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A B S T R A C T   

Background and objective: Advancement in the treatment of cancer, as a leading cause of death worldwide, has 
promoted several research activities in various related fields. The development of effective treatment regimens 
with optimal drug dose administration using a mathematical modeling framework has received extensive 
research attention during the last decades. However, most of the control techniques presented for cancer 
chemotherapy are mainly model-based approaches. The available model-free techniques based on Reinforcement 
Learning (RL), commonly discretize the problem states and variables, which other than demanding expert su-
pervision, cannot model the real-world conditions accurately. The more recent Deep Reinforcement Learning 
(DRL) methods, which enable modeling the problem in its original continuous space, are rarely applied in cancer 
chemotherapy. 
Methods: In this paper, we propose an effective and robust DRL-based, model-free method for the closed-loop 
control of cancer chemotherapy drug dosing. A nonlinear pharmacological cancer model is used for simu-
lating the patient and capturing the cancer dynamics. In contrast to previous work, the state variables and control 
action are modeled in their original infinite spaces to avoid expert-guided discretization and provide a more 
realistic solution. The DRL network is trained to automatically adjust the drug dose based on the monitored states 
of the patient. The proposed method provides an adaptive control technique to respond to the special conditions 
and diagnosis measurements of different categories of patients. 
Results and conclusions: The performance of the proposed DRL-based controller is evaluated by numerical analysis 
of different diverse simulated patients. Comparison to the state-of-the-art RL-based method, which uses dis-
cretized state and action spaces, shows the superiority of the approach in the process and duration of cancer 
chemotherapy treatment. In the majority of the studied cases, the proposed model decreases the medication 
period and the total amount of administrated drug, while increasing the rate of reduction in tumor cells.   

1. Introduction 

The repeated and uncontrolled division of abnormal cells is named 
cancer and the corresponding tissues are called tumors. American Can-
cer Society has reported 606,520 deaths from a total of 1806,590 
diagnosed new cancer cases in 2020 [1]. Based on this report, the sur-
vival rate has been improved significantly due to earlier diagnosis and 
better treatment methods. 

There exist several solutions for cancer treatment such as surgery, 
chemotherapy, radiotherapy, immunotherapy, hormone therapy [2], 
anti-angiogenic therapy [3], targeted therapy [4], monoclonal antibody 

therapy [5], etc. Treatment type selection depends on many factors such 
as the patient’s age and health, the stage of cancer, and its type [6]. In 
many cases, it is shown that mixed treatments such as 
chemo-immunotherapy [7], mixed monoclonal antibody therapy and 
chemotherapy [8], and chemo-radiation therapy [9,10] are more 
effective. Chemotherapy kills both healthy and cancer cells, and affects 
the whole body of the patients [11]. Physicians employ chemotherapy 
alone or along with other strategies for cancer treatment. In some cases, 
the cancer cells spread to another organ through the bloodstream or 
lymphatic system in the metastasis process [10]. The second organ may 
be the liver, brain, or lung and in this process chemotherapy is essential. 
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Due to the side effects of chemo-drugs, it is essential to have an optimal 
strategy for their intervention. 

The treatment schedule and the maximum drug dose depend on 
many factors such as the age and weight of the patient, the ability of the 
immune system, and the contemporary disease of the patient. Oncolo-
gists use standard protocols for the treatment procedure and the 
maximum drug dose. However, these standard protocols have many 
limitations [12] and hence, deriving an optimal methodology for the 
treatment strategy is motivated by scientists and researchers. Dynamic 
Treatment Planning Regimens (DTR) is the strategy of deciding the 
personalized therapy, including dose or treatment schedule [13]. It is an 
adaptive treatment strategy that considers the patient’s clinical infor-
mation and diagnosis measurement to generate a treatment procedure. 
Thus, instead of providing the same kind of treatments for every patient, 
the customized decisions in DTR consider improving the long-term 
health outcomes of different patients. 

Any strategy that improves the benefits of the chemotherapy treat-
ment and reduces its side effects is greatly desired. The effectiveness of a 
chemotherapy plan should be evaluated and its feasibility must be 
checked [14]. Experimental studies in this area have a high cost and 
depend on numerous time-consuming tests and trials. Hence, modeling 
and control of the dynamics of the tumor-immune system have recently 
become more compelling, and more effective strategies have been 
developed for cancer chemotherapy by using dynamical mathematical 
models in cancer pharmacology [15]. Several research works present 
mathematical models for the interaction between cancer and immune 
cells by using in silico experimental trials [16]. Then, novel control 
methods are developed based on these models for deriving effective 
treatment strategies [3,11,17,18]. 

Many mathematical models are available for cancer dynamics while 
a convenient model for the development of cancer therapy should 
consider cancer cells, immune cells, and the effect of external drugs on 
cells. Moreover, any developed therapy not only should reduce the 
tumor cells but also minimize the side effects of the drugs. Among such 
side effects is the weakening of the immune system, which leads to life- 
threatening infections. The interaction among cells in cancer dynamics 
is complex, nonlinear, and uncertain and consequently, an open-loop 
conventional cancer treatment method cannot achieve an acceptable 
performance in the presence of nonlinearity and uncertainty of cancer 
dynamics. However, a closed-loop system is generally more robust 
concerning parameter variation and model uncertainty and hence can 
lead to better therapy performance. Based on the clinical response of the 
patient during treatment, a closed-loop control approach can change the 
required drug administration to account for the discrepancy between the 
system response and the desired response [18]. 

Several optimization methods are proposed for cancer chemotherapy 
[19]. Chen et al. [12] apply the MPC method for optimizing the 
chemo-drug dose for a given sampling period. The model is adjusted by 
measuring the state transition. The chemo-immunotherapy treatment is 
used in [19] where a multi-objective optimization method for opti-
mizing chemotherapy in dealing with immunotherapy is considered. In 
[20], the model predictive control (MPC) method with parameter esti-
mation is considered and Engelhart et al. [21] examine different 
objective functions along with four ordinary differential equation (ODE) 
cancer models for investigating the optimal cancer chemotherapy. 
Nonlinearity in cancer dynamics is one of the challenging problems in 
cancer control. In [22], the state-dependent Riccati equation (SDRE) 
method is used which has flexibility in design and is robust in dealing 
with parameter changes. A patient-specific controller is designed in [7] 
using the SDRE-based model reference adaptive control (MRAC-SDRE) 
method. Specific conditions of patients are considered by choosing 
different weighting matrices in the SDRE method [22,23]. 

