
Energy Conversion and Management: X 21 (2024) 100505

Available online 8 December 2023
2590-1745/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A stochastic variance reduction gradient-based GSO-ANFIS optimized 
method for maximum power extraction of proton exchange membrane 
fuel cell 

K. Jyotheeswara Reddy a, Ritesh Dash a, Vivekanandan Subburaj b, B. Hemanth Kumar c, 
C. Dhanamjayulu d,*, Frede Blaabjerg e,*, S.M. Muyeen f,* 

a School of Electrical and Electronics Engineering, REVA University, Benagluru, India 
b Department of Electrical Engineering NIT, Silchar, India 
c Department of Electrical and Electronics Engineering, Mohan Babu University, India 
d School of Electrical Engineering, Vellore Institute of Technology, Vellore, India 
e Department of Energy, Aalborg University, Aalborg, 9220, Denmark 
f Department of Electrical Engineering, Qatar University, Doha 2713, Qatar   

A R T I C L E  I N F O   

Keywords: 
Fuel cell 
MPPT 
GSO-ANFIS 
ANN 
Optimization 

A B S T R A C T   

Proton Exchange Membrane Fuel Cells (PEMFCs) play a pivotal role in the clean energy landscape, yet their 
efficiency is contingent upon effective power optimization. This paper presents Maximum PowerPoint Tracking 
(MPPT) control schemes for PEMFCs, focusing on a ground-breaking methodology. Traditional MPPT controllers 
are instrumental in maintaining optimal performance; however, they often struggle with dynamic operating 
conditions. In response to this challenge, this research work presents a pioneering MPPT control scheme 
employing a stochastic variance reduction gradient system. The novelty of this approach lies in its fusion with the 
Glow Swarm Optimization (GSO) and the Adaptive Neuro Fuzzy Inference System (ANFIS), resulting in a robust 
hybrid controller. In the pursuit of optimizing the PEMFC system, the proposed GSO-ANFIS controller is sub-
jected to rigorous testing under dynamic variations in both PEMFC temperature and load. Notably, PEMFCs, due 
to fluctuations in pressure and temperature, exhibit stochastic behaviour, forming a Gaussian surface. In this 
research, the popular Perturb and Observe (P&O) and Incremental Conductance methods are evaluated alongside 
the newly introduced GSO-ANFIS model. The proposed GSO-ANFIS controller outperforms its counterparts, 
showcasing an impressive accuracy level of 89.97%. In contrast, the Artificial Neural Network (ANN) achieves 
80.33% accuracy, and the standalone ANFIS controller attains 86.5% accuracy. This disparity underscores the 
efficacy and potential of the novel hybrid approach, which not only adeptly handles the stochastic nature of 
PEMFCs but also significantly enhances accuracy in power optimization. This research not only contributes a 
valuable addition to the field of MPPT control but also offers a promising trajectory for the future development of 
efficient and reliable PEMFC systems.   

1. Introduction 

Energy has become a critical driving force in defining mankind’s 
overall sustainability and growth [1]. Renewable energy sources and 
energy storage technologies have received widespread attention. Fuel 
cells (FCs) have been favoured options for decades due to their superior 
performance over traditional carbon-based power sources [2]. 
Compared to traditional renewable energy sources like solar and wind, 
FCs are clean energy-producing units and more efficient [3]. 

Furthermore, the ease of use and modularity of FCs make them suitable 
for a wide range of vehicle, maritime, and utility-grid applications. 
Among all the available FCs, Proton Exchange Membrane Fuel Cells 
(PEMFC) are more popular due to their operational circumstances, high 
energy density, quick start-up, and low weight [4]. 

The PEMFC provides the required power based on several parame-
ters, including hydrogen and oxygen gas pressures, cell temperature, 
and membrane water content [5]. For constant operating conditions, a 
PEMFC system can only generate its maximum output at one specific 
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point on the power-current curve, known as the Maximum Power Point 
(MPP). As a result, the PEMFC system needs a Maximum Power Point 
Tracking (MPPT) control algorithm to maximize efficiency. This can be 
accomplished by controlling the duty cycle of the DC-DC boost con-
verter. According to this perspective, designing and creating adequate 
interfacing MPPT control systems for PEMFCs is a significant and tech-
nically difficult task for a variety of PEMFC applications. In the litera-
ture, various MPPT controllers are developed for photovoltaic and wind 
generators. Unlike PV/wind generators, very few MPPT controllers have 
been reported in the literature for fuel cell systems. An overview of some 
exemplary studies on FC MPPT techniques is provided below. 

The Perturb & Observe (P&O) MPPT technique has been frequently 
used in the literature for regulating the PEMFC output [7,7]. The P&O 
can run the PEMFC at its MPP under various operating circumstances. 
P&O uses fixed step size and generates oscillations at MPP also has poor 
convergence speed, which increases the energy loss. In [8,9], variable 
step size MPPT controllers based on Incremental Conductance (IC) and 
Incremental Resistance (IR) methods have been outlined. In comparison 
to the P&O approach, IC and IR methods achieved better transient and 
steady-state responses. In [10], the performance of P&O is compared to 
that of IC approach employing a DC-DC boost converter-based PEMFC 
system. The simulation results show that the IC method is more effective 
than the P&O technique and it has better stability thanks to its minimum 
oscillations around the MPP. In [11], a fractional order-based IC tech-
nique has been developed for the PEMFC system. It has variable step size 
control and provides several advantages over traditional IC and P&O in 
steady-state and transient responses. 

On the other hand, intelligent control algorithms are introduced to 
the PEMFC-connected systems to overcome the shortcomings of classical 
MPPT approaches. In [12,13], Fuzzy Logic Control (FLC) based MPPT 
control techniques are presented. It has the positives of flexible 

operation and fast convergence. But, the main drawbacks of an FLC 
controller are it requires high memory and the rules have to be framed 
manually. In [14–16], Neural Network (NN) based MPPT controllers are 
implemented for the PEMFC system. However, this method demands a 
huge amount of training data to train the system. In [17,18], authors 
designed an Adaptive Neuro-Fuzzy Inference System (ANFIS) based 
MPPT controller for PEMFC fed electric vehicle application. Also, the 
authors tested the performance of the controller for different cell tem-
peratures. ANFIS controller has advantages of both FLC and NN. How-
ever, a redundant amount of data set is required for training. 

