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A B S T R A C T   

Solar stills provide a promising avenue for freshwater production in regions grappling with water scarcity, 
especially remote locales. However, their efficiency is often constrained by the variable climatic conditions. 
Conventional prediction methods fall short in consistently forecasting the yield, leaving a significant gap in 
optimizing solar still operations. Recognizing this, the introduction of machine learning becomes pivotal. With a 
robust predictive model, operators can avoid inefficiencies, inconsistent outputs, and sub-optimal resource uti-
lization. The primary objective of this research is to determine the most suitable machine learning model tailored 
for predicting solar still output under specific environmental conditions. This research work assessed various 
machine learning models, including linear regression, decision trees, random forest, support vector machines, 
and multilayer perceptron. Evaluation metrics encompassed Mean Absolute Error (MAE), cross-validation, grid 
search, and randomized search techniques. Our results identified the Decision Tree model, registering a MAE of 
5.43 and 5.74 through random and grid search methods, respectively, as the preeminent predictor for our 
dataset. This machine learning-centric methodology elevates the precision of solar still output predictions and 
paves the way for enhanced solar still designs and superior optimization of solar energy conversion mechanisms.   

1. Introduction 

Water scarcity, increasingly exacerbated by factors like droughts, 
over-exploitation of aquifers, and burgeoning population demands, has 
emerged as a critical global concern (Atteya & Abbas, 2023; Panchal 
et al. 2019). This crisis transcends mere water shortages, manifesting in 
catastrophic ramifications like agricultural downturns, economic set-
backs, and heightened resource competitions that occasionally escalate 
into conflicts (Panchal, 2017). A crucial aspect of this challenge lies in 
the health sector: inadequate access to potable water can be a breeding 
ground for waterborne ailments such as cholera, hepatitis, and typhoid, 
with studies revealing diseases like these leading to fatalities, notably in 

children (Khatod et al., 2022). The global narrative is grim, with over a 
billion people deprived of clean water, culminating in an alarming 
annual death toll of 3.4 million due to preventable water-associated 
diseases. Although there are numerous desalination methods to tackle 
the water issue by converting seawater to freshwater, solar stills are an 
excellent alternative because they are cheap and easy to maintain. 
(Mahmoud et al., 2018, Panchal et al., 2021a, Elgendi et al., 2023, 
Sibagariang et al., 2022). They do not require any external energy 
source, making them suitable for remote and off-grid communities 
(Panchal et al. 2017; Pansal et al. 2020; Panchal et al. 2020). In addition 
to being more eco-friendly than alternative desalination methods, solar 
stills are also more cost-effective. (Ghandourah et al., 2022; Panchal and 
Shah, 2014; Panchal et al. 2020). In contrast, several other desalination 

* Corresponding authors. 
E-mail addresses: deepu.energy@gmail.com (D.K. Murugan), Kishorkumars@qu.edu.qa (K.K. Sadasivuni).  

Contents lists available at ScienceDirect 

Environmental Challenges 

journal homepage: www.elsevier.com/locate/envc 

https://doi.org/10.1016/j.envc.2023.100779 
Received 1 August 2023; Received in revised form 3 October 2023; Accepted 13 October 2023   

mailto:deepu.energy@gmail.com
mailto:Kishorkumars@qu.edu.qa
www.sciencedirect.com/science/journal/26670100
https://www.elsevier.com/locate/envc
https://doi.org/10.1016/j.envc.2023.100779
https://doi.org/10.1016/j.envc.2023.100779
https://doi.org/10.1016/j.envc.2023.100779
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envc.2023.100779&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Environmental Challenges 13 (2023) 100779