Other optimization approaches such as genetic and other evolu-
tionary algorithms, and computer modeling are also used to automate 
chemotherapy [24]. In these methods, global optimal solutions are 
found by following the principles of natural selection. However, the 

main drawbacks of these methods involve difficulty in selecting the 
initial population, setting parameter values of the initial population, and 
the computational cost [14]. 

1.1. Related works 

Reinforcement learning is one of the most practiced techniques in the 
field of machine learning [25]. Inspired by psychology, RL enables an 
agent to learn from the experiences obtained through interacting with its 
environment [26]. To find an optimal strategy, the agent explores the 
space of possible strategies and receives feedback while making different 
choices. An ideally optimal policy (strategy or controller) may be 
derived by trying to maximize the cumulative performance. The pro-
posed RL-based controller is model-free and the learned strategy is 
exploited to adaptively control the drug dose without any mathematical 
model of the patient. Instead of detailing the solution, the designer of a 
control task should provide appropriate rewards, which evaluate the 
propriety of the actions chosen by the agent. RL can address analytically 
intractable problems, using approximations and data-driven techniques. 

RL-based methods are used for the closed-loop control of drug dosing 
in chemotherapy treatments [27,28], radiotherapy [29], insulin dosage 
[30,31], and medical decision support systems [32,33]. The treatment of 
anemia using RL-based control is shown in [34] where the dosage of 
erythropoietin is considered as the action. Optimization of the anes-
thetic drug infusion for surgical patients by using RL-based control is 
presented in [35]. Significant results in the control of Propofol infusion 
are derived by using the RL-based controller [18]. In [3], RL is proposed 
for the control of tumor growth under anti-angiogenic therapy. 

To reduce the computational cost of the RL techniques, the state- 
action space has to be discretized. For example, in [18] an RL chemo-
therapy treatment control scheme is developed based on four states and 
one finite and discrete action. Nevertheless, to obtain a higher efficiency 
in chemotherapy control, it is necessary to work in a continuous 
state-action space. This enables the model to better emulate the 
real-world conditions of the problem while removing the necessity of 
expert supervision to determine appropriate discretization rules. For 
example, in [36], an integral RL is used to deal with continuous control 
of propofol drug dosage. The Actor-Critic (AC) model [37] is an online 
policy method, which uses two different networks, called actor and 
critic. In AC methods, the policy, known as the actor, can be updated 
through the deterministic policy gradient algorithm, which is then used 
in the critic to update the value function according to the direction 
suggested by the actor. 

DRL methods are powerful model-free approaches to deal with 
complex systems, in the original continuous action and state spaces. The 
success of the Deep Q-Networks approach [38] generated extensive 
research and implementation of RL techniques to address 
high-dimensional and continuous problems within the dynamic systems 
control area [39]. The popularity and significant achievements of deep 
neural networks (DNN) [40] have motivated the generation of different 
variants and improvements of these networks. Mnih et al. [38] intro-
duced the deep Q-Network (DQN) which approximates the value func-
tion for actions with a convolutional neural network (CNN), instead of a 
table to expand the size of the problems that can be solved with RL. 
However, it can only deal with systems with continuous state space but 
with finite and discrete action spaces. In [41], the double DQN tech-
nique was proposed to use both a value function and a new function 
called the advantage function, which represents the advantage of 
choosing an action in a state. In fact, in a doubled DQN, there exist two 
deep networks for the value and advantage which are combined to form 
the value function. The deterministic policy gradient methods, e.g. 
value-based method of DQN, can be used much more efficiently than the 
usual stochastic policy gradient models such as AC. Deterministic policy 
gradient (DPG) [42] uses another idea to learn a deterministic policy 
where it computes the gradient of expected return and updates its pa-
rameters through the gradient ascent. Lillicrap et al. [43] extended DRL 
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formulations to continuous state spaces, proposing the deep determin-
istic policy gradient algorithm (DDPG) as a model-free off-policy algo-
rithm combining the advantages of AC [37], DPG [42], and DQN [44] 
where batch normalization [45] and repetition of experiences [38] are 
incorporated. Recently, more approaches to address control problems 
dealing with continuous spaces have been proposed [46–49]. In [50], 
the DRL approach has been used for cancer radiotherapy. 

In this paper, the cancer chemotherapy control problem is addressed 
as an optimization problem and is solved using a DRL-based method. A 
nonlinear pharmacological cancer model is used for simulating the pa-
tient and capturing the cancer dynamics. It should be noted that the 
purpose of this model is to provide just a simulation environment for 
training the reinforcement agent. However, the resulting learned 
controller will be a model-free one exploited to adaptively control the 
drug dose without any mathematical model of the patient. In contrast to 
many available approaches, which discretize the problem variables, we 
model the system states and the drug dosage in their original continuous 
spaces. A drug dosing controller is proposed which trains a DRL network 
to automatically administrate the drug dosage based on the monitored 
states of the patient. Avoiding the discretization of variables enables a 
more accurate modeling of the real-world conditions of the patient while 
decreasing the need for expert supervision. To the best of our knowl-
edge, few works used DRL techniques to administration of chemo-drug 
doses for cancer therapy. For example, in [51], the DRL approach has 
been studied for cancer chemotherapy considering a multi-criteria 
decision-making strategy. In this study, the authors consider the tumor 
cell population and effector cell population as inputs to propose a 
personalized treatment strategy. In our proposed strategy, different 
reward functions based on the special conditions of the patients are 
considered. Moreover, three different patients with diverse conditions 
are considered to validate and evaluate the performance of our proposed 
method. Comparison with previous work shows the superiority of our 
approach in prescribing less drug dosage while imposing shorter treat-
ment duration. The contributions of this work are summarized as 
follows:  

• Proposing a deep RL-based controller for cancer chemotherapy that 
handles states and action in infinite space.  

• After the initial learning phase, the proposed approach does not need 
to have a mathematical model of the system, and operates based on 
the patient’s conditions.  

• Providing an adaptive control technique to respond to the special 
conditions and diagnosis measurements of different categories of 
patients. 

• Evaluating and comparing the efficiency and robustness of the pro-
posed method using patients with diverse conditions. 

The contents of the paper are as follows. In Section 2, the nonlinear 
pharmacological cancer model is described. Section 3 presents our 
proposed DRL-based optimal controller. The results and discussions are 
elaborated in Section 4. Finally, Section 6 presents the conclusion and 
future work. 

2. Methods 

2.1. Cancer mathematical model 

There are many mathematical models to capture the tumor-immune 
interaction dynamics [52–54]. In this paper, the four-state model pre-
sented in [53] is used to show the performance of the proposed 
DRL-based controller. In the chosen model, the tumor-immune inter-
action has been studied by considering both the innate immune system 
and the adaptive immune system. Moreover, this model is experimen-
tally validated and has been used in other papers. Hence, the comparison 
of the proposed strategy for optimal chemotherapy with other papers is 
possible. 