In recent times, various optimization techniques have been proposed 
to control the PEMFC output. In [19], JAYA optimization technique has 
been developed for a hybrid PV-PEMFC system. Grey Wolf Optimization 
(GWO) and Particle Swarm Optimization (PSO) techniques are devel-
oped to generate the maximum power from the PEMFC system [20,21]. 
Besides, Salp Swarm Algorithm (SSA) [22], Ant Lion Optimization 
(ALO) [23], Sine Cosine Algorithm (SCA) [24], Water Cycle Algorithm 
(WCA) [25], Firefly Optimization (FO) [26], Elitist Invasive Weed 
Optimization (EIWO) [27], Eagle Strategy (ES) [28], Cuckoo Search 
Algorithm (CSA) [29], BAT [30] are recently developed to extract 
maximum output from PEMFC applications. Table 1 summarizes the 
various MPPT control techniques available for PEMFC systems and 
outlines their limitations. 

The literature survey above suggests that employing optimized 
MPPT controllers can increase the complexity of a system’s design and 
implementation due to the utilization of intricate algorithms and control 
strategies. Consequently, this complexity may lead to an overall rise in 
the system’s cost. Although optimized MPPT controllers can enhance 
system efficiency and performance, their advantages might not be sig-
nificant compared to simpler MPPT controllers, especially under dy-
namic temperature and pressure conditions. Tuning and optimizing 
these optimized MPPT controllers for specific operational circumstances 
can be time-consuming and challenging to execute in practice. 

This research is motivated by the objective of enhancing the effi-
ciency and reliability of PEMFCs in power generation. PEMFCs play a 
vital role in clean energy production, but their effectiveness heavily 
depends on efficient power management, especially when operating 
conditions fluctuate. Various methods such as ANFIS, ANN, and PSO 
have been attempted to improve PEMFCs. However, these methods face 
difficulties in dealing with the unpredictable and constantly changing 
behavior of fuel cells. 

The distinctive feature of the GSO-ANFIS model lies in its innovative 
strategy. While conventional ANFIS models may struggle to cope with 
the unpredictable nature of PEMFCs, the GSO-ANFIS model enhances 
flexibility by incorporating swarm intelligence. This integration enables 
the model to navigate complex solutions more efficiently. Furthermore, 
the inclusion of ANFIS equips the system with adaptive learning capa-
bilities, enabling it to adjust to the changing conditions of PEMFCs over 
time. Unlike ANN, which might encounter challenges in understanding 
the complex relationships within PEMFC systems, the GSO-ANFIS model 
provides a more detailed insight. 

By combining ANFIS with swarm intelligence, this model can 
manage the intricate, nonlinear connections inherent in PEMFC 
behavior. This comprehensive approach empowers the GSO-ANFIS 
model to outperform traditional ANN models, ensuring accurate pre-
dictions and optimization of PEMFC power output. The proposed GSO- 
ANFIS controller has the following advantages.  

• The Proposed GSO-ANFIS MPPT controller has the potential to 
enhance the efficiency of a PEMFC system by precisely tracking the 
MPP of the PEMFC, even under dynamic temperature and partial 
pressure conditions.  

• GSO-ANFIS algorithm can achieve rapid and precise convergence to 
the optimal solution, leading to faster and more dependable MPPT. 

• The proposed GSO-ANFIS controller offers a relatively low compu-
tational cost in comparison to other optimization techniques, making 

Table 1 
Overview of different MPPT controllers available for PEMFC.  

Ref MPPT 
Technique 

Converter 
Type 

Remarks 

[6,7] P&O Boost P&O has low convergence speed and 
produces oscillations at MPP 

[8,9] IC Boost IC results in error tracking, particularly 
for abrupt changes in operating 
conditions 

[12,13] FLC Boost High memory is needed for FLC and 
the rules must be manually framed 

[14,15] ANN High gain 
boost 

To train the system, ANN requires an 
enormous amount of training data 

[18] ANFIS High gain 
boost 

A large amount of data is necessary to 
train ANFIS 

[19] JAYA Boost It suffers from sluggish convergence 
speed and become trapped in local 
optimal points 

[20] GWO Boost Low precision and low convergence 
are problems for GWO 

[21] PSO Boost PSO has a poor rate of convergence 
[22] SSA Boost SSA does not adapt well to changes in 

operating conditions 
[23] ALO Boost Effective search space exploration is a 

challenge for ALO, particularly in 
multimodal functions when the global 
optimum is situated in a remote area. 

[25] WSA Boost The performance of WCA is sensitive to 
its parameters. Poorly tuned 
parameters can lead to inaccurate 
MPPT tracking 

[26] FA Boost FA suffers from slow convergence, 
especially in high-dimensional search 
spaces 

[29] CSA Boost Finding the ideal balance between 
exploration and exploitation is a 
problem in CSA 

[30] BAT Boost It is not suitable for dynamic operating 
conditions  
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them suitable for use in low-cost micro-controllers or embedded 
systems. 

The remainder of the document is structured as follows: the subse-
quent section will delve into system modeling, Section 3 will concentrate 
on the design of MPPT, Section 4 will present the simulation findings, 
Section 5 will compare the performance of three MPPT controllers, and 
the final section will discuss the conclusion. 

2. System Modeling 

The proposed system depicted in Fig. 1 comprises a 1.2 kW PEMFC 
stack, a conventional DC-DC boost converter, and an MPPT controller. 
The current and voltage values of the PEMFC stack are measured and 
transmitted to the MPPT controller as input signals, which generates an 
output signal for the PWM generator to operate the converter switch. 
The converter transforms the input voltage of 24 V into an output 
voltage of 200 V. 

2.1. PEMFC Modeling 

PEMFC polarisation curve is nonlinear and highly impacted by 
operational parameters such as temperature, partial pressures of 
hydrogen and oxygen gases and membrane water content. The PEMFC 
output voltage can be calculated taking into account activation loss 
(VAct), ohmic loss (VOhm), and concentration loss (VCon) [31]. 