2

processes necessitate substantial energy input, i.e. RO requires high 
pressure to push water through the membrane, which uses energy and 
produces brine. (Shalaby et al., 2022). Safe drinking water can be pro-
duced with the help of solar still, which uses solar energy to distil water. 
(Aglan et al., 2021). A solar still works by heating water, collecting the 
resulting water vapour, and then condensing it into liquid form 
(Mevada et al. 2020). This process effectively removes any impurities 
present in the original water source, such as bacteria, salts, and other 
dissolved solids. Solar stills can be constructed in various designs, but 
the box-type solar still is the most common (Panchal and Thakkar, 
2016). This design consists of a water-containing container covered with 
a transparent material, such as plastic or glass. Sunlight passing through 
the transparent material heats the water in the container, causing it to 
evaporate. When the water vapour rises, it condenses on the underside 
of the transparent material, which can subsequently be used to collect 
the water in its pure form (Panchal, 2011). 

A solar still’s efficiency relies on its type, transparent material 
quality, angle and orientation, and air temperature and humidity. (Zhao 
et al., 2022, Peng at al., 2022, Isah et al., 2022; Panchal 2010). With the 
right design and optimal operating conditions, a solar still can produce a 
significant amount of purified water per unit area. Off-grid and rural 
areas often have limited access to clean water, but solar stills provide a 
low-cost, long-term solution. The technology has been used to provide 
potable water in many regions worldwide and can be integrated with 
other water treatment methods, such as reverse osmosis, to improve 
water quality. The efficiency of this clean energy system could be 
improved by the limited availability of solar energy during the day. A 
multitude of studies have been conducted to tackle this critical issue 
(Wei et al., 2023; Lisboa et al., 2022; Chen & Xie, 2022; Modi & Gamit, 
2022; Murugan et al., 2021; Sharshir et al., 2022). Despite their wide-
spread use, conventional solar still typically only achieves an energy 
efficiency of around 30%, leaving considerable scope for further en-
hancements (Shatar et al., 2023; Rabishokr & Daghigh, 2023; Shoeibi 
et al., 2023; Panchal et al., 2021b). The output of a solar still is driven by 
the temperature differential between the evaporating and condensing 
surfaces. Recent advances in material science have led to the use of novel 
materials with superior solar absorption capabilities to elevate the 
temperature of the evaporating surface (Ebrahimpour & Shafi, 2022; 
Shoeibi et al., 2022; Gandhi et al., 2022; Chauhan et al., 2022; Peng 
et al., 2021). Additionally, innovative techniques have been proposed to 
decrease the temperature of the condensing surface (Amiri, 2022; 
Sambare et al., 2022; Lauvandy et al., 2022; Dubey et al., 2022; essa 
et al. 2021). 

Machine learning is a subfield of artificial intelligence that develops 
algorithms and models that enable computers to learn from data and 
make predictions or decisions without being explicitly programmed 
(Entezari et al., 2023). The growth of this field has been significant in 
recent years and holds tremendous potential for revolutionizing the 
optimization of energy systems (Liu et al., 2023; McLaughlin and Choi, 
2023; Behzadi & Sadrizadeh, 2023; Kapp et al., 2023; Sohani et al., 
2022; Alabi et al., 2022). The main types of machine learning algorithms 

are supervised learning, unsupervised learning, and reinforcement 
learning (Janiesch et al., 2021). In the context of solar stills, machine 
learning has the potential to enhance various aspects of the system’s 
performance, efficiency, and maintenance (Wang et al., 2021; Zayed 
et al., 2022). For instance, machine learning models can be employed to 
predict the optimal inclination and orientation of the still based on 
weather conditions, which would result in improved efficiency. 

Moreover, machine learning can be used to optimize the design of 
the still through the selection of materials and the determination of its 
size, thus improving performance (Rashidi et al., 2022; Maddah et al., 
2020). In addition, machine learning algorithms can monitor and con-
trol the water quality and output of the solar still, ensuring that the 
produced water is potable. Furthermore, machine learning can also 
assist in the optimization of the cleaning and maintenance processes of 
the still, thereby extending its lifespan and reducing costs. 