The four states of the system are normal cells N(t) , tumor cells  T(t), 
immune cells  I(t), and the concentration of the chemo-drug M(t). By 
defining the state variables as x1(t) = N(t), x2(t) = T(t), x3(t) = I(t), and 
x4(t) = M(t), the state-space model of tumor-immune interaction dy-
namics is given by: 

ẋ1(t) = r2x1(t) (1 − b2x1(t)) − c4x1(t)x2(t) − a3x1(t)
(
1 − ex4(t)

)
(1)  

ẋ2(t) = r1x2(t) (1 − b1x2(t)) − c2x3(t)x2(t) − c3x1(t)x2(t) − a2x2(t)
(
1 − ex4(t)

)

(2)  

ẋ3(t) = s+
ρx3(t)x2(t)
β+ x2(t)

− c1x3(t)x2(t) − d1x3(t) − a1x3(t)
(
1 − ex4(t)

)
(3)  

ẋ4(t) = − d2x4(t) + u(t) (4)  

where the growth of the normal cells and cancer cells are considered as a 
logistic term with rates r1 and r2, respectively, the coefficients b1 and b2 
show the reciprocal of the carrying capacity for normal cells and cancer 
cells, and the interaction term between cells is modeled as a product 
form with different competition rates. The type of the model shows that 
when the immune cells are large in number, the existence of tumor cells 
is low and vice versa [52]. Immune cells proliferate to create new cells 
and die after their lifetime with rate d1, and the influx rate of immune 
cells is regarded as a constant s. The immune cells are also proliferating 
due to the existence of tumor cells, and this phenomenon has a satura-
tion limit and is incorporated in the model with the term ρx3(t)x2(t)

β+x2(t) in (3), 
where β and ρ are positive constants. The term u(t) represents the drug 
infusion rate. The chemo-drug not only destroys the cancer cells but also 
annihilates immune cells and normal cells. The target of the controller is 
to choose the optimal dosage of the chemo-drug to reach two targets: 
minimizing the chemo-drug dose and eradicating cancer cells. 

2.2. DRL-based optimal controller design 

Reinforcement learning (RL) is a paradigm for learning optimal 
behavior in unknown environments. The RL algorithm aims to learn the 
behavior of a system or its optimal configuration according to the re-
sponses of the interactions with the environment. It remembers the re-
actions of the environment (in the form of reward or punishment) to the 
behaviors of the agent, to improve its future behavior. When exploring 
the optimal strategy with DRL, new experiences are learned through 
trial and error. While interacting with the environment, a DRL agent 
attempts to learn actions that maximize the cumulative reward ob-
tained. One of the biggest challenges of RL algorithms is dealing with 
spaces of continuous state and action. Although a common approach is 
discretizing such spaces, it may end with a dimensionality problem. In 
addition, discretization of the space can neglect valuable information 
about the domain geometry. DRL can deal with continuous spaces by 
changing the representation of the action-value function. In what fol-
lows, we first briefly describe RL and DRL in two subsections, followed 
by the description of the TD3 method and finally the proposed 
controller. 

2.2.1. Reinforcement learning 
Generally, RL problems are modeled and solved iteratively using 

Markov decision processes (MDPs) theory through Markov Chain Monte 
Carlo (MCMC) and dynamic programming (DP) [26]. The four se-
quences of finite set of states S , a finite set of actions A , the probability 
of transition from state s to state s′ under action a at time t, i.e. Pa(s,s′) =
Pr(st + 1 = s′|st = s, at = a), and the immediate reward after transition 
from s to s′ with action, Ra(s,s′), are used in the finite MDP framework to 
capture the system dynamics. 

The scenario of the behavior of an RL agent in the environment is as 
follows: At each time t, the agent receives the current statest and 
rewardrt. It then chooses an action at from the set of available actions 
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and performs it. Thereafter, the environment moves to a new state st + 1 
and the reward rt + 1, associated with the transition (st,at,st + 1), is given 
to the agent. The appropriate reward rt+1 ∈ R shows the desirability of 
the selected action at [16]. The action selection is modeled as a map 
called policy. The goal of an RL agent is to learn a policy, π(s, a) = Pr(at 
= a|st = s), which maximizes the expected cumulative reward. Cumu-
lative reward in time t is computed as: 

Rt =
∑∞

i=t
γi− tr(si, ai) (5)  

where r(si,ai) is the reward of choosing ai in state si, and γ is the discount 
factor in the range [0,1] which is used to prefer the reward of the current 
action from the future rewards. Hence, the goal of RL is to maximize the 
expected return, J = E[R0] which can be achieved based on the sto-
chastic techniques or the deterministic ones. 

There are different criteria for optimality of agent behaviors. In the 
Q-Learning (QL) algorithm, Qπ(s,a) is a quality function, which repre-
sents the quality of choosing an action in a specific state. The optimal Q- 
function Q*(s, a) is defined as the maximum return that can be obtained 
starting from state s, taking an action a and following the optimal policy 
afterwards. Q*(s, a) conforms to the Bellman optimality equation given 
as 

Q∗(s, a) = E

[

Ra(s, s′)+ γmax
a′

Q∗(s′, a′)

]

(6)  

where the maximum return from state s and action a, is the sum of the 
immediate reward and the maximum reward from the next state s′ by 
following the optimal policy. 

The Q-function is computed iteratively, and in each iteration, Q(s, a) 
is recalculated by averaging the reward of action a in the state s: 

Q(s, a) = Q(s, a) + α
[

Ra(s, s′)+ γmax
a′

Q(s′, a′) − Q(s, a)
]

(7)  

where α is the learning rate. The ε-greedy technique is a common 
method to fill the Q-table of a QL agent, which balances between 
exploration (choosing new actions in the next state) and exploitation 
(choosing the best next action). This technique chooses the best action 
(action corresponding to argmax

a
Q(s,a)) with the probability 1 − ε, and 

randomly chooses an action with the probability ε. 