VFC = VNernst − VAct − VOhm − VCon (1) 

Where VNernst refers to the Nernst voltage or open circuit voltage and 
it can be determined by using the following equation [32]: 

VNernst = 1.229 − 8.5 × 10− 4(T − 298.15)+ 4.385 × 10− 5T⋅ln(PH2 + 0.5PO2)

(2)  

where T denotes the temperature in Kelvin. PH2 and PO2 are hydrogen 
and oxygen pressure parameters respectively. 

The activation loss is calculated by using the following equation: 

VAct = [ξ1 + ξ2T + ξ3Tln(CO2) + ξ4Tln(IFC)] (3)  

where ξ1, ξ2, ξ3, ξ4 are empirical coefficients, and CO2 denotes the con-
centration of dissolved oxygen in mol/cm3, which is represented as: 

CO2 =
PO2

5.08 × 106 × e− 498
T

(4) 

The value of the ohmic loss is determined by ohmic resistance (RM) 
and is determined as follows: 

VOhm = IFC⋅RM (5) 

The ohmic resistance of PEMFC can be estimated as following: 

RM =
ρMlM

A
(6)  

where ρM is the membrane resistivity in Ωcm, lM is membrane thickness 
in cm and A is the area of PEMFC in cm2. 

The membrane resistivity ρM can be determined by using the 
following equation: 

ρM =

181.6

[

1 + 0.03(IFC
A ) + 0.0062( T

303)(
IFC
A )

2.5

]

[

λM − 0.634 − 3(IFC
A )

]

exp
[

4.18
(

T − 303
T

)] (7)  

where λM represents membrane water content. The concentration 
voltage loss is impacted by the movement of oxygen and hydrogen gases. 

VCon = −
RT
nF

ln
(

1 −
IFC

AImax

)

(8)  

where n signifies the number of electrons involved in the reaction and 
Imax denotes current density limiting value in Acm− 2. The aforemen-
tioned equations were utilized by the authors to build the PEMFC 
Simulink model. 

2.2. DC-DC Boost Converter 

In this work, a boost converter operating at 10 kHz switching fre-
quency is intended to step up a PEMFCs 625 V DC voltage to 1.2 kV. A 
boost converter changes an unstable voltage into a desired voltage by 
adjusting the proportion of time that the switch is closed and open at a 
high switching rate. The voltage gain of conventional boost converter is 
given as follows: 

V0

VFC
=

1
1 − D

(9) 

The selection of components, like the inductor and capacitor, is 
critical in reducing the ripple content based on switching frequency. The 
inductance and capacitance values are determined by using the Eqs. 10 
and 11. 

L =
VFC(V0 − VFC)

ΔIlfsV0
(10)  

C =
DI0

fsΔV0
(11)  

Fig. 1. PEMFC system with MPPT controller.  
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3. MPPT 

3.1. ANN 

An artificial neural network operates based on the principles of a 
biological neural network. Each neuron in the system is assigned a 
weight function through linear functional analysis. Non-linear func-
tionality is then applied to each node to evaluate the weighted sum of 
the average for each neuron. The activation function used is a non-linear 

activation function that can be calculated as follows: 

z =
∑m

m=1
wmxm +α (12) 

In Eq. 12, x1, x2, x3….xm represents the input signals and wm repre-
sents the weight of each neuron participating in the function. ”α” rep-
resents the bias value present in the data for providing necessary 
correction to the weighted sum error. In the present model, sigmoid 
activation function has been used as activation function for the non- 

Fig. 2. Three layer analysis of ANN for reference power generation to PI controller.  

Fig. 3. Block diagram ANN powered MPPT for PEMFC.  

Fig. 4. ANN architecture for four hidden layer mapping from input to output.  
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linear system analysis. 
Fig. 2 depicts a feed-forward neural network with a three-layer ar-

chitecture: the hidden layer, decision layer, and output layer. The input 
hidden layer, also known as the buffer layer, distributes inputs such as 
PEMFC voltage and current based on their respective weight values. The 
decision layer analyzes the inputs and generates decisions for the 
reference power generation of the PI controller. The output layer con-
sists of a single neuron that provides these decisions to the PI controller. 

Fig. 3 shows the block diagram of an ANN-based MPPT controller for 
a PEMFC system. The proposed gate signal is generated by the PWM 
circuit in accordance with the load requirements, as determined by the 
Levenberg–Marquardt ANN optimization method. During the ANN 
optimization process, the output gate pulse is a function of the converter 
output voltage (the target parameter) and the PEMFC voltage and cur-
rent (the input vector parameters). To improve the accuracy and effi-
ciency of the optimization process, pre-processed training patterns have 
been applied to the optimization window, thereby reducing the pro-
cessing and training time required. It is worth noting that having more 
MPP matching patterns results in a more accurate global MPP 

optimization system. 
Fig. 4 and 5 illustrate the ANN architecture with four hidden layers 

that map from the input to the output, establishing the relationship 
between cell temperature and fuel pressure with PWM duty cycle gen-
eration. Table 2 presents the performance analysis of the ANN training 
and testing. 

A total 221 numbers of iterations have been carried out to map the 
input parameters like temperature and pressure with the duty cycle. 

3.2. ANFIS 

The controller based on Neural Network utilizes two distinct neural 
network models, one for process dynamics modeling, and the other for 
control purposes. Each neural network consists of numerous nodes, each 
having its own weight. As a result, the adaptive neural network control 
method updates each node and weight at every stage. However, Model- 
based Predictive Control (MPC) requires significant computational 
power, which can only be achieved by ensuring a consistent sampling 
interval. Therefore, the effectiveness of MPC is limited to particular use 
cases. 

As discussed earlier, ANFIS can be employed as a solution to the 
control problem for a controller application, utilizing a neural network 
comprising multiple nodes and small weights to design a control ar-
chitecture. The process of tuning parameters to achieve the optimal 
solution can be accomplished using the ANFIS concept. 

The development of a neuron frequency controller through inverse 
training can be categorized into two stages: node learning and process 
application. In the node learning stage, a set of random variables is 
generated from the initial process and supplied to the controller to 
generate a test output throughout the system. This also involves the 
learning of the controller itself. In the process application phase, the 

Fig. 5. Curve fitting analysis of data set using ANFIS for forecasting a) epoch = 100 and hidden layer = 5 b) epoch = 110 and hidden layer = 5 c) epoch = 100 and 
hidden layer = 6 d) epoch = 110 and hidden layer = 6. 