In this research study, we have a regression problem where the goal 
is to predict the distillate output of a solar still. The dataset has several 
features which may be used to predict the output, and several models 
have been considered. The Decision Tree model is a popular choice for 
regression problems because of its interpretability and ability to handle 
non-linear relationships. It works by recursively splitting the dataset 
into smaller subsets, and at each split, it selects the feature and threshold 
that results in the most homogeneous subsets. The final result is a tree of 
decisions that can be used to predict the output for new examples. This 
model is simple to understand, interpret and visualize, a major advan-
tage of this problem. On the other hand, Random Forest is an ensemble 
method combining multiple decision trees to make predictions. The idea 
behind this method is to randomly select a subset of features and build a 
decision tree using them. This process is repeated multiple times, and 
the final predictions are made by averaging the predictions of all the 
trees. This model is more robust to overfitting, a common problem in 
decision trees. Multi-layer Perceptron (MLP) is an artificial neural 
network widely used for regression and classification problems. This 
model comprises multiple layers of perceptrons, which are simple 
feedforward neural networks. MLP can learn non-linear relationships 
and is good at handling high-dimensional datasets. Support Vector 
Machine (SVM) is a supervised learning algorithm that can be used for 
classification and regression problems. In this case, the goal is to find a 
hyperplane that maximizes the margin between the dataset and the 
hyperplane. This model is robust to overfitting and good at handling 
high-dimensional datasets. In summary, we have chosen these models 
based on their ability to handle non-linear relationships, robustness to 
overfitting, interpretability and suitability for high-dimensional 
datasets. 

In this study, we harness machine learning models to accurately 
predict the distillate output of solar still, considering crucial environ-
mental factors such as ambient temperature, humidity, wind speed, and 
solar radiation. Using a comprehensive dataset of these factors against 
actual distillate outputs, we trained and critically assessed models like 
Decision Trees, Random Forests, MLPs, and SVMs. Our systematic 
evaluation methods, including cross-validation and hyperparameter 
tuning, led us to identify the most effective model. The implications of 
our findings resonate beyond mere predictions, potentially guiding solar 
still operational enhancements and efficient freshwater resource man-
agement. This research not only underscores the competence of machine 
learning in this domain but also lays a foundation for future explorative 
endeavours. 

2. Machine learning models 

The models were chosen based on their capability to handle different 
types of datasets, complexity, and interpretability. These models were 
selected because they are commonly used in the literature and have 
proven successful in various applications. Linear regression is used as a 
simple base model, Decision tree and Random Forest are used for non- 
linear relationships, MLP is used for complex non-linear datasets, and 

Nomenclature 

ANN Artificial Neural Network 
GI Galvanized Iron 
DT Decision Tree 
LR Linear Regression 
MAE Mean Absolute Error 
MLP Multi-layer Perceptron 
RF Random Forest 
RMSE Root Mean Square Erroe 
SVM Support Vector Machine  
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SVM is used for high dimensional datasets. 

2.1. Linear regression 

Linear Regression models the association between a dependent var-
iable and one or more independent variables. Fig. 1 presents a diagram 
depicting the structure of the multiple linear regression model. It seeks 
the most optimal linear connection between the dependent and inde-
pendent variables. The equation of a simple linear regression line is Y =
mX + b where Y is the target variable, X is the predictor variable, m is 
the slope, and b is the y-intercept. It is a simple and easy-to-use model 
suitable for problems with a linear relationship between the indepen-
dent and dependent variables. It is a good starting point for solving 
regression problems and can provide a baseline for comparison with 
more complex models. 

2.2. Decision tree 

Decision Tree is a tree-based model that recursively splits the dataset 
into smaller subsets based on the values of the features. It starts with the 
root node, which represents the entire dataset. The root node is split into 
two or more child nodes based on the values of a feature. The process is 
repeated for each child node until it reaches the leaf nodes, representing 
the final predictions, as shown in Fig. 2. The decision tree algorithm 
builds a tree by repeatedly splitting the dataset to maximise the subsets’ 
homogeneity. It is a simple and interpretable model that can handle 
linear and non-linear relationships. It is easy to visualize and understand 
the decision-making process of a decision tree, which makes it useful for 
understanding the relationship between the independent and dependent 
variables. 