2.2.2. Deep reinforcement learning 
In problems with a large number of states, it is very time-consuming 

to fill the Q-table of Q-Learning. Deep Q-network (DQN) [44] represents 
the optimal action-value function as a deep neural network (Q-network) 
with parameters (or weights) θ, instead of a table, to expand the size of 
the problems that can be solved with RL. Using Q-network allows for 
dealing with states and actions with continuous values, without the need 
to discretize the space. The Q-network acts as a function approximator to 
estimate the Q-values, i.e. Q(s, a; θ) ≈ Q*(s, a). It can be trained by 
minimizing a sequence of loss functions Li(θi) that are changed at each 
step i: 

Li(θi) = Es,a∼ρ()
[
(yi − Q(s, a; θi))

2] (8)  

where yi = E

[

Ra(s, s′)+γmax
a′

Q(s′, a′; θi− 1)

]

is the TD (temporal differ-

ence) target for iteration i, yi − Q(s, a; θi) is the TD error, and ρ(s, a) is the 
behavior distribution on states s and action a, which is often selected by 
the ε-greedy strategy. It is worth noting that in contrast to targets used 
for supervised learning, which are fixed, here the targets depend on the 
network weights. Rather than computing the full expectation, the loss 
function is often optimized using the stochastic gradient descent. 

There are other differences between DQN and QL. Considering the 
update equation of the Q -function in (7), during the learning it is aimed 

that Q(s, a) approaches to the R+ γmax
a′

Q(s′, a′). Utilizing an identical 

network, Q, in both Q(s, a) and Q(s′, a′), the weight update in training the 
deep network will change both values Q(s, a) and R+ γmax

a′
Q(s′, a′), 

simultaneously. Therefore, DQN uses a different target network for the 
next action, Q(s′, a′). Furthermore, it is an offline policy learning about 
the greedy strategy while following a behavior distribution that ensures 
adequate exploration of the state space. The Experience Replay tech-
nique is also introduced in DQN, in which the transitions are added to a 
circular replay buffer. When training, instead of using just the most 
recent transition to compute the loss and its gradient, a mini-batch of 
transitions sampled from the replay buffer is used. This ensures better 
data efficiency by reusing each transition, and better stability using 
uncorrelated transitions in a batch. 

QL algorithms suffer from the problem of over-estimation that is 
propagated during training iterations and affects the trained policy. 
Doubling is another idea that decouples the action selection and the Q- 
value update procedures into two separate networks [55]: 

QA(s, a) = QA(s, a) + α
[

R+ γmax
a′

QB

(

s′, argmax QA(s′, a)
a

)

− QA(s, a)
]

(9)  

QB(s, a) = QB(s, a) + α
[

R+ γmax
a′

QA

(

s′, argmax QB(s′, a)
a

)

− QB(s, a)
]

(10) 

Double DQN [41] uses the idea of doubling the Q-network. However, 
as the DQN already has two different networks, Double DQN uses the 
additional target network to double the DQN. Moreover, Double DQN 
proposes the technique of dueling DQN. This idea decomposes the 
Q-function into the value function, V(s), and the advantage function A(s, 
a), which represents the advantage of choosing the action a in the state s. 
In fact, in a dueled DQN, we have two deep networks V(s) and A(s, a) 
which are combined to form the Q-function: 

Q(s, a) = V(s) + A(s, a) (11) 

The Actor critic (AC) model [37] is an online policy method that uses 
an idea that is very similar to the dueling technique in [41]. It uses two 
different networks, called the actor and critic. However, unlike the 
dueling technique, these networks are not combined at the end. In the 
AC model, the policy, known as the actor, can be updated through the 
deterministic policy gradient algorithm. It is then used in the critic to 
update the Q function (or the value function) according to the direction 
suggested by the actor. The actor in the AC model uses a stochastic 
policy to assign probabilities to each action. This procedure only works 
on-policy. On the other hand, successful deterministic policy gradient 
methods, e.g. value-based methods in DQN, can be estimated much 
more efficiently than the usual stochastic policy gradient models such as 
AC. Deterministic policy gradient (DPG) [42] uses another idea to learn 
a deterministic policy. It computes the gradient of expected return, J, 
and updates its parameters through the gradient ascent. 

Deep deterministic policy gradient (DDPG) [38,43] is a model-free 
off-policy algorithm combining the advantages of AC, DPG, and DQN. 
It outperforms AC in high-dimensional state spaces and uses fewer 
learning samples in problems with high-dimensional action spaces. It is 
an offline-policy method that can be utilize from an experience replay 
memory. DDPG uses the deterministic policy gradient just as in DPG. 
However, it uses the idea of DQN to apply this technique in problems 
with continuous high-dimensional state space. DDPG suffers from the 
problem of overestimation as the other Q-learning algorithms. The Twin 
Delayed DDPG (TD3) [56] algorithm is a generalization of DDPG that 
uses clipped double Q-learning to prevent this problem. Similar to 
double Q-learning [55], action selection and Q value estimation are 
assigned to two different networks. Furthermore, like DDPG, there are 
separate actors and critics. To overcome the issue of the slow-changing 
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policy, as a side effect of the similarity of doubled networks, TD3 pro-
poses the idea of clipped double Q-learning. In this regard, it uses the 
minimum estimation of twined critics to favor understanding bias which 
is hard to propagate through training. In fact, TD3 uses six different 
networks: actor, target actor, two critics, and two target critics. To 
ensure that the error remains small, the target networks are updated 
slowly, every d iterations. In this paper, we use the TD3 algorithm to 
learn an optimal strategy for controlling the chemotherapy treatment. 

2.2.3. Twin delayed deep deterministic policy gradient 
As stated in Section 3.2, TD3 uses a stochastic policy to achieve a 

good exploration and estimates a deterministic objective policy. It is 
built on DDPG with several modifications to increase stability and per-
formance. TD3 is based on an actor-critic approach and uses six deep 
neural network models: actor, target actor, two critics, and two target 
critics. These networks obtain the optimal policy for choosing an action 
for the current state of a continuous control setting. The input to the 
actor-network is the current state, and the output is a single real value 
that represents an action chosen from the continuous action space. The 
output of the network that models the critic is simply the estimated Q 
value for the current state and the action given by the actor. TD3 agent 
starts with an initial arbitrary policy and this policy is updated by 
interacting with the system. The strategy approaches the optimal strat-
egy as the agent receives more information in terms of states, actions, 
and rewards, and stores them in the experience replay buffer B . As 
explained before, there are six networks: an actor model π, an actor 
target model π′, two critic models Q1,Q2, and two critic target models Q′

1,

Q′
2, with weight parameters φ, φ′, θ1, θ2, θ′

1, θ′
2, respectively. The 

network structure of the TD3 cancer controller illustrated in Fig. 1 shows 
the interaction of different components of TD3. 

