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Abstract: Maximum Power Point Tracking (MPPT) is a technique used in photovoltaic (PV) systems

to maximize the power output from the solar panel by constantly tracking and adjusting the optimal

operating point. To achieve this, various algorithms have been developed, with Particle Swarm

Optimization (PSO) being a widely used method. By adjusting the control system’s parameters, PSO

can determine the optimal operating point of the solar panel and improve its overall performance.

PSO employs swarm intelligence by simulating the behavior of particles to find the best solution

for a given problem. Long Short-Term Memory (LSTM) belongs to the family of Recurrent Neural

Networks (RNN) in machine learning and is designed to address the limitations of traditional RNNs

in capturing long-term dependencies that exist in sequential data. The combination of PSO and

LSTM techniques can result in an efficient MPPT algorithm that leverages the benefits of both. PSO is

utilized to optimize the control parameters of the MPPT algorithm, while LSTM is used to predict the

solar panel’s power output based on historical data. Consequently, this integration can lead to an

accurate and efficient MPPT algorithm that can effectively track the solar panel’s maximum power

point. In this research article, an effort has been made to control the duty cycle of the converter by

suitably controlling the system gain. A Matlab-based Simulink model in conjunction with Python

programming has been used to make the system more robust.

Keywords: algorithm; GA; PSO; PSO-LSTM; search space

1. Introduction

Electricity consumption is increasing at a faster rate than any other form of energy
worldwide, creating a perpetual challenge due to socioeconomic growth. The use of
fossil fuels is declining, yet the rate of consumption to support the industrial revolution is
still high. Traditional sources are insufficient to meet the ever-growing energy demands,
causing concerns about energy security and rising fossil fuel prices. The urgent need to find
compatible options has led to increased research and development in renewable energy
sources such as solar and wind power, which are widely accessible [1,2]. Solar energy is
particularly promising due to its abundance and potential to meet global energy needs.

Sustainability 2023, 15, 8535. https://doi.org/10.3390/su15118535 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15118535
https://doi.org/10.3390/su15118535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8731-603X
https://orcid.org/0000-0001-9699-8319
https://orcid.org/0000-0003-0054-0149
https://orcid.org/0000-0003-4955-6889
https://doi.org/10.3390/su15118535
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15118535?type=check_update&version=1


Sustainability 2023, 15, 8535 2 of 24

Photovoltaic cells (Solar PV) are a leading option for energy technology due to their direct
conversion of solar radiation into electrical energy [3]. However, there are still significant
challenges to overcome, such as fluctuating energy, low energy conversion efficiency, and
high energy costs. To address these challenges, researchers are working to enhance the
power output of photovoltaic modules through Maximum Power Point Tracking (MPPT),
which matches the characteristics of the module to deliver maximum power output and
prevent power loss.

The foremost objective of the MPPT technique is to reduce oscillations due to changing
weather conditions and to achieve fast and accurate tracking performance by controlling
the operating point of the converter to operate the system constantly at Maximum Power
Point (MPP) for regularisation of the output of the PV device [4,5]. The principal goal of
the MPPT is to extract the highest power from the PV device. By locating the MPP and
adjusting the duty ratio of the converter, the MPPT technique reduces the power loss and
improves the conversion efficiency [6–8].

Various MPPT methods such as Perturb and Observation (P&O), Incremental Con-
ductance (IC), fractional short circuit current, fractional open-circuit voltage, and advanced
techniques based on Neural Network (NN), Fuzzy Logic (FL), bio-inspired optimization,
and nature-inspired optimization are discussed in [9,10]. It has been observed that the
most popular P&O MPPT algorithm has some benefits of smooth implementation, simple
structure, and low cost. The PV output power is altered with small constant steps in
each cycle. The regulating parameters are PV current and voltage, which is known as the
perturbation. The P&O method fails under rapidly changing environmental conditions
due to its high convergence speed [11,12]. The traditional algorithms prove to be efficient
in steady irradiance conditions. Up to 70% power, loss occurs with sudden alteration in
irradiance, and they fail to track the global peak. The traditional techniques exhibit a lot of
global peaks and local peaks, and they fail to locate the global peaks [13].

The global peaks are tracked properly by bio-inspired optimization methods such
as ant colony optimization, artificial bee colony, flower pollination, cuckoo search, and
Particle Swarm Optimization (PSO) [14]. Under a steady state, the above optimization
techniques exhibit oscillations. Salp-Swarm Optimization Algorithm (SSA) [15], Whale
Optimization Algorithm (WOA) [16], Grey Wolf Optimization (GWO) [17], and Harris
hawk optimization [18] are some other meta-heuristic techniques. The GWO is better in
terms of speed and accuracy, and the WOA technique tracks the GP with higher accuracy
and speed. To improve the convergence rate of the P&O technique, it can be combined
with an Artificial Neural Network (ANN) [19], which is known for its faster convergence
rate. The P&O tracks the peak operating point, and then the ANN locates the Peak (GP). To
improve the convergence rate and to reduce the steady-state oscillation, P&O is combined
with the WOA technique in [20]. The P&O algorithm is used to locate the optimum
operating point, while the WOA algorithm is used to find the GP at the initial stage with a
higher rate of convergence.