2.3. Random forest 

Random Forest is an ensemble method that combines multiple de-
cision trees to make predictions, as shown in Fig. 3. The idea behind this 
method is to randomly select a subset of features and build a decision 

tree using them. This process is repeated multiple times, and the final 
predictions are made by averaging the predictions of all the trees. It is an 
ensemble method that combines multiple decision trees to make pre-
dictions. It is more robust to overfitting than a single decision tree and 
often performs better than a single decision tree. 

2.4. Multi-layer perceptron 

Fig. 4 illustrates the architecture of a Multi-layer Perceptron (MLP), a 
class of artificial neural network that has garnered significance in 
regression and classification problems. The depicted structure consists 
of three primary layers:  

(a) Input Layer: This layer, composed of blue nodes marked "t," 
represents the initial data points or features fed into the neural 
network. Each node stands for a specific feature or input variable. 

Fig. 1. Graphical representation of the multiple linear regression model (Yang et al., 2012).  

Fig. 2. Graphical representation of Decision Tree model (Otero et al., 2012).  
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(b) Hidden Layer: Central to the MLP are the hidden layers, shown 
here as orange nodes. These intermediate layers, equipped with 
activation functions, enable the MLP to capture and learn intri-
cate non-linear relationships within the data. They play a pivotal 
role in the MLP’s generalisation ability from the training data.  

(c) Output Layer: The green nodes signify the output layer. 
Depending on the application, this layer can produce a singular 
output (regression problems) or multiple outputs (classification 
tasks). 

The interconnectedness of the nodes, signified by the lines, denotes 
the weighted relationships, with each connection having a specific 
weight. The strength and direction (positive or negative) of these 
weights are learned during training, enabling the MLP to make accurate 
predictions on new, unseen data. Notably, the ability of MLPs to handle 
high-dimensional datasets and discern non-linear patterns makes them 
an invaluable tool in machine learning applications. 

2.5. Support vector machine 

Fig. 5 presents the structural representation of a kernel-based Sup-
port Vector Machine (SVM). SVM, a prominent supervised learning 
technique, is adept at tackling both classification and regression chal-
lenges. In the depicted architecture: 

Input Nodes (X1, X2, ... Xn): These yellow nodes signify individual 
data points or features introduced into the SVM. 

Kernel Functions (K(X, X1), K(X, X2), ... K(X, Xn)): The orange nodes 
represent the kernel transformations, a pivotal component of SVMs. 
Kernel functions enable SVM to operate in a transformed feature space, 
allowing it to handle non-linear relationships. 

Summation (Σ) and Bias: Before arriving at the final output, the 
weighted sum of the kernel-transformed inputs, along with the bias, 
undergoes summation in the cyan node. 

Output: The SVM’s prediction or classification result emerges from 
this structure based on the weighted summation and bias. 

A distinguishing feature of SVMs is their pursuit of the optimal hy-
perplane, which yields the maximal margin between different classes. 
This characteristic lends SVM its resistance to overfitting, particularly 
when navigating high-dimensional datasets. 