Starting with an empty replay buffer, the networks of the actor model 
and two critic models are initialized with random weight parameters. 
The actor target model has a similar structure as the actor model and its 
initial weights are the same. Similarly, the critic target models have the 
same structure and initial weights as the critic models. During the 
training, the weights of the two critic models are updated in each iter-
ation, but the weights of the actor model and three target models are 
updated every d iterations. As an off-policy method, in each iteration of 
the training process, the TD3 agent first samples a mini-batch of N 
transitions (s, a, s′, r) from the replay buffer B . Giving as an input the 
next state of each transition s′, to the actor target model, the next action 
will be obtained. Adding a clipped Gaussian noise ε (ϵ ∼ clip(N (0,σ, − c,
c), c > 0), the action is obtained as follows: 

ã = π′(s′) + ϵ (12) 

The clip function limits εto belong to the interval [ − c, c]. Then, the 
couple (s′, ã) is given to each of the two critic targets. The minimum of 
outputs of these critic networks is used as an approximation of the best 

quality function of the next action. Based on this, a target value y, is 
computed as follows: 

y←r + γmin
i=1,2

Q′
i(s

′, ã) (13) 

During the learning phase, it is aimed that Qi(s,a) approaches to y. 
Hence, the critic loss of each of the two critics is computed as: MSE(Q1(s, 
a), y) + MSE(Q2(s,a), y), where MSE is the Mean Square Error function. 
This loss is used to update the parameters of critic models using the 
backpropagation strategy in gradient descent. For every d iterations, the 
parameters of the actor model are updated using the gradient ascent on 
the output of the first critic model, as follows: 

∇φJ(φ) = N − 1
∑

∇aQθ1 (s, a)|a=πφ(s)∇φπφ(s) (14) 

For every d iterations, the critic target networks parameters are 
updated by taking the weighted average of their weights and 

Fig. 1. Network structure of TD3 cancer controller.  
Fig. 2. The process of chemotherapy treatment control.  

Algorithm 1 
The chemotherapy treatment policy modeling.  

Input: initial_state [x1,x2,x3,x4], terminal-condition 
Output: Trained optimal policy 
1. Initialize hyperparameters: batch-size, N, d, τ, ε, γ 
2. Initialize TD3: 
3. Initialize the experience replay buffer B 

4. Initialize actor model πφ with random parameters φ, and initialize actor target 
networkπ′

φ′ with parameters φ′ ← φ. 
5. Initialize critic models Qθ1,Qθ2 with random parameters θ1,θ2, and initialize critic 
target network Q′

θ′
1
, Q′

θ′
2 

with θ′
1 ←θ1, θ′

2←θ2. 
6. While training-episodes are not finished, do: 
7. Reset state to the initial state of (x1,x2,x3,x4) 
8. While goal-state or max-steps are not reached, do: 
9. Select action for the current state according to epsilon-policy and add noise 
10. Compute the next-state according to Eqs. (1)-(4) 
11. Compute reward function according to Eq. (15) 
12. Add transition (state, next-state, action, reward) into B 

13. Move to the next state 
14. Sample a mini-batch of N transitions (s, s′, a, r) from the replay buffer B . 
15. Generate the next action ã based on s′ using actor target DNN, add clipped 
Gaussian noise (Eq. (12)). 
16. Give as input the tuple (s′, ã) to each of the two critic targets, to gain their 
minimum output as an approximation of the best quality function of the next action, 
y (Eq. (13)). 
17. Give as input the tuple(s, a) to each of the two critics, and compute the critic loss 
ascloss = MSE(Q1(s,a), y) + MSE(Q2(s,a), y). 
18. Back propagate the closs and update the parameters of critic models using 
gradient descent. 
19. In every d iterations, update the actor model by gradient ascent on the output of 
the first critic model (Eq. (14)). 
20. In every d iterations, update parameters of target networks by averaging their 
weights and corresponding network weights: θ′

i←τθi + (1 − τ)θ′
i, φ′ ← τφ + (1 − τ)φ: 

21. Apply epsilon decaying after warm-up episodes  
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corresponding critic weights as θ′
i←τθi + (1 − τ)θ′

i. Moreover, the pa-
rameters of the actor target network are updated by averaging its 
weights and corresponding actor weights as φ′ ← τφ + (1 − τ)φ. 

2.2.4. The proposed DRL-based controller 
This section presents the proposed model-free TD3 approach to solve 

the problem of continuous chemotherapy treatment control. The 
nonlinear four-state ODE cancer model is given by (1–4). The general 
schematic of the proposed DRL-based controller is shown in Fig. 2 and 
the corresponding algorithm is given in Algorithm 1. 

To formulate the chemotherapy control problem as a Markov deci-
sion problem into the DRL framework, we should define its main three 
elements. In this work, a continuous state space is defined consisting of 
the number of immune cells, normal cells, tumor cells, and the con-
centration of the chemo-drug(x1,x2,x3,x4). In cancer chemotherapy, the 
best chemo-drug dose should be identified such that the initial non-zero 
tumor cells are pushed to the desired final state in which the tumor cells 
x2(t) are regulated to zero. The action is the chemo-drug dosage, i.e. u(t) 
and each action chosen by the agent in a particular state evolves the 
system into a successor state. A reward value is generated corresponding 
to this transition and to assess the desirability of the chosen action the 
following reward function is used: 

rt =

⎧
⎪⎨

⎪⎩

− log
(
e((t + 1) T)

e(tT)

)

e((t + 1) T)〈e(tT)

0 e((t + 1) T) ≥ e(tT)
(15)  

where e(t), t ≥ 0 involves a particular combination of the system states as 
explained in Section 4 and T is the sampling time. This reward function 
originated from the reward function proposed by Padmanabhan et al. 
[18], and the added Logarithm function amplifies the reward of the very 
low error values. 

In the proposed method, the hyper-parameters as well as the pa-
rameters of the TD3 agent are first initialized. Then, in each episode of 
training DRL, we step through the control function until the desired goal 
state or a maximum number of iterations is achieved. In each step, an 
action is selected according to the ε-greedy strategy, i.e. with the 
probability of ε, an action is selected randomly; otherwise, the action 
suggested by the actor model is selected. Moreover, as per (12), noise is 
added to the action and it is clipped. The derived action is considered as 
the control input u(t), i.e. the drug dosage. Using this and the current 
value of states, the calculated control input u(t) is used to obtain the next 
states based on the dynamics 1–(4). Moreover, the reward function and 
termination conditions are calculated as well. At the end of each step, 
the data structure (state, next state, action, reward) is added to the 
replay buffer. After performing each step, the epsilon is decreased by the 
decay rate. Furthermore, the TD3 agent is trained based on the new 
experiments as described in Section 3.3. Finally, with the exploration of 
the system when t → ∞, the optimal policy is derived. In most cases, 
convergence to the optimal policy is achieved with an acceptable 
tolerance. 