Table 2 
Progress performance analysis of ANN.  

Parameter Value Remarks 

Epoch 221 Iteration level 
Time 0.01 Time for each epoch to get executed 
Performance 3 × 105 - 
Gradient 8.83 ×

105 
Vector partial derivative to cost function 

mu 0.001 Learning rate to determine step size 
Validation 

check 
60% To check the performance of the each predicted 

point  
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identifier is incorporated into the ANFIS-based controller to create the 
desired output. It is assumed that the learning process is straightforward, 
resulting in the creation of an inverse plant process to produce the 
desired output. However, minimizing the error in the network does not 
necessarily minimize the error in the whole system. The discussed 
learning process minimizes the error at each node of the system, and 
therefore, the backpropagation learning method can be employed to 
reduce the global error in the module. This requires a plant model that is 
similar to the original plant model or the plant’s behaviour for which the 
controller is being designed. As a result, it is critical to determine the 
Jacobian parameters for the target plant. 

In order to develop an ANFIS controller, input parameters that 

exhibit linear variation in accordance with process requirements must 
be selected. Initially, two inputs are chosen to represent the starting 
condition of the plant output. These inputs are fed into a PI controller, 
which generates the plant process target. Furthermore, these inputs are 
employed in the subsequent phases to train the neural network and 
model replication. The controller utilizes triangular membership func-
tions as parameters for organizing input and output variables, employ-
ing five membership functions (NL, NS, ZE, PS, and PL). The control 
parameters are trained through 10 epochs at each interval during the 
training phase. 

In order to obtain a well-optimized, trained FIS file from ANFIS, it is 
essential to acquire and validate accurate data with minimal errors. To 

Fig. 6. Validation of data using Neural Network for sample.  

Fig. 7. Neural Network Training State for sample.  

K.J. Reddy et al.                                                                                                                                                                                                                                



Energy Conversion and Management: X 21 (2024) 100505

7

Fig. 8. Neural Network Regression analysis for Sample.  

Fig. 9. Flowchart of GSO-ANFIS Controller.  
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achieve this, the data collected from the PI controller is verified using 
the Neural Network (NN) predictive tool available in MATLAB. This 
involves extracting the Id and Iq parameters from the input and output 
of the PI controller to enhance the accuracy of the results. 

Fig. 5, shows the Curve fitting analysis of the data set using ANFIS for 
forecasting a) epoch = 100 and hidden layer = 5 b) epoch = 110 and 
hidden layer = 5 c) epoch = 100 and hidden layer = 6 d) epoch = 110 
and hidden layer = 6. The regression coefficients, R = 0.655 for training 
and R = 0.659 for validation, provide valuable insights into the model’s 
performance. While these coefficients fall below the ideal value of 1.0, it 
is important to consider the complexity of the design and the chosen 
architecture (hidden layer of 6) in the neural network. These coefficients 
indicate a moderate correlation between the predicted and actual values 
during both training and validation phases. 

The error between the input to output and that of the Neural Network 
output is displayed in Fig. 6, with transient behaviour observed around 
30 s due to a change in load demand. The typical error range falls be-
tween − 0.012 to 0.012, except during the transient state. The Lev-
enberg–Marquardt algorithm is then employed, resulting in a total 
performance of 3.92e06 with a gradient of 1.04e-05. 

Successful training with a minimum error of 0.01 during the training 
condition is illustrated in Fig. 6. Fig. 7 shows the neural network training 
state, including the gradient and Mu. It is apparent from Fig. 7 that a 
gradient of 0.00048193 is maintained for the training of Id sample-1 at 
epoch-7. Regression analysis was performed, and the results for R =
0.99977 and R = 0.99874 are shown in Fig. 8. 

Table 3 
The detailed specification of PEMFC used in the MATLAB Simulink model.  

Sr. No. Name of Parameter Symbol Magnitude Unit 

1 Slack Power P 1259.96 Watt 
2 Fuel Cell Resistance Rf 0.061 Ohm 
3 Hydrogen Utilization H2 99.92 % 
4 Oxidant Utilization O2 1.81 % 
5 Nominal Fuel Consumption  15.22 slpm 
6 Nominal Air Consumption  36.22 slpm 
7 Exchange Current I0 0.027 Amp 
8 Exchange Coeffiient α 0.308  
9 System Temperature T 328 Kelvin 
10 Fuel Supply Pressure Pfuel 1.5 bar 
11 Air Supply Pressure Pair 1 bar  

Table 4 
MATLAB Simulink Boost Converter Parameter  

Sr. No. Parameter Symbol Magnitude Unit 

1 Input Voltage Vin 200 V 
2 Inductance L 0.041 H 
3 Capacitance C 2.76X10− 4 Farady 
4 MOSFET Voltage Vmosfet 162 mV 
5 Diode Voltage Dv 0.5 V 
6 Duty Cycle D 0.88  
7 Switching Frequency F 10 X 10 3 Hz  

Fig. 10. Performance Analysis of Glow Swarm Optimization with respect to iteration level (a) Objective Function Value vs. Iteration- trajectory (b) Objective 
Function Value vs. Iteration- actual (c) Swarm Fitness Vs Iteration- trajectory (d) Swarm Fitness vs. Iteration- actual (e) Swarm Density vs. Iteration- trajectory (f) 
Swarm Density vs. Iteration- actual. 
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Fig. 11. Luciferin Concentration a) Projected path of attraction b) Actual path of attraction.  

Fig. 12. Search space optimization for GSO + ANFIS model a)λ =0.22 and β =0.53 b)λ =0.27 and β =0.48 c) λ =0.29 and β =0.44 d) λ =0.31 and β =0.53.  
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3.3. GSO + ANFIS Model 

GSO is a metaheuristic optimization algorithm inspired by the 
behaviour of glow-worms. It was first introduced by Krishnanand and 
Ghose in 2005. The glow-worm swarm optimization algorithm utilizes a 
group of ”agents” to simulate the actions of individual glow-worms. 
These agents traverse a search space that mirrors the problem at hand, 
while following a set of regulations that imitate the glow-worm’s 
behaviour. Moreover, the agents communicate with each other to 
accomplish the optimization objective. GSO is a versatile algorithm 

capable of handling both continuous and discrete optimization prob-
lems. Its effectiveness has been demonstrated across a wide range of 
applications, including but not limited to function optimization, clus-
tering, and wireless sensor network routing. 

