportional Integral
Fig. 14. Diodes currents of the modified converter (

Fig. 15. Diode currents of the modified converter

9

(PI) controller was introduced. This PI controller does the same
work of the integral controller without affecting the stability of
the system similarly reduce the steady-state error. The PI con-
troller output must be proportional to an error signal and must
be proportional to the integral of the error signal. Equation (32)
represents the transfer function of the PI controller. By using the
PI controller to decrease the steady-state error without disturbing
a) with the NN controller (b) with PI controller.

(a) with NN controller (b) with PI controller.
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the stability of the system. The block diagram of the PI controller is
shown in Fig. 9.[29]

GCðsÞ ¼ Kp 1þ 1
TIS

� �
where TI ¼ KP

KI

ð32Þ

By utilizing the PI controller to achieve accurate desired value,
fast response and less error in steady-state.
Fig. 16. CI primary and secondary currents of the modified

Fig. 17. Capacitor voltages of the modified converte

10
5.2. Neural network

The NN has been used very effectively in the recognition and
control of a dynamic system because of their universal approxima-
tion capability. NN controller has so many control algorithms that
are presented based on the applications a specific algorithm is
used. The P1, P2, and P3 are the inputs of the controller similarly
Q1 and Q2 are outputs of the controller. W11 and W22 indicate
converter (a) with NN controller (b) with PI controller.

r (a) with NN controller (b) with PI controller.
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the weight numbers if the connecting channels between the layers.
In the NN controller mainly-three layers are present those are
input layer, hidden layer, and output layer. Each layer is connected
with proper weights. The NN controller was trained by a number of
iterations and reduce the error then produce the appropriate signal
to the plant. The block diagram of the NN controller is shown in
Fig. 10.[30].
6. Simulation results

The input voltage of the converter is 48 V, it produces nearly
400 V as the output side of the converter. Table.4 represents the
simulation specifications of the solar PV panel and converter. Here,
the PI controller is used in a boost converter controlling. Here, PI
and NN controllers are used in a boost converter controlling,
Fig. 11 indicates the I-V and P-V curves of the solar PV panel with
various irradiance, here the irradince range is taken form 200–
1000 W/m2. Fig. 12 indicates the gate pulse of the converter
switch. The entire system was designed in MATLAB/ Simulink tool
results are obtained Simulink/Matlab.

Fig. 13 indicates the input and output voltages of the modified
converter, 13 (a) represent the NN controller-based converter out-
Table 5
Evaluation among the duty ratio versus voltage gain of the existing and proposed
converters.

Duty ratio [24] Switchng mode [25] Continous mode Proposed

0.9 37.00 47.00 67.00
0.8 17.00 22.00 32.00
0.7 10.33 13.6 20.33
0.6 7.00 9.5 14.50
0.5 5.00 7.00 11.00
0.4 3.66 5.33 8.66
0.3 2.71 4.14 7.00
0.2 2.00 3.25 5.75
0.1 1.44 2.55 4.77

Fig. 18. Duty ratio versus voltage gain of the proposed conve
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puts and 13 (b) represents the PI controlled based converter out-
puts. The NN controlled based converter has taken less settling
time and fewer ripples on output voltages as compared to the PI
controller-based converter.

Fig. 14indicate the diode (D0, D1, and D2) currents of the modi-
fied converter, and Fig. 14 (a) represents the NN controller-based
converter outputs andFig. 14 (b) represents the PI controlled based
converter outputs. The NN controlled based converter have fewer
ripples on output currents as compared to PI controller based
converter.

Fig. 15 indicates the Diode (D3 and D4) input and output cur-
rents of the modified converter, Fig. 15 (a) represents the NN
controller-based converter outputs and, Fig. 15 (b) represents the
PI controlled based converter outputs. The NN controlled based
converter have fewer ripples on diode currents as compared to PI
controller based converter.

Fig. 16 indicates the CI primary and secondary currents of the
modified converter, Fig. 16 (a) represents the NN controller-
based converter outputs and, Fig. 16 (b) represents the PI con-
trolled based converter outputs. The NN controlled based converter
have fewer ripples on coupled inductor (CI) output currents as
related to PI controller based converter.

Fig. 17 indicates the voltages of the capacitors of the modified
converter, Fig. 17 (a) represents the NN controller-based converter
outputs and Fig. 17 (b) represents the PI controlled based converter
outputs. The NN controlled based converter have fewer ripples on
output voltages as related to the PI controller based converter.
These results were obtained from Simulink/MATLAB.

Table 5 represents the evaluation among the duty ratio versus
voltage gain of the existing and proposed converters at n = 3 and
k = 1. From Table.5 it shows that (Wai, R. J., et all, 2006 &Baek, J.
W., et all, 2005), obtain the voltage gain of 37 V and 47 V respec-
tively at the duty ratio of 0.9, whereas the converter produces a
voltage gain of 67 V at the duty ratio of 0.9. Fig. 18 represents
the duty ratio against the voltage gain of the proposed converter
rter versus existing converter at CCS at n = 3 and k = 1.



Madisa V.G. Varaprasad, N.S.S. Ramakrishna, I. Kamwa et al. Ain Shams Engineering Journal 14 (2023) 102061
versus existing converters [24–25], at n = 3 and k = 1. The convert
produces high voltage gain as compared to existing converters.
7. Conclusion

A modified high-voltage DC-DC converter has been explained
for renewable energy applications. For achieving better efficiency
and high-voltage, the capacitors are serially discharged and paral-
lel charged through the coupled inductor. Mathematical modelling
and converter analysis are explained in detail. In this, 48 V input is
boosted up to 400 V nearly. By varying several parameters of the
converter to observe the behaviour of the modified converter, sim-
ilarly, observed the performance and behaviour of the modified
converter versus existing converters. In this converter minimize
the reverse recovery currents and voltage spicks across the switch.
PI and NN controllers are used to control the switching pulse of the
converter. The PI controller is unable to calculate the system future
errors, so PI is unable to minimize settling time and oscillations in
steady-state. Coming to NN, the settling time is fast and produces
less oscillation in system output. So, finally by utilizing PI con-
troller system stability is low as compared to the NN controller.
Therefore Neural Network (NN) controller produces better system
performance with minimum losses. In this converter minimize the
reverse recovery currents and voltage spicks across the switch. PI
and NN controllers are used to control the switching pulse of the
converter The PI controller is unable to calculate the system future
errors, so PI is unable to minimize settling time and oscillations in
steady-state. Coming to NN, the settling time is fast and produces
less oscillation in system output. So, finally by utilizing PI con-
troller system stability is low as compared to the NN controller.
Therefore Neural Network (NN) controller produces better system
performance with minimum losses. Further the system can tune
usng some optimizied algorthm for a better stability analysis.
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