The non-linear complex problems are easily solved by machine learning approaches.
Extreme machine learning technology is used for the prediction of solar power by solving
the short-term nonparametric probabilistic theory. The solution to forecasting issues related
to solar power is presented in [21], using an LSTM. In this article, the authors proposed an
enhanced PSO method by integrating LSTM and optimizing the LSTM parameters. This
approach updates the speed equation and improves particle attraction in the PSO structure,
thereby enhancing the selection of initial parameters of the LSTM structure to forecast the
output power of the PV system.

The article [22] presents a new hybrid approach that combines PSO and LSTM to
improve the performance of MPPT in PV systems when dealing with partially shaded
conditions. The method employs PSO to optimize MPPT control parameters and LSTM to
predict the solar panel’s power output based on historical data. The study compares the
proposed approach with conventional MPPT algorithms under various partially shaded
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conditions, and the results show that the hybrid PSO-LSTM approach achieves higher
accuracy and efficiency.

The non-linear complex problems are easily solved by machine learning approaches.
Extreme machine learning technology is used for the prediction of solar power by solving
the short-term nonparametric probabilistic theory. The forecasting issues of solar power
are solved by an LSTM. The accuracy of the power fluctuation forecasting is improved by
estimating the solar panel tilt angle. An improved particle swarm optimization is proposed
in this article by combining long short-term memory and particle swarm optimization by
optimizing the parameters of LSTM. The speed equation is updated, and the particles are
attracted in the PSO structure, which improves the selection of initial parameters of the
LSTM structure to forecast the output power of the PV system.

A novel MPPT approach for PV systems under partial shading conditions has been
proposed [23]. The proposed method uses a combination of PSO and LSTM neural networks
to improve the accuracy and efficiency of the MPPT process. The PSO algorithm is used to
optimize the parameters of the LSTM network, which is trained to predict the MPP under
different shading conditions accurately. The proposed PSO-LSTM method is compared
with other MPPT techniques, and simulation results show that the proposed method
outperforms the other methods in terms of accuracy, speed, and efficiency. The proposed
PSO-LSTM method can be an effective solution for improving the performance of PV
systems under partial shading conditions.

The paper [24] proposes the hybrid marine predator sine cosine algorithm (HMPSCA)
to optimize the parameters of a hybrid active power filter (HAPF) that mitigates harmonic
distortions caused by nonlinear loads. The algorithm combines the marine predator and
sine cosine algorithms to improve the convergence speed and accuracy. The performance
of the HMPSCA is compared with other optimization algorithms, such as PSO and genetic
algorithm (GA), based on the convergence rate and objective function value. The results
indicate that the HMPSCA outperforms other algorithms and achieves better suppression
of harmonic distortion.

Based on the literature survey on the present state of art model, the following key
contribution has been proposed in the present research article.

• Mathematical modeling of the PSO-LSTM MPPT model has been carried out in this
research article.

• The validation of the proposed PSO-LSTM MPPT with other established models under
partial shading conditions has been performed as an integral part of this paper.

• Hardware implementation of the model has been carried out for robustness evaluation
of the model under different weather conditions.

The remaining paper is organized as follows: in Section 2, the problem formulation is
discussed. Section 3 depicts the benchmarking model. Section 4 presents numerical simula-
tions to verify the effectiveness of our approach and conclusions are given in Section 5.

2. Problem Formulation

Figure 1 shows the variation of MPP under different solar irradiance over a time
domain t ∀ t ∈ T. A subject graph of Figure 1 is shown in Figure 2, representing
maximum power deviation ∆P and right load side to MPP here referred to as oscillating
area. The inhomogeneous waveform of Figure 2 can be analyzed using Neumann and
Dirichlet boundary control methods. Therefore, let us consider a Distributed Control
Boundary (DCB) for the variable solar power around MPP. Here curve-1 and curve-3 can
be considered as a DCB for curve-2. Therefore,

DCB =



























minp,v∈(P,V) M(p, v) := 1
2 ||∆P||2RT + α

2 ||∆V||2RT

mini,v∈(I,V) M(i, v) :=
√

3
2 | ∆P
||∆V|| |RT

ST
−∆P=0

∀ ∆Pm ∈ |R| and

v ∈ VMPP ⊂ VOC

(1)
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Here, Equation (1) is a derived equation by applying the gradient stochastic probability
to the increasing slope of the incremental conductance-based MPPT curve. M(p,v) represents
the maximum power point (MPP) on the PV curve. To minimize the oscillations around
the MPP, it has been designed as a minimization type of function. M(i, v) represents
the projected maximum power point from the PV curve to the IV curve. |R| represents
the universe of discourse containing all the data points of the PV plane, the condition is
valid subject to (ST) change in maximum power with respect to reference observation as a
negative change in slope. VMPP shows the maximum power with reference to voltage and
VOC represents the open circuit voltage of SPV module.