The GSO-ANFIS model is a fusion optimization approach that blends 
GSO and ANFIS. ANFIS is an artificial neural network that combines 
fuzzy logic and neural networks to produce precise decisions or pre-
dictions, and it has found wide applications in control systems, data 
classification, and pattern recognition. 

The GSO ANFIS model employs GSO to fine-tune the parameters of 
the ANFIS model. The GSO algorithm adjusts the input membership 
functions and output scaling factors of the ANFIS network, leading to an 
improvement in the model’s prediction accuracy. This hybrid model has 
shown great potential in solving intricate optimization problems in 
various domains, including medical diagnosis, power system stability 
analysis, and time-series prediction, outperforming traditional optimi-
zation methods and ANFIS models on several occasions. The flowchart 
of the GSO-ANFIS Controller is given in Fig. 9. 

4. Performance Analysis 

In this section, a detailed analysis for the proposed method for 
maximum power extraction from PEMFC has been presented. Table-3 
shows the detailed specification of PEMFC used in the MATLAB simulink 
model as a case study. Here both fuel and air are supplied at 1.5 and 1 
bar respectively. 

Similarly, the boost converter parameters are presented in Table-4. 
The system has been modeled initially for a static type of duty cycle to 
analyze the result and the latter has been converted into a dynamically 
changed cycle in accordance with the optimization parameter. The 
initial duty cycle has been set to 0.88 along with a switching frequency 
of 10,000 Hz. 

The fuel cell has been tested under the variation of temperature and 
pressure content with the proposed model along with the benchmarking 
models for evaluating the efficiency of the system. 

Table 5 
Performance comparison of proposed GSO-ANFIS with the benchmarking model 
with P&O algorithm.  

Type Model ANN ANFIS GSO-ANFIS 

Training Data MAE 0.299 0.283 0.268  
RMSE 0.368 0.377 0.321  
R-Squared 0.673 0.820 0.584  
Accuracy Rate 77.63 78.01 89.96 

Testing Data MAE 0.307 0.311 0.277  
RMSE 0.366 0.382 0.591  
R-Squared 0.714 0.848 0.631  
Accuracy Rate 83.22 82.99 90.03  

Table 6 
Performance comparison of proposed GSO-ANFIS with benchmarking model 
with INC algorithm.  

Type Model ANN ANFIS GSO-ANFIS 

Training Data MAE 0.117 0.147 0.108  
RMSE 0.121 0.135 0.091  
R-Squared 0.781 0.793 0.922  
Accuracy Rate 82.09 89.23 96.11 

Testing Data MAE 0.037 0.149 0.097  
RMSE 0.214 0.217 0.199  
R-Squared 0.781 0.818 0.921  
Accuracy Rate 88.06 93.29 95.62  

Fig. 13. PEMFC temperature and pressure changes.  
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Fig. 14. Comparative analysis of voltage waveform with all controllers.  

Fig. 15. Comparative analysis of current waveform of with all controllers.  

Fig. 16. Comparative analysis of power waveform with all controllers.  
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4.1. Case-1:- At dynamic temperature and pressure conditions 

To validate the performance of the proposed GSO-ANFIS optimized 
MPPT model, the fuel cell has been tested under dynamic temperature 
and pressure conditions using both the benchmarking models and the 
GSO-ANFIS model. Algorithm 1 presents the pseudo-code for the GSO- 
ANFIS model, which is used to extract the maximum power from the 
fuel cell.  

Algorithm1: Pseudo Code for GSO-LSTM MPPT 

Require: Initialize GSO parameter, μ,α 
Ensure: Ensure Duty Cycle (D)⩾0.78  

Begin, randomly choose the initial population  
Repeat, Evaluate fitness value and MSE for each iteration  
for each iteration i⩽N then 

(continued on next column)  

(continued ) 

Algorithm1: Pseudo Code for GSO-LSTM MPPT  

Compute MSE 
if MSE iMSE < 0.33  

iMSE = RMSE 
else  

iMSE = iMSE + 0.001 
end if  

Based on algorithm-1, the system has been evaluated. Fig. 10 rep-
resents the performance analysis of GSO with respect to iteration level. 
The performance of the objective function for the proposed trajectory 
and actual value against each epoch level is represented in Fig. 10 and 
Fig. 10(b) respectively. As can be observed, the MSE for the actual and 
predicted curves are almost similar up to 20 iterations/epoch level. 
However, the slope becomes ineffective from 30 to 50 iterations due to a 
change in the pressure level at the input. Thereafter system follows the 
desired path. Similarly Fig. 10(b) and Fig. 10(d) show the performance 
analysis of swarm fitness value with iteration, for both the reference 
trajectory path and actual trajectory path. The optimization curve ex-
hibits an oscillating behavior throughout the model because each time 
the optimization window evaluates the error and tries to compensate for 
it by changing the step size with respect to the R-value. 

Fig. 11 illustrates the concentration of luciferin in both projected and 
actual values for the swarm. In Fig. 11(a), it can be seen that the per-
formance concentration of luciferin is high for all five swarms. This in-
dicates that the optimization ANFIS model will attempt to maintain as 
many wavelengths (concentration level) as possible during disturbance 
conditions. Similarly, Fig. 12 represents the search area optimization 
model for GSO-ANFIS model. It can be observed that the search area 
shrinks from a higher search space to a lower search space for the same 
amount of power at a variable rate of ±3di/dt. This reduction in search 
time also decreases the complexity involved in the process. 

Table 5 and Table 6 presents the performance comparison of the 
proposed GSO-ANFIS model with benchmarking models with P&O and 
INC methods. As observed, the GSO-ANFIS model demonstrates higher 
accuracy rates, specifically 90.03 with P&O and 88.56 with INC. Two 
statistical analysis with training and testing data has been carried out. 
The R-square error parameter is notably better for the P&O method 
compared to the INC method. Consequently, in this results analysis 
section, the P&O algorithm was used for further efficiency analysis of all 
benchmarking models and the proposed model. 