3. Results 

To represent the efficiency of the proposed closed-loop treatment 
strategy, different numerical simulations are performed. Simulations are 
performed on a PC with an Intel Core i7 processor running at 2.8 GHz 
using 12 GB of RAM. We utilized a basic implementation of TD3 on 
GitHub.1 The resulting code in Python is provided in GitHub2 as well. 

The upper limit of the chemo-drug dose is limited based on the on-
cologists’ recommendations. Generally, several factors affect the 

oncologists’ decision for choosing the desired chemo-drug dose such as 
age and gender of the patient, current diseases, or other special cases 
such as pregnancy. For example, for a young patient, it is possible to 
prescribe a larger dose than an elderly patient since the body of a young 
patient has more ability to rebuild healthy/immune cells. While an older 
patient should be offered a lower dose since his/her body cannot 
regenerate healthy/immune cells as young ones. Therefore, the treat-
ment strategy should be able to maintain healthy/immune cells in his/ 
her body as much as possible. Moreover, selecting a more appropriate 
reward function can account for the special conditions of the patients. 

In this paper, the mathematical model represented by 1–(4) is used to 
show the performance of the DRL-based control for chemotherapy drug 
dosing. In the experiments, three cases with cancer are considered, 
namely, (1) an adult, (2) a pregnant woman who is due in 20 days, and 
(3) an elderly patient with other critical illnesses, and different DRL 
agents are trained for each case. A studied approach to cancer chemo-
therapy using reinforcement learning is based on the well-known Q- 
learning approach [3,18,27,36]. In this case, both the state and actions 
should be discretized so that the Q-table can be learned appropriately. In 
the DRL approach, in contrast, we train a control agent, which manip-
ulates both its input state and output action in the original continuous 
space. The proposed method is compared with a control agent operating 
based on the study of Padmanabhan et al. [18], which is based on 
Q-learning. 

The DRL is trained between 30 and 50 episodes. Each training 
episode consists of a maximum number of 2000 samples with a sampling 
time of T = 0.1 day. For all cases, an ε-greedy exploration strategy was 
used, with a decay rate of 0.95. A repeat experience buffer with a 
maximum size of 1e6 was established with a random selection lot size of 
1000 samples. Gaussian noise with a standard deviation of 0.2 clipped to 
(− 0.5, 0.5) is added to the actions, and τ is set to 0.005. The parameters 
of the system are given in Table 1. 

3.1. Parameter study of the DRL-based controller 

We analyze some parameters of the TD3 network to select appro-
priate values in the experiments. By varying the values of each param-
eter, we observe the error value during three training processes of the 
network. In more efficient training, the error should be reduced more 
quickly and in fewer steps of drug administration. Therefore, we indi-
cate the average number of steps during the learning phase in which the 
error reduces to the threshold of 1e − 4 and compare it among different 

Table 1 
Parameter values used to generate simulated patients [17,53,57].  

Parameter Parameter description Value Unit 

a1 Fractional immune cell kill rate by 
chemotherapy 

0.2 mg− 1lday− 1 

a2 Fractional tumor cell kill rate by 
chemotherapy 

0.3 mg− 1lday− 1 

a3 Fractional normal cell kill rate by 
chemotherapy 

0.1 mg− 1lday− 1 

b1 Reciprocal carrying capacity of tumor cells 1 cell− 1 

b2 Reciprocal carrying capacity of normal cells 1 cell− 1 

c1 Inactivation rate of immune cells by tumor 
cells 

1 cell− 1day− 1 

c2 Inactivation rate of tumor cells by immune 
cells 

0.5 cell− 1day− 1 

c3 Inactivation rate of tumor cells by normal 
cells 

1 cell− 1day− 1 

c4 Inactivation rate of normal cells by tumor 
cells 

1 cell− 1day− 1 

d1 Death rate of immune cell 0.2 day− 1 

d2 Rate of chemo-drug decay 1 day− 1 

r1 Tumor cell growth rate 1.5 day− 1 

r2 Normal cell growth rate 1 day− 1 

s Influx rate of immune cell 0.33 cell− 1day− 1 

β Threshold rate of immune cell 0.3 cell 
ρ Response rate of immune cell 0.01 day− 1  

1 https://github.com/leo27945875/TD3-Ant-v2/blob/master/TD3_Ant. 
ipynb  

2 https://github.com/CISLAB-SUT/DeepRLChemoDrugControl 
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parameter values. 
According to Section 2.2.4, the batch size determines the number of 

transitions sampled from the replay buffer when training the network. In 
Fig. 3, we change the batch size from 1 to 3000 and measure the average 
number of steps for the error to reach 1e − 4. As observed, very small or 
large values of batch size inversely affect the efficiency of the algorithm. 
With the batch size value of 500, the error is reduced in a smaller 
number of steps. This value is used in the rest of the experiments. 

As described in the previous section, the weights of the actor model 
and three target models are updated every d iterations. In Fig. 4, this 
parameter is varied from 2 to 10 and the effect on error reduction rate is 
analyzed. When the models are updated for longer periods, the step of 
reaching the defined error threshold increases, which means the training 
prefers more frequent updates to the models. We set the value of this 
parameter to 2 in the experiments. 

For every d iterations, the parameters of the critic and actor target 
networks are updated by taking the weighted average of their weights 
and the weights of their corresponding networks. This weight parameter 
τ is varied in Fig. 5 from very small values near zero to large values near 
one. Initially, the rate of error reduction is low, but it quickly gets nearly 
steady when τ is increased. We set this value to 0.005 in the experiments. 

Another important parameter is the discount factor γ, which is used 
to prefer the reward of the current action over the future rewards. This 
value is varied from 0.1 to 0.9 in Fig. 6 and the number of steps for 
reaching the error threshold is reported. As observed, very low or very 
high discount values, which unrealistically decrease or increase the 
weight of early rewards, diminish the algorithm efficiency. We pick the 
discount factor to be 0.7 as it aids in reaching the error threshold more 
quickly. 

3.2. Evaluation on different patients 

In the next parts, we study the algorithm behavior for three different 
patients. 

Case 1: A young patient 
In a young patient, elimination of the tumor cells is the precedence. 

This is due to the ability of the body to recover the healthy and immune 
cells. Hence, the desired final state in this case is x2d = 0. Therefore, the 
error e(t)can be defined as e(t) = x2(t) − x2d = x2(t). The upper limit of 
the chemo-drug dose is umax = 4.4 mg L− 1 day− 1. The response of the 
patient is shown in Fig. 2 when a chemotherapeutic drug is adminis-
trated based on the DRL controller and includes the plots of the number 
of normal cells (x1), the number of tumor cells (x2), the number of im-
mune cells (x3), and the concentration of chemotherapeutic drug in the 

Fig. 3. Average steps of reaching the reduced error threshold when batch 
size varies. 