Figure 1. PV curve of a typical MPPT system.

Figure 2. Rate of change in PV curve of a typical MPPT system showing oscillation region.

The solution for Equation (1) can be analyzed by equating M : V → R2(ρ) with ρ = ∂R,
where ∂ represents the partial differential equation with respect to ∂p, ∂v i.e., ∂R

∂p∂v . Therefore,

it is understood that there exists a weak sense between MPP and its boundary [25,26]. This can
be analyzed by considering N-R-type boundary control and Robin-type boundary control.
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2.1. N-R Type Boundary Control

The equivalent DCB of Equation (1) can be written as

DCB =























minp,v∈(P,V) M(p, v) := 1
2 ||∆P||2RT + α

2 ||∆V||2RT

ST
−∆P=0

∀ ∆Pm ∈ |R|
∂nP = f (BV − Υp)

v ∈ VR ≤ Voc

(2)

Here in Equation (2), B represents the Boltzmann constant for oscillating voltage V,
and that of Yp represents the present state of voltage. ∂nP, represents the ‘n’ number of
oscillating observed maximum power. Equation (2) equivalently can be written as

min
u∈VR

M̂(v) (3)

Again the function M̂(v) := M(p(v), v) ≡ M(SBV, v) over surface VR, where S :

p∗ → p f or p := H
′
(Ω) becomes a weak solution operator. Here, p∗ represents the new

updated power (p). Therefore, the stiffness function value becomes

D(p, v) =
∫

R
▽p ▽v dP +

∫

T
ΥpvRdρ = f (v)|p∗p, (VR) ∈ P (4)

In Equation (4), f (v)|p∗p represents the instantaneous voltage magnitude as a function
of present and immediate past power magnitude on the PV curve. Whereas (VR) ∈ P
represents any value of V inside the region of convergence which belongs to P on the
PV plane. Again as an action of BV on the performance of Equation (4) as an element
R(BV) ∈ p∗ can be defined as

∫

R
f (BV), V〉|p∗ ,p =

∫

R
BVv dR , ∀ Voc ∈ V (5)

The contour integral of
∫

R f (BV), V〉|p∗ ,p, results in the partial integral of BV over
the contour R, where every single solution can be modeled as a function of V. Therefore,
Equation (5) can be redesigned as a convergent function of a unique solution, satisfying
first-order boundary conditions such that

〈M(v), V − v〉|p∗ ,p ≥ ∀ v ∈ VR (6)

Equation (6) represents that the optimization problem can be made dependent on
controller parameters for the active dynamic conditions of operation [27,28]. It is completely
characterized by Maximum Power Point curve-1 (MPP1) and Maximum Power Point curve-
3 (MPP3).

The function M(v) in Equation (6) can be integrated with Poisson’s equation and
Neumann boundary condition as

{

−∆M(v) = p− ∆Po|R∈(P,V)

∂R p + υp = 0 R ∩ (P, V)
(7)

On applying Equation (7) to Equation (6) with variational inequality, Equation (6) can
be reduced to

〈M̂p(Vp), v−Vp〉V∗R ≥ 0 ∀ v ∈ VR (8)

or
M̂p(P) = αV + B∗Pp(v) (9)
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In Equation (8), V∗R represents the updated resultant voltage on the PV curve, and in
Equation (9), B∗ represents the updated Boltazman’s multiplication factor after the second
derivative.

2.2. Robin Type Boundary Value

The equivalent optimization Equation (3) can be modified as

minM(p, v) =
1

2

∫

RMPP1

(V(T(G0 − p))2)d(T)+

α

2

∫

RMPP2

V(T, G0)
2dσ(T, G0)+

∫

RMPP3

V(T, G0)dσ(T, G0)

(10)

S.T =

{

(p, v) ∈ H
′
R X R2(T, G0)

V ∈ VR = v ∈ R2(ρ) ∀0 ≤ v(T, G0) ≤ 1
(11)

In Equation (10), RMPP1, RMPP2, and RMPP3 represents the resistances associated with

different curves [29,30] Similarly, H
′
R represents state space matrix of contour R and G0

represents reference irradiance.
Figure 3 Represents the surface view for Equations (7) and (10) with different boundary

value conditions. The Robin boundary condition defines the correlation between the values
of a function and its normal derivative at the boundary of a domain and is a common
type of boundary condition in partial differential equations. This establishes a relation
between local minima and the slope of the MPPT curve, which is an integral objective of
this research.