3. System description & methodology 

A conventional single basin single slope solar still is considered for 
the experiment in this research work. The schematic line diagram is 
shown in Fig. 6a. The still has a base area of 0.49 m2. The solar still is 
fabricated using a galvanized iron (GI) basin with a thickness of 3 mm, a 
black painted surface to absorb more solar radiation, a top cover made of 
5mm thick glass, an inlet for feedwater, a drain channel for washing 
away the feedwater, and a collector channel for collecting the fresh-
water. The use of a galvanized iron basin was chosen for its durability 
and cost-effectiveness. Galvanized iron has good corrosion resistance, 
which is important in outdoor experimental research work. It has a 
relatively low cost compared to other materials, such as stainless steel, 
making it a suitable choice for this experimental setup. The black paint 
applied on the basin’s surface serves as an absorber of solar radiation. 
The black colour absorbs a higher amount of solar radiation than other 
colours, increasing the solar still’s efficiency. The top cover of the still is 
made of 5 mm thick glass. Glass was chosen for its transparency and 
ability to allow solar radiation to pass through while keeping the inside 
of the still insulated. The inlet for feedwater is designed to introduce the 
feedwater into the still. The drain channel is placed at the bottom of the 
still to wash away the feedwater, which prevents contamination of the 
distillate. Finally, the collector channel is provided to collect the 
distilled water. In conclusion, the experimental setup described in this 
paper is designed to utilize solar radiation to distil water efficiently. The 
use of a galvanized iron basin, black paint, glass top cover, inlet, drain 
channel and collector channel were chosen based on their durability, 
cost-effectiveness and efficiency in increasing the solar still 

Fig. 3. Graphical representation of the Random Forest model (Cav-
usoglu, 2019). 

Fig. 4. Graphical representation of the Multi-Layer Perceptron model (Encisco 
& Zingaretti, 2019). 

Fig. 5. Graphical representation of the Support Vector Machine model (Liu 
et al., 2019). 

D.K. Murugan et al.                                                                                                                                                                                                                            



Environmental Challenges 13 (2023) 100779

5

performance. The photograph of the experimental setup is shown in 
Fig. 6b. 

The amount of distillate produced by a standard single basin single 
slope solar still in Chennai (13.0827◦N, 80.2707◦E), India, was the 
subject of a thorough experimental examination. The study was con-
ducted in April, May, and June 2022 to construct a reliable machine- 
learning model to estimate the solar still’s distillate yield. Over 90 
days, sun irradiance, basin temperature, water temperature, glass cover 
temperature, and wind velocity were measured daily between 0800 and 
1800 hours. The study collected a large amount of data meticulously 
filtered to eliminate the impact of exceptional events. Specifically, 6 
days of data were excluded from the analysis due to significant varia-
tions in solar radiation intensity caused by clouds, which would have 
otherwise biased the results. The remaining data were utilised to train 
and test the machine learning model to increase the predictive accuracy. 

Summer months have been chosen to collect many data and improve the 
model’s accuracy. The extensive data collection, filtering, and analysis, 
along with the careful selection of the study period, all contribute to the 
robustness and validity of the results, which will be discussed in detail in 
the following sections. 

4. Algorithm implementation 

Python is used for running code that uses multiple machine learning 
models to forecast solar still distillate output. The code uses several li-
braries such as pandas, numpy, sklearn, matplotlib, and seaborn to load, 
preprocess, and visualize the data. After loading the data, the code 
performs data preprocessing steps such as removing missing values, 
removing the date column, and normalizing the data. The data is then 
split into features and target variables. The features are the independent 

Fig. 6a. Schematic diagram of the experimental setup.  

Fig. 6b. Photograph of the experimental setup.  
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variables used to predict the target variable, the distillate output. In this 
code, 80% of the data is used for training, and 20% is used for testing. 
The code then defines five machine learning models: Linear Regression, 
Decision Tree, Random Forest, Multi-layer Perceptron (MLP), and Sup-
port Vector Machine (SVM). These models are trained on the data, and 
their performance is evaluated using cross-validation. Cross-validation 
is used to evaluate the models using different subsets of the data, and the 
metric used to measure the performance of the models is the Mean 
Absolute Error (MAE). The code then uses Grid Search and Random 
Search to tune the parameters of the models. Grid Search is used to try 
different combinations of the parameters, while Random Search is used 
to select the parameters of the models randomly. The goal of tuning the 
parameters is to achieve the best performance of the models. After 
evaluating all the models, the code compares their performance and 
chooses the best model based on the lowest mean absolute error. The 
code also includes several data visualizations such as scatter plots, his-
tograms, and heatmaps better to understand the data and the perfor-
mance of the models. The flow chart of the code executed is as shown in 
Fig 7. In conclusion, this code provides a comprehensive and automated 
workflow for predicting the distillate output of solar still using machine 
learning techniques. 