Fig. 4. Average steps of reaching the reduced error threshold when the policy 
update parameter d varies. 

Fig. 5. Average steps of reaching the reduced error threshold when τ varies.  

Fig. 6. Average steps of reaching the reduced error threshold when discount 
parameter γ varies. 
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blood (x4). As observed, the number of tumor cells decreases with time 
as the drug is administrated, and the number of normal cells increases. 
The immune cells experience an initial decrease which is due to the 
chemotherapy and rise afterward. The proposed DRL-based controller 
and the method of Padmanabhan et al. [18] expose a similar behavior in 
terms of different system states, but the latter has a longer medication 
period. This is further observed in Fig. 4, where the drug administrated 
for this case is plotted. The method of Padmanabhan et al. imposes a 
longer period of drug administration. In the proposed method, after day 
10, the treatment is ceased since the trajectory of the system is in the 
domain of attraction of the stable tumor-free equilibrium point. In other 
words, from this point, the immune system can remove cancer cells 
without any need for external treatments. 

Case 2: A young pregnant woman 
In this case, the upper limit of the chemo-drug dose is maintained at 

the possible low level up to fetus birth. After childbirth, the upper limit 
of the chemo-drug dose is increased to eradicate the tumor cells. Before 
the childbirth we consider umax = 1 mg L− 1 day− 1, and after the child 
birth we choose umax = 3.6 mg L− 1 day− 1. Therefore, two DRL agents are 
trained before and after delivery. Fig. 5 shows the results of chemo-
therapy for this patient. It can be seen that in the initial 20 days, the drug 
concentration in the plasma is limited to 1 mg L− 1 day− 1. After delivery, 
the drug dose is increased to a limit of 3.6 mg L− 1 day− 1 to complete the 
treatment period. The plot of the drug administrated for this case is 
shown in Fig. 6. The method of Padmanabhan et al. exposes a similar 
behavior, while again having a longer medication period as observed in 
both Figs. 4 and 5. 

Case 3: An old patient 
In the third case, an elderly patient is considered who has cancer 

along with other critical illnesses. In this case, preserving a significant 
number of normal cells is necessary while eliminating the tumor cells. 

Therefore, other than attempting to reach the desired x2d=0, the value of 
x1(t) should reach 1 (x1d=1). Hence, we use a combination of the two 
states to define e(t) = δx2(t) + (1 − δ)(1 − x1(t)). The parameter δ is used 
to weight the two elements of the error function and is set to 0.9 in the 
simulation. Figs. 6 and 7 show the response of the simulated old patient 
after the drug administration according to the DRL agent and Padma-
nabhan et al. [18]. The upper limit of the administrated drug is limited 
to 1.9 mg L− 1 day− 1 to reduce the damage to the normal cells. Both 

Fig. 7. Response of a young patient with cancer (Case 1), umax = 4.4 mgl− 1day− 1.  

Fig. 8. Amount of drug administrated (Case 1) umax = 4.4 mgl− 1day− 1.  
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methods show a similar behavior, while the Q-learning-based algorithm 
of Padmanabhan et al. imposes a longer medication period. (Fig. 8) 

As observed in the previous cases, the proposed method and the 
method of Padmanabhan et al. have a similar trend from different as-
pects of the system. Nevertheless, the latter Q-learning-based method, 
which requires discretization of both the states and actions of the 
learning agent, imposes a longer mediation period to eradicate the 
tumor cells. This is further illustrated in Table 2, where the number of 
days to reach the state of nearly eliminating the tumor cells (x2 ≤ 1e − 4) 
is shown. Another interesting factor is the total amount of the drug 

administrated by the two methods. The integrals of the control input 
curves for the three cases are also shown in Table 2. The results of our 
algorithm are averaged over three different training processes. The 
method of Padmanabhan et al. has a longer drug injection period and 
larger curve integrals in Cases 1 and 3. For the pregnant patient (case 2), 
it has a slightly smaller curve integral, while the drug administration 
period is still longer. Despite this, it is not able to eliminate the tumor 
cells faster. We performed a one-sample t-test and observed a significant 
difference between the reported results of our algorithm and the base-
line algorithm of Padmanabhan et al. (for DF=2, p < 0.001 in case 1, p <
0.05 for days of case 2, and p < 0.05 for the old patient). The results 
show that discretization of the actions and states for reinforcement 
learning can increase the total amount of the administrated drug, while 
it also increases the training process of the algorithm and imposes a 
longer treatment period. The method proposed in this paper, which 
handles the state and action in their original continuous spaces, reduces 
the treatment period, the total amount of drug administrated, and the 
time to reach the goal state of eliminating the tumor cells. 

To compare the results with non-RL state-of-the-art methods, the 
total drug dosage is compared with the strategies presented in [58]. In 
[58], five control strategies have been proposed for the 4-state 
tumor-immune interaction model, i.e. synergetic control, state feed-
back control, fuzzy control case I, fuzzy control case II, and PID control. 
The convergence time and total drug dosage of these strategies have 
been compared. We can only compare the total drug dosage used for 
treatment because the behavior of the state of the systems and the 
convergence time depend on the maximum admissible dose which is 
different from the present work. As shown in Table 3, the total drug 
dosage in our work is smaller except for the state feedback control 
strategy. However, it has to be noted that the state feedback control 

Table 2 
Comparison of the proposed method with the method of Padmanabhan et al. 
[18].   

Proposed method Padmanabhan et al. [18] 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Days to x2 = 10− 4 46 62 54 50 66 55 
Integral of drug curve 19.93 26.37 21.84 23.54 26.10 22.8  

Table 3 
Comparison of the proposed method with the methods presented in 
[58].  

Controller total drug dosage 

Synergetic control [58] 24.000 
State feedback control [58] 14.8637 
Fuzzy control Case I [58] 27.2003 
Fuzzy control Case II [58] 24.4707 
PID control [58] 24.7328 
Proposed method 19.9300  

Fig. 9. Response of young pregnant woman with cancer (Case 2), umax = 1 mgl− 1day− 1until delivery (20 days) and then umax = 3.6 mgl− 1day− 1.  
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strategy, in contrast to other strategies, is a model-based strategy. 