The performance of the PEMFC system with different control tech-
niques is examined with seven states which are formed by sudden var-
iations in PEMFC temperature and pressure. The variations in the 
PEMFC parameters (states) are as follows: between 0 and 1 s, the tem-
perature is 338 K and the pressure is 1 bar; between 1 and 1.5 s, the 
temperature is 327 K and the pressure is 1 bar; between 1.5 and 2 s, the 
temperature is 327 K and the pressure is 1.2 bar; between 2 and 3 s, the 
temperature is 325 K and the pressure is 1.2 bar; between 3 and 3.5 s, the 
temperature is 323 K and the pressure is 1.2 bar; and between 3.5 and 4 
s, the temperature is 323 K and the pressure is 0.8 bar; and between 4 
and 5 s, the temperature is 320 K and the pressure is 0.8 bar. These 
variations are illustrated in Fig. 13. 

Fig. 14 displays the load voltage waveforms for the proposed model 
and benchmarking models. It is evident that the proposed model exhibits 
the least voltage fluctuation during the transient interval compared to 
the other models. Additionally, the initial voltage peak is lower than that 
of the ANN and ANFIS models. 

The current drawn by the load from PEMFC is shown in Fig. 15. As 
observed, the maximum current overshoot occurs in ANN controller 
with untuned system parameters. The proposed GSO-ANFIS controller 
not only provides better current but also provides improved power 
performance, as shown in Fig. 16. 

Table 7 presents a comparative analysis of different power quality 
studies in PEMFC. The results show that the maximum rate of change of 

Table 7 
Comparative analysis of different power quality studies in PEMFC.  

Model Transient 
Time 

di/dt 
Level 

% 
Change 

dv/dt 
Level 

% 
Change 

ANN t1 0.371 5.81 0.448 6.23  
t2 0.323 4.82 0.39 5.42  
t3 0.206 3.86 0.249 3.46  
t4 0.492 7.34 0.595 8.26  
t5 0.377 5.62 0.456 6.33  
t6 0.364 5.43 0.440 6.11  
t7 0.381 5.83 0.453 6.07 

ANFIS t1 0.342 4.56 0.392 5.44  
t2 0.284 4.01 0.344 4.78  
t3 0.188 2.66 0.228 3.17  
t4 0.423 5.96 0.512 7.11  
t5 0.329 4.63 0.398 5.53  
t6 0.318 4.48 0.385 5.35  
t7 0.332 4.68 0.402 5.58 

GSO- 
ANFIS 

t1 0.298 4.20 0.360 5.01  

t2 0.262 3.69 0.317 4.40  
t3 0.174 2.45 0.211 2.93  
t4 0.389 5.47 0.470 6.53  
t5 0.302 4.26 0.366 5.08  
t6 0.293 4.12 0.354 4.92  
t7 0.305 4.30 0.369 3.13  

Table 8 
Performance comparison of proposed GSO-ANFIS with benchmarking model  +
P&O algorithm.  

Type Model ANN ANFIS GSO-ANFIS 

Training Data MAE 0.595 0.573 0.552  
RMSE 0.691 0.704 0.626  
R-Squared 1.1115 1.319 0.991  
Accuracy Rate 84.79 85.21 94.88 

Testing Data MAE 0.606 0.612 0.565  
RMSE 0.688 0.710 1.00  
R-Squared 1.172 1.358 1.075  
Accuracy Rate 85.89 85.65 92.91  

Table 9 
Performance comparison of proposed GSO-ANFIS with benchmarking model  +
INC algorithm.  

Type Model ANN ANFIS GSO-ANFIS 

Training Data MAE 0.643 0.619 0.596  
RMSE 0.746 0.760 0.676  
R-Squared 1.204 1.425 1.071  
Accuracy Rate 87.34 87.76 98.33 

Testing Data MAE 0.637 0.642 0.593  
RMSE 0.723 0.746 1.051  
R-Squared 1.231 1.426 1.109  
Accuracy Rate 83.68 83.44 90.75  
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current occurs at transient time instances t4 and t7 with the proposed 
model, measuring 0.389 and 0.305, respectively. The change in voltage 
has also been observed as 0.470 and 0.369. When compared with ANN 
and ANFIS, the proposed GSO-ANFIS model exhibits the least deviation 
during severe transient states. 

4.2. Testing of PEMFC under dynamic variation of load 

The dynamic variation of the load has been carried out to perform 
the efficiency valuation of the proposed technique with the fuel cell. 
Four different loads of both the combination of resistance and induc-
tance have been connected in parallel with the switching arrangement. 

Seven switching transient pattern analysis has been carried out. 
Algorithm-2 presents the pseudo-code for GSO-ANFIS under dynamic 
loading conditions.  

Algorithm2: Pseudo Code for GSO-LSTM MPPT 

Require: Initialize GSO parameter, μ,α, tsw, load 
Ensure: Ensure Duty Cycle (D) ∈ GSO − ANFISset  

Begin, set input parameter, randomly choose the initial population  
Repeat, Evaluate fitness value and MSE for each iteration  
for each iteration i⩽N  
Compute MSE and Duty Cycle D 

if D < 0.875 then  
Then start GSO-ANFIS 

(continued on next page) 

Fig. 17. Comparative analysis of current waveform of all the models under dynamic loading conditions.  

Fig. 18. Comparative analysis of voltage waveform of all the models under dynamic loading conditions.  
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(continued ) 

Algorithm2: Pseudo Code for GSO-LSTM MPPT  

For μ⩽0.88  
CASE-1 = Triangle MF = 7 

else  
CASE-2 = Sigmoid MF = 7  
Optimize the μ 

else  
Dset = Dold(0.88)

end if  

In order to verify the impact of dynamic loading both the P&O and 
INC-method have been tested for validation evaluation. 

Table-8 and Table-9 shows the performance comparison of the pro-
posed GSO-ANFIS and benchmarking model with both P&O and INC 
methods respectively under dynamic loading conditions. Here the MAE, 
RMSE, and other statistical parameters are on the higher side, this is 
because of the change in the loading pattern. However, the proposed 
algorithm again provides the best result in terms of accuracy rate as 
compared to other benchmarking models. 