5. Results and discussion 

5.1. Experimental results 

The solar irradiance is a crucial factor in determining the output of a 
solar still. Solar irradiance variation is observed as a sinusoidal curve, as 
shown in Fig. 8a. At noon, the Sun’s rays are perpendicular to the Earth’s 
surface, leading to the maximum possible solar irradiance. As the day 
progresses, the angle of incidence of the Sun’s rays decreases, causing 
the solar irradiance to decrease accordingly. The variation in solar 
irradiance throughout the day significantly affects the temperatures of 
various components in a solar still. The ambient temperature, basin 
temperature, water temperature, and glass cover temperature are all 
influenced by solar irradiance and follow a similar trend. The transient 
variation of various components such as basin, water and glass cover is 
shown in Fig. 8b. Throughout the trial, the average wind speed ranged 
from 1.9 to 4.6 metres per second. It is found that the effect of the wind 
velocity on distillate output would be greater above 2 meters per second. 
Convection cooling causes solar still output to drop as wind speeds rise. 

The freshwater yield of a solar still is an important factor in its 
overall performance, and monitoring it to optimize its functioning 
regularly is essential. The temperature difference between the evapo-
rating and condensing surfaces affects water evaporation and conden-
sation. Fig. 9a depicts a clear diurnal pattern, with a noticeable increase 
in the morning hours and a gradual decrease towards the end of the day. 
This pattern is closely linked to the solar radiation levels, exhibiting a 
similar diurnal trend. The morning increase in freshwater yield can be 
attributed to the thermal storage capacity of the water in the solar still. 
The temperature of the water within the still and the glass cover grad-
ually rises throughout the morning due to the gradual increase in the 
surrounding air temperature. This rise in temperature does not appre-
ciably change the temperature difference between the evaporating and 
condensing surfaces, slowing water evaporation and lowering fresh-
water production. The temperature differential between the evaporating 
and condensing surfaces grows as the day advances, increasing water 
evaporation and freshwater output. The maximum yield is typically 
observed around 1400 hours when the temperature difference is at its 
highest, and the solar radiation levels are at their peak. As the ambient 
temperature drops at night, the glass cover temperature drops, reducing 
the temperature difference between the evaporating and condensing 
surfaces. This reduction in temperature difference results in a slower 
rate of water evaporation and a gradual decrease in the freshwater yield. 

5.2. Computational results 

The code was executed using Python version 3.9 in the Spyder in-
tegrated development environment. The correlation heat map is used to 
visualize the relationship between different features in a dataset. It is a 
2D representation of data where individual values are represented as 
colours, as shown in Fig. 9b. The values mapped with each feature 
represent the strength and direction of the relationship between the two 
variables. The computed correlation values between distillate output 
and basin temperature, water temperature, cover temperature, solar 
radiation, and wind velocity were analyzed to determine the strength of 
linear relationships between the variables. The correlation coefficients 
are 0.97, 0.96, and 0.96 for basin, water, and cover temperatures. It 
reveals a solid positive linear relation between distillate output and 

Fig. 7. Machine Learning workflow for predicting distillate output of a 
solar still. 
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these temperature variables, meaning that increasing these factors 
significantly increases distillate output. Conversely, the correlation co-
efficient of 0.53 between distillate output and solar radiation suggests a 
moderate positive linear relationship, implying that while solar radia-
tion significantly impacts the distillate output, other factors may also 

play a role in determining the distillate output. Additionally, the cor-
relation coefficient 0.065 between distillate output and wind velocity 
signifies a weak linear relationship, indicating that wind velocity has a 
negligible impact on the distillate output and that other factors likely 
dominate in determining the distillate output. The correlation heat map 
provides valuable information on the relationships between the vari-
ables and the impact each variable has on the distillate output, further 
enabling us to choose the best machine learning model for solar still 
optimization. 