The PI-controlled MPPT has been used along with the SPV grid-connected system for
easy control of the system. However, the tuning of gain parameters such as proportional
gain (Kp) and integral gain (Ki) uses the PSO-LSTM methodology. This enables the dynamic
update of Kp and Ki value with respect to changes in loading pattern at PCC. The LSTM
will create a range of values for both the gain so that during transient disturbances such as
partial shading and loading switching, the gain can slide over the derived range.

(a) (b)

Figure 3. Cont.
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(c)

Figure 3. (a) General surface view of Equation (1), (b) surface view of Equation (7) with N-R type

boundary control, and (c) surface view of Equation (10) with Robin type boundary control.

3. Bench Marking Model

To check the efficiency and robustness of the proposed model, two benchmarking
models have been considered for comparison. The benchmarking models are Genetic
Algorithm MPPT (GA-MPPT) and PSO-MPPT.

3.1. Case-1: GA-MPPT

The principle of natural evolution can be embodied with maximum power point
tracking in terms of genetic algorithm. The selection, mutation, and cross-over concept of
the genetic algorithm in terms of fitness value can be applied to different power levels in an
MPPT. Each individual inside the MPPT will be assigned as an agent and fitness value as a
stochastic function of their characteristics [31,32]. The detailed structure of an individual
with chromosome level is shown in Figure 4.

Figure 4. Chromosome model for MPPT analysis.

Here it can be observed that Chromosome-3 (Figure 4) sets the operating voltage for
MPPT. The reference value will be set up as a function of power and voltage at MPP. The
next two chromosomes will decide the step size and direction of the MPPT optimization
direction and steepness value.

As a function of the genetic algorithm, the operating points will be generated based
on the parent selection characterized by individual steepness value. On the PV curve, two
pints will be randomly chosen to produce a set of offspring based on the parameters as
shown in Table 1.
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During the process of optimization like cross-over and selection, if GMPP is found
same from parent to child, then it is assumed that this is the MPP, and the corresponding
value of P and Voc will be taken into consideration for the generation of the necessary
duty cycle.

Figure 5 shows the cross-over operation of the identified right-hand side point of
oscillation in the parent PV curve. The operation will identify either a positive slope or a
negative slope along with the direction of movement of the MPP. Therefore, the output of
the GA-MPPT can be modeled as a function of both voltage and step size [33,34].

Figure 5. Crossover operation of parent curve in MPPT.

Figure 6a shows the probability oscillation movement of P and Voc with a variance of
0.77. Here the system predicts three different oscillation points near the MPP (Algorithm 1,
Pseudo-code) with an estimated direction of movement. Again, from the estimated di-
rection, it can also be found that the system is more dominant towards the right-hand
side against the left-hand side on the PV curve [35]. Similarly, Figure 7 shows the GA
performance for a variance of 0.92.

Algorithm 1: Evaluating MPP for perturb≤ 0.2 s. using GA

1. Initialize probability vector
2. Select two parents in the PV curve
Pi → P1

Pi+δt → P2

3. Evaluate(P1)and(P2)
4. While GA has not converged()
P12(t)← P(t) Parent selected
Pc(t)← P12(t) Reproduction
Mutation Pc(t)
Evaluate Pe(t)
P(t + 1)← Build, Evaluate next-generation data
Change t← t + 1
end while
5. Return the best result for evaluation
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Table 1. Parameters for genetic algorithm selection, mutation, crossover.

n = 10 n = 20 n = 30

Population Size 100 200 300
Probability of Cross
over

0.7 0.71 0.75

Elite Size 1% 1% 1%
% of mutation 10% 10% 10%
Stopping Criteria error = 0.1 error = 0.1 error = 0.1

Cross Over Uniformly
Mapped

Uniformly
Mapped

Uniformly
Mapped

Cross Over Type CC = 0.1 CC = 1 CC = 1

Selection Criteria Stochastic
Movement

Stochastic
Movement

Brownian
Movement

Fitness 90% 90% 100%

(a) (b)

Figure 6. Probability oscillation movement: (a) change in P and Voc as a function gene movement

with variance = 0.77; (b) fitness progress response.

(a) (b)

Figure 7. Probability oscillation movement: (a) change in P and Voc as a function gene movement

with variance = 0.92; (b) fitness progress response.
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3.2. Case-2: PSO-MPPT

One of the universally used bio-inspired models in optimization theory is PSO. The
output of the solar voltaic system greatly depends upon solar irradiance and environmental
temperature leading to a nonlinear output characteristic in terms of convergence and
constraint optimization. This makes the system have more than one number of local
minima and global minima. Some of the optimization algorithms get locked in the local
minima leading to a non-convergence solution [35,36].