Fig. 17 represents a comparative analysis of the current waveform of 
all the models under varying loading conditions. As observed there is a 

reduction of 13.42% of current as compared to case-1. During the 
changeover operation of the loading pattern, a ripple content of ±17% 
has been noticed for ANN and that of ±11% has been observed for 
ANFIS. However, with GSO-ANFIS model it has been reduced to 9.24%. 
The proposed model also limits the variation up to 7-cycles of operation 
as prescribed by IEEE standard c.11–2017 and has been validated with 
international power quality standards also. 

Similarly, Fig. 18 represents a comparative analysis of the voltage 
waveform of all the benchmarking models. A maximum overshoot of 
4.93% has been noticed for transient condition which is 3.07% less as 
compared to an average range of benchmarking models. Table-10 shows 
a comparative analysis of different power quality issues in PEMFC 
limited to current and voltage magnitude only. 

Here in Table-10, shows the deviation of di/dt and dv/dt alongwith 
% change in error. As observed, ANN with 
L1 +L2 +L3(L1 − Load − 1, L2 − Load − 2, L3 − Load − 3) shows maximum % 

Table 10 
Comparative analysis of different power quality studies in PEMFC under dy-
namic loading condition.  

Type of 
Algorithm 

Loading 
Pattern 

di/dt 
level 

% 
change 

dv/dt 
level 

% 
change 

ANN L1 0.22 4.62 0.28 4.72  
L1 + L2 0.67 4.91 0.84 5.20  
L1 + L2 + L3 1.03 7.28 1.28 7.72  
L1 + L2 + L3 
+ L4 

2.41 11.07 2.98 12.11 

ANFIS L1 0.24 4.57 0.31 4.67  
L1 + L2 0.73 4.72 0.91 5.04  
L1 + L2 + L3 1.00 6.84 1.24 7.27  
L1 + L2 + L3 
+ L4 

2.16 9.83 2.67 10.76 

GSO + ANFIS L1 0.17 4.18 0.22 4.25  
L1 + L2 0.54 4.66 0.68 4.89  
L1 + L2 + L3 0.89 6.53 1.11 6.91  
L1 + L2 + L3 
+ L4 

2.18 7.86 2.69 8.80  

Fig. 19. Comparative analysis of power waveform of all the models under dynamic loading conditions.  

Table 11 
Performance comparison among the models.  

Sr. 
No. 

Parameter ANN ANFIS GSO-ANFIS 

1 Transient Fluctuation poor moderate good 
2 Dynamic Response poor moderate good 
3 Steady Oscillation moderate moderate moderate 
4 Tracking Speed poor poor moderate 
5 Accuracy Level 80.33 86.51 89.97 
6 Static Error 0.86 0.49 0.28 
7 Tolerance Band [0.1–0.27] [0.16–0.62] [0.11–0.87] 
8 Power Conversion 

Efficiency 
low high high 

9 Convergence Time NA 31 ms. 19 ms.  

Table 12 
Predictive performance analysis of P&O MPPT using different optimization 
Models  

Sr. No. Parameters ANN (%) ANFIS (%) GSO-ANFIS (%) 

1 + Predictive Value 92.7 93.04 95.11 
2 - Predictive Value 87.93 86.43 91.36 
3 + Likehood Ratio 23 23 22 
4 - Likehood Ratio 0.6 0.48 0.66 
5 Sensitivity 81.07 86.53 89.49 
6 Specificity 92.08 93.17 94.15  
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change in di/dt rating of 7.28% as compared to ANFIS and GSO + ANFIS 
model. Similarly, GSO-ANFIS model with 4-loading pattern shows a 
voltage % change of 8.80 as compared to 12.11 for ANN and 10.76 for 
the ANFIS model. 

Fig. 19, shows the power curve under dynamic loading conditions. As 
can be seen, the ANN-based P&O model exhibits a power overshoot from 
1231 watts to 5004 watts, while the GSO + ANFIS model restricts it to 
1328 watts. Additionally, the system presents a transient disturbance 
over a period of 0.07 s. 

5. Discussion 

Performance evaluation of different MPPT (Benchmarking model  +
GSO-ANFIS) has been carried out for static and dynamic loading con-
ditions. Based on the experimental analysis, Table-11, represents the 
summarized comparative analysis of all the models and Table-12 shows 
the p&O MPPT using different optimization algorithms. 

Under dynamic stability analysis, the proposed GSO-ANFIS model is 
more stable to change in load as compared to another benchmarking 
model. This is because the GSO is deciding the type and range of ANFIS 
membership function as compared to conventional ANFIS. There is not 
much difference in the steady-state oscillation of the proposed technique 
and to dynamic change in load. The accuracy level in terms of clear 
distinction among the transient intervals is 11.53% better with the 
proposed GSO + ANFIS model as compared to the ANNN model and 
3.72% efficient as compared to the classical ANFIS model. 

The tolerance band which determines the range of variation in dy-
namic load is quite large like [0.11–0.87]. This gives a wider range of 
operating characteristics to the hybrid controller. The timely dependent 
duty cycle also increases the power conversion efficiency of the 
controller. However, there is not much difference between the classical 
ANFIS model and the GSO-ANFIS model. 

The statistical analysis of the three predictive models, namely ANN, 
ANFIS, and GSO-ANFIS, reveals compelling insights into their perfor-
mance across key parameters. In terms of positive predictive value, GSO- 
ANFIS demonstrates remarkable accuracy at 95.11%, outperforming 
both ANN (92.7%) and ANFIS (93.04%). Similarly, GSO-ANFIS excels in 
negative predictive value, registering an impressive score of 91.36%, 
surpassing ANN (87.93%) and ANFIS (86.43%). The likelihood ratio, a 
critical measure of diagnostic accuracy, is notably higher for GSO-ANFIS 
at 0.66, indicating its enhanced ability to make correct predictions 
compared to ANN (0.6) and ANFIS (0.48). Moreover, GSO-ANFIS ex-
hibits superior sensitivity (89.49%) and specificity (94.15%) in correctly 
identifying positive and negative outcomes, respectively, further 
underscoring its robust performance. These findings emphasize the GSO- 
ANFIS model’s statistical superiority, positioning it as a highly effective 
tool for accurate prediction and optimization in the domain of PEMFC 
technology. 