The scatter plot in Fig. 9c visualizes the comparison between the 
actual distillate output from the solar still and the predicted values 
generated by the machine learning model. The X-axis depicts the actual 
values, and the Y-axis represents the predicted values. The plot was 
generated utilizing the matplotlib.pyplot library in Python, which pro-
vides a comprehensive interface for plotting data. The scatter function 
was employed to create the scatter plot and required two inputs: the 
y_test and y_pred arrays, which contain the actual and predicted values, 
respectively. This plot offers a comprehensive evaluation of the perfor-
mance of the machine learning model and its ability to predict the 
distillate output from the solar still accurately. It can be deduced from 
the plot that the actual and predicted values are closely aligned when 
modelled using a Decision Tree algorithm, with minimal deviation 
present. 

Fig. 10 presents a residual scatter plot of the distillate production 
from the solar still. This plot represents the difference between the 
actual test set values (y_test) and the predicted values (y_pred) for each 
data point in the test set. The x-axis displays the actual values, and the y- 
axis displays the residuals, which are calculated as the difference be-
tween the actual and predicted values. Each scatter point in the plot 
represents a single data point from the test set, with its position on the y- 
axis indicating the magnitude of the error between the actual and pre-
dicted values for that point. Positive residuals indicate instances where 
the model predicted a higher value than the actual value, while negative 
residuals indicate instances where the model predicted a lower value. 
Observing the residual plot, it can be concluded that the residuals are 
distributed between both positive and negative values, and the range of 
residuals is lower than the actual values, implying that the machine 
learning model has demonstrated improved performance in predicting 
the distillate output of the solar still. 

Numerous research initiatives have employed machine learning to 
optimise solar still outputs in the rapidly evolving renewable energy 
domain and sustainable water resource management. Table 1. presents a 
comparative summary of our current study’s findings with recent works 
in the field. 

6. Conclusion 

In the realm of renewable energy and sustainable water manage-
ment, machine learning has emerged as a potent tool, especially for 
predicting the outputs of systems like solar stills. This research un-
derscores the pre-eminence of the Decision Tree model in forecasting 
distillate outputs from a single basin single slope solar still, advancing 
the domain of sustainable water sources. The important conclusions are 
summarized as follows,  

• The Decision Tree model demonstrated superior performance over 
other evaluated models, including linear regression, MLP, SVM, and 
Random Forest.  

• Through rigorous cross-validation evaluations and parameter tuning 
via Grid Search and Random Search, the Decision Tree model ach-
ieved the optimal cross-validation score of 5.57.  

• The methodology introduced in this study provides valuable insights 
into optimising solar stills, vital instruments in offering clean water, 
especially in arid locales. 

Future avenues of research that can build upon this study include 

Fig. 8a. Variation of solar irradiance throughout the day.  

Fig. 8b. Transient temperature variations.  

Fig. 9a. Variation of hourly productivity throughout the day.  
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refinement of the models and incorporating additional data to increase 
the accuracy of predictions. Advanced machine learning techniques, 
such as deep learning models and considering climatic variables, can 
enhance the model’s performance. The present study has certain limi-
tations that future studies could address. The study’s data was collected 
over three months; thus, it may need to reflect the solar still’s perfor-
mance over longer periods correctly. To address this, future studies 

could incorporate data from different seasons to better understand the 
solar still’s performance. Additionally, this study was focused on a single 
type of solar still, and future studies could explore the performance of 
alternative designs, such as multi-basin and multi-slope configurations. 

Fig. 9b. Correlation heat map of solar still performance parameters.  

Fig. 9c. Scatter plot showing the predicted and actual values using the decision tree algorithm.  
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