In multi-dimensional cooperative optimization, the genetic algorithm does not make
the system converge; therefore, PSO has been chosen as an optimization algorithm. To
apply PSO in the present content of MPPT, let us assume that each particle is at the initial
position Pi with an initial velocity of Pi in the defined search space. Each individual particle
inside the search space is characterized by Pbest and as a whole Gbest. Combining both the
velocity along with their characteristic, the swarm velocity can be written as

Vk+1
i = ωVk

i + c1r1(Pbest − Pk
i ) + c2r2(Gbest − Pk

i ) (12)

Pk+1
i = Pk

i + Vk+1
i (13)

Here the velocity of the swarm has been controlled by two random variables called r1

and r2, respectively. Therefore, the convergence time is highly dominated by the proper
selection of this variable at the initial point of time. The random variable of a larger size
may omit the convergence point. Therefore, the step difference between the two conjugate
points should not be more than 1× 10−3.

Again, in the same equation, k represents the number of iterations required for conver-
gence, and ω represents the initial selected weight for each particle. In the present research

context of right-hand side MPPT optimization, the search space is limited to
δp
δω greater than

zero. The required amount of duty cycle has been made as a function of particle velocity.
This shows that if r = 1, then the unity power factor can be achieved at the terminal of
the solar inverter. The slow moment of the particle leads to a sluggish response with a
less-duty cycle.

Again, from the Pi controlled MPPT techniques, it is noticed that the Ki and Kp value
lies in the range of [0.47–0.62] and [0.33–0.41], respectively. Therefore, in the present
research, an initial search space has been probed with an upper boundary of Ki and Kp,
respectively. In comparison to the Pi controller, where the tuning of Kp and Ki is based on
the Nichols–Ziegler method, which can be made dynamic by using the PSO-based tuning.
This ultimately decreases the net searchable area in the MPPT and, thus, reduces the local
oscillations around the MPP. Therefore, Equations (7) and (10) can be modified into the
following two equations:

Vk+1
i = ωVk

i + c1ρ1(Pbest − Pk
i ) + c2ρ2(Gbest − Pk

i ) (14)

and
Pk+1

i = Pk
i + Vk+1

i (15)

The performance of the particle sum optimization can be enhanced by making the
system more populated. Here, four cluster analyses for three identified points on the MPPT
curve have been conducted. Each cluster in the net consists of 72 numbers of swarms. The
detailed response is shown in Figure 8.
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(a) (b)

(c)

Figure 8. Change in P and Voc as a function of particle movement inside PSO. (a) Initial Position

(Pi) = 0.1 and Initial velocity (Vi) = 1.03; (b) Initial Position (Pi) = 0.3 and Initial velocity (Vi) = 1.03;

(c) Initial Position (Pi) = 0.5 and Initial velocity (Vi) = 1.03.

4. Simulation and Result Analysis

To validate the proposed algorithm, a hardware setup (Figures 9 and 10) with pro-
grammable D-space has been implemented with a solar panel for its effective analysis
and a detailed comparative study with other commercially available MPPT algorithms.
As observed in Figure 10, all the experimental setup has been established at Standard
temperature conditions (STC) only. Two types of experimental testbeds have been created,
such as for dusty surface evaluation of SPV and partial shading conditions. The PSO-LSTM
flowchart for the process is presented in Figure 11. The detailed technical specification of
the hardware setup system is shown in Table 2.

In this research work, the effectiveness of the proposed algorithms has been evaluated
with three different case studies, such as partial shading, dusty surface, and greenhouse
gas concentration.

Again, before starting the analysis, it is required to choose the proper activation
function for the LSTM MPPT model. Table 3 shows the analysis of the LSTM algorithm
with four different types of activation functions under normal operating conditions. As
observed, ReLu took 12.03 ms. time to reach 80% of the final time for MPP, whereas Softmax
is taking the highest time of 12.97 ms to achieve the same position. Again ReLU is showing
a voltage level of 38.91 V for 0.9Voc against 0.7Voc of 31.14. Hence, for analysis of LSTM
with the MPPT algorithm, in this paper ReLu activation function has been used.
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Table 2. Detailed technical specifications of SPV model.

Sr. No, Parameter Rating

1 Wattage rating of solar Panel 400 wp
2 Open circuit voltage at STC 43.2 V
3 MPP voltage at STC 38.7 V
4 Short circuit current of panel 6.79 A
5 MPP current at STC 6.51 A
6 No. of series connected panels 7

7
No. of parallel connected
panels

66

8
DC-DC converter output
voltage

407 V

9 Boost converter rating 4 KW
10 Inductor rating 6 mH
11 Filter inductance 252 NH
12 Inverter type 3 level, VSI

Figure 9. MPPT Experimental Setup for Partial Shading.

Figure 10. MPPT Experimental Setup for Color Spectrum.
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Figure 11. PSO-LSTM process flow chart for generation of duty cycle under different testing condition.