3.3. Model training convergence 

The learning curves of the proposed method in terms of the error rate 
for the young and old patients (cases 1 and 3), are shown in Fig. 9. The 
error rate is averaged over different episodes for 30,000 training steps, 
and the standard deviation of the values is shown by the red-shaded 

area. The jitter of the blue curve is caused by the environmental 
change in each step. It can be seen that, in the training process, the trend 
of the error rate (x2) is descending for both cases. The convergence rate 
of the old patient is slower compared to the young patient, due to the 
more complex constraints imposed in this case. The distribution of the 
error values demonstrated that the convergence rate improves as num-
ber of the training episodes increases. 

3.4. Robustness of the controller 

To show the robustness of the proposed DRL-based controller, three 
cases are considered. Case (i) has the nominal model with parameters 
presented in Table 1. In case (ii) and case (iii), the parameters of the 
model are changed with ±10 % parameters variation in nominal pa-
rameters presented in Table 1. Fig. 10 shows the behavior of these three 
cases by using the trained optimal DRL-based controller for the nominal 
model. It can be seen that the proposed controller can remove cancer 
cells despite to change in the parameters of the system since the decision 
of the controller is made based on the optimal policy concerning the 
state sk, and the error e(t). The control inputs using the trained DRL- 
based controller for the three cases are shown in Fig. 11. 

3.5. Limitations 

To improve the results, different extensions of the current study may 
be considered. In this study, a four-state mathematical model is 
considered as the tumor-immune interaction environment. Although 
this model was experimentally validated and used in many previous 
works, it may have some deviation from the real-world conditions. Due 
to this limitation, the robustness study has been conducted in Section 

Fig. 10. Amount of drug administrated (Case 2), umax = 1 mgl− 1day− 1 until 
delivery (20 days) and then umax = 3.6 mgl− 1day− 1. 

Fig. 11. Response of an elderly patient who has cancer along with other critical illnesses (Case 3), umax = 1.9 mgl− 1day− 1.  
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3.4. However, considering mathematical models with more cell in-
teractions is a future direction that may enhance the results. Another 
challenge in real-world applications is the need to make sure the neural 
models have been trained for different possible conditions. The pro-
posed model works in continuous state and action spaces, which is more 
realistic, and requires a significant number of training examples to 
generalize for patients with diverse conditions. In such cases, choosing 
the appropriate reward function is also of great importance. (Figs. 12, 
13, 14, 15) 

4. Discussion 

The administration of an appropriate dosing schedule to effectively 
eliminate the cancer cells while protecting the patient’s safety is a major 
concern in chemotherapy. The experimental results revealed that DRL 
can be considered as an adaptive control technique to administrate the 
drug dosing in chemotherapy. DRL is capable of taking a particular 
targeted adaption, where an agent can learn from its experiences and 
increase its overall reward while trying to achieve a certain goal effi-
ciently [13,59,60]. In the present work, the DRL technique was used as a 
closed-loop optimal control problem. In other words, a DRL-based 
controller was proposed. 

A closed-loop model-free controller using the Q-learning algorithm 
was presented in [18,61]. However, in [18,61], they proposed an 
RL-based controller by discretizing the state and action spaces, while in 
this paper a DRL-based controller has been proposed by considering 
continuous state and action spaces. The comparison with [18] shows the 
superiority of the proposed DRL-based controller. 

Similar to [61], a controller based on reinforcement learning was 
presented in [62] using a rough estimate of the tumor size and the 
overall patient based on a TS model. They split the reward function into 
three distinct parts. A four-state model was used in [18] to derive the 
chemo-drug dose using a closed-loop RL-based controller. Using the TS 
model and the CC model in implementing an RL-based controller was 
compared in [59]. The cancer model considered in this paper is as same 
as [18], which was validated by experimental tests. Moreover, we 
considered three diverse sets of patients and exposed the capability of 
the deep RL method in automatically administrating the chemotherapy 
drug dose for adaptive control of the disease. The reward function for 
the RL agent is defined based on an error value. This error value depends 
on the number of tumor cells and also the number of normal cells if the 
immune system is weak. The results showed that this reward function is 
capable of guiding the agent in selecting appropriate actions toward the 
goal state. We evaluated the proposed method in terms of variations in 
different variables and observed that in all different cases, the algorithm 
is effective in the treatment of the disease. As the baseline, we compared 
our work with the method of Padmanabhan et al. [18], which uses the 
Q-learning method for drug dose administration in discrete state and 
action spaces. It was observed that the deep RL method which operates 
in the original finite space has a better performance in both treatment 
time and the total amount of administrated drug. The proposed method 
also reduces the requirement of expert interference to determine the 
discretization rules. We also conducted a robustness experiment to show 
that the model is effective despite changes in the parameters of the 
system. 

5. Conclusion 

In this paper, the problem of cancer chemotherapy control as an 
optimization problem, providing a solution based on deep reinforcement 
learning was considered. A patient with a nonlinear pharmacological 
cancer model was simulated. The reinforcement learning framework 
enabled a model-free approach to drug dosing control. By designing a 
deep RL controller, the system variables in their original continuous 
spaces were modeled. This is in contrast to the available model-free 
approaches, which commonly discretize variables. Therefore, the real- 

Fig. 12. Amount of drug administrated (Case 3), umax = 1.9 mgl− 1day− 1.  

Fig. 13. The convergence of training the DRL control model.  
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world conditions can be simulated more accurately, and reduce the 
expert intervention. A diverse set of experiments to expose the perfor-
mance of the proposed model from different perspectives was conduct-
ed. Results on three different patients and comparison with previous 
work show the efficiency of the proposed model in controlling the cancer 

treatment process. The actual application of DRL to real-life medical 
cases is still in an emerging state. Different challenges should be 
addressed in this regard, such as dynamic patient regimens and 
personalized medicine. Such issues require both extended theoretical 
and practical analysis. 

Ethical approval 

No ethics approval was required. 

Data availability 

Not applicable. 

Declaration of Competing Interest 

The authors declare that they have no conflicts of interest. 

Funding 

No funding was received for this study. 

References 

[1] American Cancer Society, Cancer facts & figures 2022. Atlanta, Ga, Am. Cancer 
Soc. (2022) 1–76. https://www.cancer.org/cancer/bladder-cancer/detection-dia 
gnosis-staging/survival-rates.html. 

[2] R. Elancheran, V.L. Maruthanila, M. Kumar, J. Kotoky, S. Kabilan, Strategy towards 
diagnosis and treatment for prostate cancer, Urol. Res. Ther. J. 1 (2017) 115. 

[3] P. Yazdjerdi, N. Meskin, M. Al-Naemi, A.E. Al Moustafa, L. Kovács, Reinforcement 
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