6. Conclusion 

The present research paper introduces and tests an improved hybrid 
GSO-ANFIS MPPT model for PEMFC fuel cell applications under two 
different conditions: static and dynamic load. Two conventional MPPT 
algorithms, P&O and INC, were used for comparison. One of the most 
common power quality problems with the P&O model is that the oper-
ating point drifts due to changes in temperature and pressure. However, 
currently, available models of different MPPT techniques cannot track 
this variation in the conventional P&O method when there are dynamic 
changes in state. To address this issue, the present model considers an 
optimization algorithm along with ANFIS to ensure drift-free operation 
with the P&O MPPT model. 

The proposed GSO-ANFIS model has been tested for a stand-alone 
load under static and dynamic loading conditions. In order to validate 
the GSO-ANFIS model, a detailed mathematical model along with 
operation has been developed and validated through the VI-curve of the 

MPPT for both temperature & pressure variation curves. 
The performance of the proposed GSO-ANFIS model has been tested 

with both P&O and INC algorithms for efficiency evaluation. In the 
classical ANFIS model, the error between the input to output is ±0.34 
whereas with the proposed GSO-ANFIS model it has been reduced to ±
0.07 around the mean position. The ANN model shows a sluggish 
response in tuning the P&O algorithm parameter. Therefore, the duty 
cycle variation to an instantaneous change in load does not get reflected 
in the system output. The neural network regression analysis shows that 
the proposed model is best fitted for R = 0.99877. This concludes that 
the power extracted from the fuel cells using the proposed algorithm is 
higher and linear as compared to ANN and ANFIS models. 

CRediT authorship contribution statement 

K Jyotheeswara Reddy: Conceptualization, Methodology, Soft-
ware, Data curation, Writing - original draft, Visualization, Investiga-
tion. Ritesh Dash: Conceptualization, Methodology, Software, Data 
curation, Writing - original draft, Visualization, Investigation. Viveka-
nandan Subburaj: Conceptualization, Methodology, Software, Data 
curation, Writing - original draft, Visualization, Investigation. B 
Hemanth Kumar: Conceptualization, Methodology, Software, Data 
curation, Writing - original draft, Visualization, Investigation. Dha-
namjayulu C: Supervision, Software, Validation, Writing - review & 
editing. Frede Blaabjerg: Supervision, Software, Validation, Writing - 
reviewing & editing, Funding. SM Muyeen: Supervision, Software, 
Validation, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

References 

[1] Olabi AG, Onumaegbu C, Wilberforce T, Ramadan M, Abdelkareem MA, Al- 
Alami AH. Critical review of energy storage systems. Energy 2021;214:118987. 

[2] Olabi AG. Renewable energy and energy storage systems. Energy 2017;136:1–6. 
[3] Inci M. Interline fuel cell (I-FC) system with dual-functional control capability. Int J 

Hydrogen Energy 2020;45(1):891–903. 
[4] Zhong D, Lin R, Liu D, Cai X. Structure optimization of anode parallel flow field for 

local starvation of proton exchange membrane fuel cell. J Power Sources 2018;403: 
1–10. 

[5] Wang C, Nehrir MH, Shaw SR. Dynamic models and model validation for PEM fuel 
cells using electrical circuits. IEEE Trans Energy Conversion 2005;20(2):442–51. 

[6] Karthikeyan V, Das PV, Blaabjerg F. Implementation of MPPT control in fuel cell 
fed high step up ratio DC-DC converter. In: 2018 2nd IEEE International 
Conference on Power Electronics, Intelligent Control and Energy Systems 
(ICPEICES); 2018. p. 689–93. 

[7] Benyahia N, Denoun H, Badji A, Zaouia M, Rekioua T, Benamrouche N, Rekioua D. 
MPPT controller for an interleaved boost dc-dc converter used in fuel cell electric 
vehicles. Int J Hydrogen Energy 2014;39(27):15196–205. 

[8] Rezk H, Fathy A. Performance improvement of PEM fuel cell using variable step- 
size incremental resistance MPPT technique. Sustainability 2020;12(14):5601. 

[9] Harrag A, Messalti S. Variable step size IC MPPT controller for PEMFC power 
system improving static and dynamic performances. Fuel Cells 2017;17(6):816–24. 

[10] Mohamed AP, Chandrakala KV, Saravanan S, November. Comparative study of 
maximum power point tracking techniques for fuel cell powered electric vehicle. In 
IOP Conference Series: Materials Science and Engineering (Vol. 577, No. 1, 2019. 
p. 012031). 

[11] Chen PY, Yu KN, Yau HT, Li JT, Liao CK. A novel variable step size fractional order 
incremental conductance algorithm to maximize power tracking of fuel cells. Appl 
Math Model 2017;45:1067–75. 

[12] Harrag A, Messalti S. How fuzzy logic can improve PEM fuel cell MPPT 
performances? Int J Hydrogen Energy 2018;43(1):537–50. 

[13] Rezk H, Aly M, Fathy A. A novel strategy based on recent equilibrium optimizer to 
enhance the performance of PEM fuel cell system through optimized fuzzy logic 
MPPT. Energy 2021;234:121267. 

K.J. Reddy et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2590-1745(23)00161-7/h0005
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0005
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0015
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0020
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0020
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0025
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0025
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0025
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0030
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0030
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0035
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0035
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0035
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0035
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0040
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0040
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0040
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0045
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0045
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0050
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0050
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0060
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0060
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0060
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0065
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0065
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0070
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0070
http://refhub.elsevier.com/S2590-1745(23)00161-7/h0070


Energy Conversion and Management: X 21 (2024) 100505

16

[14] Reddy KJ, Sudhakar N. A new RBFN based MPPT controller for grid-connected 
PEMFC system with high step-up three-phase IBC. Int J Hydrogen Energy 2018;43 
(37):17835–48. 

[15] Reddy KJ, Sudhakar N. High voltage gain interleaved boost converter with neural 
network based MPPT controller for fuel cell based electric vehicle applications. 
Ieee Access 2018;6:3899–908. 

[16] Srinivasan S, Tiwari R, Krishnamoorthy M, Lalitha MP, Raj KK. Neural network 
based MPPT control with reconfigured quadratic boost converter for fuel cell 
application. Int J Hydrogen Energy 2021;46(9):6709–19. 
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