Table 3. Performance of Different activation functions under varying SPV parameter

% Type of
Activation

Voc Time

0.9Voc 0.8Voc 0.7Voc 0.9 T 0.8 T

sigmoid 38.88 34.56 30.24 13.76 12.04

tanh 38.10 33.17 29.63 13.23 12.00

ReLu 38.91 34.59 31.14 13.16 12.03

Softmax 38.63 33.70 30.16 13.55 12.97

Figure 12 shows the block diagram of LSTM-enabled P&O MPPT for duty cycle
generation. Hereafter, data normalization, both forward and backward sweep, has been
applied for proper training of the data set, which ultimately leads to better forecasting and
selection of activation function. Again, in this architecture, 100 hidden networks have been
taken into consideration for reducing the R2 error. Finally, the duty cycle will be evaluated
through a Fuzzy logic evaluator. The LSTM enabled MPPT will create a reference MPP for
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P&O and thereby minimizing the search space.
Case-1: Partial Shading Condition

Shading is an unavoidable effect in solar PV systems. The P&O algorithm oscillates
around the maximum power point under varying partial shading conditions. To analyze
the effectiveness of the proposed PSO-LSTM MPPT algorithm, a 50% shading effect in three
clusters has been applied over the solar PV panel.

Basically, LSTM is affected by the type of activation function used in the system.
Therefore, a comparative analysis of different types of activation functions with LSTM has
been investigated.

Figure 12. Block diagram of LSTM enabled P and O MPPT for duty cycle generation.

Table 4 shows the cluster analysis of partial shading with PSO-LSTM. Relu activation
function has been used in LSTM to evaluate the performance. As mentioned, five different
clusters with transient disturbance of 10% to 50% have been used. It is observed that the
tracking time increased to 39.63 ms for 50% transient partial shading against 11.93 ms for
10% transient shading. Gain a minimum MPP has been observed to be 153.0 Wp and that of
maximum 376.8 Wp occurs at 10% transient partial shading.

Table 4. MPP max and min data.

Cluster
% Shading
(Transient)

MPP max MPP min
Standard
Deviation

Tracking
Time (s)

C-1 10 376.8 359.1 13.09 11.93
C-2 20 364.5 357.8 11.83 11.27
C-3 30 322.4 304.6 18.06 13.06
C-4 40 298.6 272.9 24.33 17.18
C-5 50 173.1 153.0 34.49 39.63

Table 5 shows the comparative analysis of different MPPT algorithms under normal
and partial shading conditions. Here the analysis has been carried out for the percentage
of oscillations along with tracking efficiency. It is found that for PSO-LSTM MPPT, the
efficiency is 93.47%, with the percentage of oscillations around 2.83 for normal conditions.
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Similarly, with under-average partial shading of 25%, the tracking efficiency for PSO-LSTM
MPPT is found to be 83.27% with the percentage of oscillations around 9.26, which is 89.48%
better as compared to GA MPPT and 87.23% efficient as compared to PSO MPPT under
same conditions.

Table 5. A comparative analysis of different MPPT algorithms under normal and partial shading condition.

Condition
Type of MPPT

Algorithm
MPP

Tracking Time
% of

Oscillations
Tracking
Efficiency

Normal
GA 8.33 4.11 85.88
PSO 6.98 3.82 89.31

PSO-LSTM 6.36 2.83 93.47

Partial
Shading

GA 17.04 9.43 78.66
PSO 15.81 9.68 81.05

PSO-LSTM 9.83 9.26 83.27

Figure 13 shows the characteristic evaluation for LSTM output and target along with
the error curve under partial shading conditions. It is observed that the system has shown
a maximum oscillation of 42% of shading condition, where LSTM efficiently distinguishes
the MPP from the local convergence areas. At the same time, maintaining an accuracy level
of 87.4%.

Figure 14 represents the histogram plot with 20 Bins for Instances against error under
partial shading conditions. As observed, for an error of +1.42, the system shows 13.44 in-
stances with a validation level of 27%. Similarly, Figure 15 shows the LSTM performance for
Correlation and Lag under partial shading conditions. The system has an autocorrelation
level of 0.027.
Case-2: Dusty Surface

Most of the time, solar panels are installed outside the building, in open space, or on
the top of the roof. Therefore, it is obvious that it is highly affected by the dust. The MPPT
controller must be designed in such a manner that it should be least affected by dust and
other disturbances. In this research work, three different types of dust, such as L, M, and
H-class, have been applied on the surface of a solar panel for the effectiveness of the MPPT
performance. The three types of dust have been applied over three clusters. Table 6 shows
the performance of solar PV under different dusty conditions with the proposed algorithm.

Figure 13. Characteristic evaluation for LSTM output and target along with the Error curve under

partial shading condition.
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Figure 14. Histogram plot with 20 Bins for Instances against error under partial shading condition.

Figure 15. LSTM performance for Correlation and Lag under partial shading condition.

Table 6. Performance of solar PV under different dusty conditions with proposed algorithm.

Type of
Dust

% of
Mixture

MPP max MPP min SD
Tracking

Time (ms)

L-Type
10% 382.66 381.07 9.63 5.41
20% 373.04 372.91 9.65 5.07
30% 366.19 358.82 8.87 4.93

M-Type
10% 379.93 375.04 11.44 8.10
20% 353.27 349.84 11.16 8.33
30% 344.64 341.73 12.29 8.67

H-Type
10% 352.97 339.18 23.01 12.31
20% 347.11 328.09 18.84 17.44
30% 323.74 304.68 18.35 24.89

Table 7 shows the cluster analysis of dusty surfaces, where a comparative analysis
of the proposed system has been carried out under different percentages of concentration
of dust. It is observed that for 30% of L-type dust, the tracking time is 4.93, whereas, for
H-type of dust, it is 24.89. Similarly, a standard deviation of 18.35 has been observed for
30% concentration of H-type dust, and that of 12.29 has been observed for M-type dust
levels. Therefore, on average, it can be concluded that the proposed system is robust in
terms of tracking and speed of operation observed in Table 7.



Sustainability 2023, 15, 8535 17 of 24

Table 7. Comparative analysis of the algorithm under different percentages of concentration of dust.

Type of
Algorithm

% of
Dust

MPP
Tracking Time

% of
Oscillations

Tracking
Efficiency

GA
10 17.36 7.84 89.93
20 19.98 10.07 86.22
30 23.43 11.63 77.48

PSO
10 17.27 8.03 90.96
20 19.66 10.39 88.30
30 23.19 10.58 81.54

PSO-LSTM
10 17.16 7.42 91.36
20 18.59 9.86 89.91
30 21.64 10.18 83.43

Figure 16 shows the characteristic evaluation for LSTM output and target along with
the error curve under dusty surface conditions. It is observed that the system has shown a
maximum oscillation of 26%, where LSTM efficiently distinguishes the MPP from the local
convergence areas. At the same time, maintaining an accuracy level of 89.01%.

Figure 17 represents the histogram plot with 20 Bins for Instances against error under
dusty surface conditions. As observed, for an error of +0.048, the system shows 10.31
instances. Similarly, Figure 18 shows the LSTM performance for Correlation and Lag under
dusty surface conditions. The system has an autocorrelation level of 0.015.
Case-3: Green House Gas Concentration

Although greenhouse gas concentration does not have a direct impact on the perfor-
mance of solar PV panels, they create a large amount of heat as a function of albedo, which
ultimately increases the surface temperature of SPV. This extra increase in temperature has
an adverse effect on the performance of SPV. Hence in the present research, it has been
included for effective evaluation of the proposed controller.

Table 8 shows the performance of PSO-LSTM MPPT under different concentrations of
GHGs. It is observed that for COx with 1.7 kg of GHG, the tracking time is 7.22 ms, and
that of for NOx and COx at the same concentration, it is 6.69 ms and 6.83 ms, respectively.
Again, a minimum MPP of 355.66 and a maximum MPP of 383.48 has been observed for
COx and NOx, respectively.

Figure 16. Characteristic evaluation for LSTM output and target along with the Error curve under

dusty surface conditions.
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Figure 17. Histogram plot with 20 Bins for Instances against error under dusty surface conditions.

Figure 18. LSTM performance for Correlation and Lag under dusty surface conditions.

Table 8. Performance of PSO-LSTM MPPT under different concentrations of GHGs.

Type of
GHG

Weight of
GHG

MPP max MPP min
Standard
Deviation

Tracking
Time

CO_X
0.8 kg 381.02 379.64 9.84 6.34
1.3 kg 378.33 371.83 9.62 6.78
1.7 kg 361.78 355.68 9.63 7.22

NO_X
0.8 kg 381.66 381.08 2.44 6.84
1.3 kg 381.39 381.00 1.85 6.81
1.7 kg 377.19 376.94 3.82 6.69

SO_X
0.8 kg 383.48 381.13 1.04 6.91
1.3 kg 379.26 379.22 1.16 6.90
1.7 kg 381.35 380.88 2.37 6.83

Figure 19 shows the Characteristic evaluation for LSTM output and target along with
the error curve under the greenhouse gas concentration (COx) condition. It is observed that
the system has shown a maximum oscillation of 39%, where LSTM efficiently distinguishes
the MPP from the local convergence areas. At the same time, the PV system maintains an
accuracy level of 93.19%.

Figure 20 represents the Histogram plot with 20 Bins for Instances against error under
the greenhouse gas (COx) condition. As observed, for an error of –0.052, the system shows
8.33 instances. Similarly, Figure 21 shows the LSTM performance for Correlation and Lag
under the greenhouse gas (COx) condition. The system has an autocorrelation level of 0.026.
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Figure 19. Characteristic evaluation for LSTM output and target along with Error curve under

greenhouse gas concentration (COx) condition.

Figure 20. Histogram plot with 20 Bins for Instances against error under greenhouse gas (COx)

condition.

Figure 21. LSTM performance for Correlation and Lag under greenhouse gas (COx) condition.

Figure 22a shows the reference voltage in the blue color line and that of actual voltage
in the red color line for MPPT-Boost Converter and Figure 22b represents modulation
index, with PSO-LSTM under partial shading condition. The PI controller in a DC-DC
converter constantly compares the reference voltage and the actual DC link voltage to
produce a control signal. This control signal is used to modify the converter’s switching
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behavior in order to regulate the output voltage. By monitoring the discrepancy between
the reference and actual voltages, the PI controller adjusts the converter’s duty cycle or
switching frequency to minimize the error and maintain the actual DC link voltage in
proximity to the desired reference voltage. This closed-loop control mechanism allows
the converter to accommodate variations in load, input voltage, and external conditions,
thereby ensuring stable and precise voltage regulation. As observed, the system maintains
a constant voltage at the output of the converter from 1.5 s onwards. However, a little
perturb has been observed at 0.5 s and 1.33 s due to the change in the action of MPP. In
other words, it can also be described as the searching time instances for the PSO-LSTM
algorithm. Again, from Tables 6 to 8, it is also understood that the system is taking only
17 ms. to track the new MPPT point against traditional MPP control action. Similarly,
the modulation indexed has been maintained at 1 unit throughout the work.

Figure 22. Performance of Vref–Vmean & Modulation Index with PSO-LSTM under partial shad-

ing condition.

Figure 23a reference voltage in violet color line and that of actual voltage in red color
line for MPPT-Boost Converter and Figure 23b represents modulation Index, with PSO-
LSTM under dusty surface condition. During transient conditions, it is essential for the
actual DC link voltage, which indicates the measured output voltage of the converter, to
closely track the reference voltage. This tracking is achieved through the comparison of the
actual voltage with the reference voltage by the controller, which then generates a control
signal to appropriately adjust the converter’s operation. To effectively compensate for
disturbances and variations in load, the controller must exhibit a rapid and robust response.
This ensures that the converter swiftly adapts to transient changes, minimizing deviations
between the actual and desired voltages and maintaining a stable and reliable output. Here
the system maintains a steady output voltage of 420 V. However, during the H-type dust
conditions, the system is exhibiting maximum oscillations. The system takes 43.71 ms to
relocate to a new MPP.

Figure 24 shows the Performance of the Vref–Vmean modulation index with PSO-
LSTM under greenhouse gas conditions. Figure 24a represents Vref and Vmean in time,
while Figure 24b stands for percentage modulation in time. As observed system exhibits
small oscillations during the initial interval of time. This is because of the increase in
temperature due to the greenhouse gas effect. As a consequence, overall, it can be said
that direct greenhouse has no effect on the performance of the PV; however, indirectly, it
traps the temperature, which ultimately increases the surface temperature of the system
and thereby affects the system behavior.
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Figure 23. Performance of Vref–Vmean & Modulation Index with PSO-LSTM under dusty sur-

face condition.

Figure 24. Performance of Vref–Vmean & Modulation Index with PSO-LSTM under greenhouse

gas condition.

5. Conclusions

In the present research paper, a detailed investigation for maximum power point
tracking using the P&O algorithm has been carried out. The genetic algorithm-based
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benchmarking model shows that, during an increase in solar insolation, the oscillation
around MPP shifts towards the right-hand side of the PV curve. This also reveals that
instead of applying P&O to optimize at MPP, a predefined search space can be provided
to the algorithm on the right-hand side of the PV curve around the MPP to decrease the
oscillation. Again, based on the remarks provided by the genetic algorithm, the PSO-LSTM
model has been developed and applied to MPPT with a P&O model with pre-defined
right-hand side search space for reducing unwanted oscillation around the MPP. A detailed
comparative analysis of three different case studies has also been investigated. According to
the partial shading condition test, it is observed that with the proposed PSO-LSTM model,
a standard deviation of 34.49 with a tracking time of 39.63 has been observed for 50% of
the shading effect. Similarly, a tracking efficiency of 83.27% has been observed for partial
shading conditions against 93.47% for normal efficiency. This also has been observed that
the proposed algorithm is also 11.23% efficient as compared to the benchmarking model.
Similarly, for the case-2 dusty surface, it is found that the tracking time is 4.93 ms for L-type
dust and 8.67 ms for M-type dust.

Future research directions can be explored to enhance the use of LSTM for MPPT
in photovoltaic (PV) systems. One direction could focus on evaluating the performance
of LSTM-based MPPT under complex and dynamic shading conditions. Another area of
research could involve optimizing the LSTM model architecture and hyperparameters to
improve its accuracy and efficiency. Moreover, ensembling techniques, such as integrating
LSTM with other machine learning models, could be studied to improve the accuracy of
MPPT under varying operating conditions. Finally, assessing the implementation and
effectiveness of LSTM MPPT in real-world PV systems could provide valuable insights into
its practicality.
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